A Nonparametric Estimator of Heterogeneity Variance with Applications to SMR- and Proportion-Data

Total Page:16

File Type:pdf, Size:1020Kb

A Nonparametric Estimator of Heterogeneity Variance with Applications to SMR- and Proportion-Data Biometrical Journal 42 )2000) 3, 321±334 A Nonparametric Estimator of Heterogeneity Variance with Applications to SMR- and Proportion-Data Dankmar BoÈhning Department of Epidemiology Institute for Social Medicine and Medical Psychology Free University Berlin Germany Jesus Sarol Jr. Department of Epidemiology and Biostatistics The College of Public Health University of the Philippines Manila Philippines Summary In this paper the situation of extra population heterogeneity is discussed from a analysis of variance point of view. We first provide a non-iterative way of estimating the variance of the heterogeneity distribution without estimating the heterogeneity distribution itself for Poisson and binomial counts. The consequences of the presence of heterogeneity in the estimation of the mean are discussed. We show that if the homogeneity assumption holds, the pooled mean is optimal while in the presence of strong heterogeneity, the simple )arithmetic) mean is an optimal estimator of the mean SMR or mean proportion. These results lead to the problem of finding an optimal estimator for situations not repre- sented by these two extreme cases. We propose an iterative solution to this problem. Illustrations for the application of these findings are provided with examples from various areas. Key words: Population heterogeneity; Random effects model; Moment estimator; Variance separation; Confidence interval estimation adjusted for unob- served heterogeneity. 1. Introduction In a variety of biometric applications the situation of extra-population heteroge- neity occurs. In particular, this is the case if there is good reason to model the variable of interest Y through a density of parametric form p)y, q) with a scalar parameter q. For a given subpopulation, the density p)y, q) might be very suitable, but the value of q is not able to cover the whole population of interest. In these situations we speak of extra heterogeneity which might be caused by unobserved 322 D. BoÈhning and J. Sarol Jr.: Nonparametric Estimator of Heterogeneity Variance covariates or clustered observations such as herd clustering in estimating animal infection rates. An introductory discussion can be found in Aitkin et al. )1990/ p. 213) and the references given there; see also the review of Pendergast et al. )1996). In this paper it is understood that extra-population heterogeneity,orin brief, population heterogeneity refers to the situation that the parameter of interest, q, varies in the population and sampling has not taken this into account )e.g. it has not been observed from which subpopulation )defined by the values of q) the datum is coming from). As will be clear from equation )1) below, inference is affected by the occurrence of extra-population heterogeneity. For example, var- iances of estimators of interest are often largely increased, leading to wider confi- dence intervals as compared to conventional ones. Figure 1 and Figure 2 present examples of this effect. The adjustment of these variances require the estimation of the variance of the distribution associated with the extra-heterogeneity. The main purpose of this paper is to present a moment estimator for the heterogeneity variance in a simple manner. To be more precise, if q is itself varying with distribution G and associated 1 density g)q), the )unconditional) marginal density of Y is f)y) p y; q À1 Â g q dq. We are interested in the separation of variance into two terms: 1 1 2 Var Y Var Y j q g q dq m qÀmy g q dq À1 À1 E)s2)q)) d2 , )1) where m q is the E)Y j q) and my is the overall mean of Y. In some situations 1 2 2 which we will demonstrate later, d m qÀmy g q dq is of the form 1 À1 2 2 2 d k q À mq g q dq kt , where mq is now the mean of q and À1 1 2 2 2 t q À mq g q dq. One can easily identify here that t is the variance of À1 q. Thus, in these instances, we can say that )1) is a partitioning of the variance due to the variation in the subpopulation with parameter value q and due to the variance in the heterogeneity distribution G of q. One can also think of )1) as an analysis-of-variance partition with a latent factor having distribution G. The intention is to find an estimate of t2 without implying knowledge or esti- mating the latent heterogeneity distribution G. The idea is very simple: we replace Var )Y) and E)s2)q)) on the right hand side of )1) by their respective sample esti- mates and obtain an estimate for t2.Iftb2 is negative, we truncate it to 0 and will b2 denote it by t )this is very similar to the estimator proposed by DerSimonian and Laird 1986). In the succeeding text, we will use m as the mean of q. Example Poisson). Let Y1; Y2; ...; YN a random sample of Poisson counts, e.g. p y; q exp Àq qy=y!: Then, s2 qq and E s2 q m. Therefore, Biometrical Journal 42 )2000) 3 323 1 tb2 S2 À Y, with S2 S y À y2. This quantity has also been referred to N À 1 i i as a measure of Poisson overdispersion )BoÈhning, 1994). Note, that E tb2t2. b2 Clearly, t will have a small bias which is practical negligible for large values of t2: Example Binomial). Let Y1, Y2, ..., YN a random sample of Binomial counts, e.g. n p y; q qy 1 À qnÀy. Then, m qnq and s2 qnq 1 À q. It follows y that E nqnm and E s2 q nE q À q2nm À E q2 nm À t2 À m2. 2 2 2 2 2 Since Var YiE s q n t nm 1 À mn n À 1 t , we find t Var YiÀnm 1 À m=n n À 1, for i 1; ...; N. We can use the estimator, Y Y 1 tb2 S2=n n À 1 À 1 À n À 1 , with S2 S y À y2. This n n N À 1 i i 2 estimator has a bias equal to Var Yi=n n À 1 N which is practically negligible for even moderate values of n. For example, if n 10 and N 10; then the bias b2 2 of tis equal to 1/9000 of the variance of Yi. An unbiased estimator of t is given Nn À 1 Y Y by S2 À 1 À n À 1 . See the appendix. n2 n À 1 N n n In the next section we will consider generalizations of this idea. In section 3 we will discuss consequences of the presence of heterogeneity variance for the efficient estimation of the )unconditional) mean and will show that the conven- tional pooled estimator looses its efficiency property. An algorithmic solution for finding an efficient mean estimator is proposed in section 4. In section 5, our approach is compared to others, in particular to the nonparametric mixture model. 2. Estimating Heterogeneity Variance for SMR- and Proportion-Data Standardized Mortality Ratio. The SMR is the ratio of an observed number of mortality cases O and an expected )non-random) number of mortality cases e. Note that we have to distinguish notationally between the statistical operator of taking expected values )denoted by E) and the number of expected cases e com- puted from an external reference population. Frequently the assumption of a Pois- son distribution for O is used with mean E O j e; qm qqe. If we allow extra-Poisson variation, the partition of variance is 1 1 Var O Var O j q g q dq qe À me2 g q dq À1 À1 E s2 q e2t2 em e2t2 : )2) Consequently, t2 Var O=e2 À m=e. Here, t2 represents the variance of the q's, the theoretical SMR's. 324 D. BoÈhning and J. Sarol Jr.: Nonparametric Estimator of Heterogeneity Variance The estimation is complicated here by the fact that the expected mortality cases might differ in a sample. Let O1; ...; ON be a random sample of mortality cases with associated expected mortality cases e1; ...; eN. Often the sample represents a collection of SMR-values for a set of geographic regions and one is interested in analyzing geographic variation. Let 1 1 b2 2 2 tm Si Oi À eim =ei À mSi : 3 N ei b2 2 b2 It is easily verified that E tmt . However, tm involves still the unknown para- meter m which must be estimated. We consider two unbiased estimates of m, lead- ing to different formula for obtaining an unbiased t2. The first is the simple 1 Oi )unweighted) mean of the SMR's, that is, m^ Si . This leads to N ei 1 1 1 b2 2 2 t Si Oi À eim^ =ei À mS^ i N À 1 N ei 1 2 1 1 Si SMRi À m^ À mS^ i 4 N À 1 N ei where we have adjusted for the estimation of m. It is shown in the appendix that tb2 based on )4) is unbiased for t2. Alternatively, one could replace m in )3) with a S O different unbiased estimate of m, namely the pooled estimator m^ i i. We first 1 1 1 Siei b2 2 let t Si SMRi À m^ À mS^ i . This, however, results to a biased esti- N À 1 N ei mate of t2. It is shown in the appendix that an unbiased estimate of t2 is obtained by c2* b2 tcorrected t À am^=b 5 where the non-random constants a and b are provided by 1 1 N 1 a Si À 6 N N À 1 ei N À 1 Siei and !, S e2 b N À 2 N i i N À 1 : 7 2 Siei To illustrate this estimation process, we consider two examples.
Recommended publications
  • A Simple Method for Correcting for the Will Rogers Phenomenon with Biometrical Applications
    University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Science and Engineering School of Engineering, Computing and Mathematics 2020-01-20 A simple method for correcting for the Will Rogers phenomenon with biometrical applications Stander, M http://hdl.handle.net/10026.1/15227 10.1002/bimj.201900199 Biometrical Journal: journal of mathematical methods in biosciences Wiley-VCH Verlag All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Biometrical Journal 52 (2010) 61, zzz–zzz / DOI: 10.1002/bimj.200100000 A simple method for correcting for the Will Rogers phenomenon with biometrical applications Mark Stander∗ 1 and Julian Stander 2 1 BAE Systems 6 Carlton Gardens LONDON SW1Y 5AD United Kingdom Email: [email protected] 2 School of Engineering, Computing and Mathematics University of Plymouth Drake Circus PLYMOUTH PL4 8AA United Kingdom Email: [email protected] Received zzz, revised zzz, accepted zzz In its basic form the Will Rogers phenomenon takes place when an increase in the average value of each of two sets is achieved by moving an element from one set to another. This leads to the conclusion that there has been an improvement, when in fact essentially nothing has changed. Extended versions of this phenomenon can occur in epidemiological studies, rendering their results unreliable.
    [Show full text]
  • Rank Full Journal Title Journal Impact Factor 1 Journal of Statistical
    Journal Data Filtered By: Selected JCR Year: 2019 Selected Editions: SCIE Selected Categories: 'STATISTICS & PROBABILITY' Selected Category Scheme: WoS Rank Full Journal Title Journal Impact Eigenfactor Total Cites Factor Score Journal of Statistical Software 1 25,372 13.642 0.053040 Annual Review of Statistics and Its Application 2 515 5.095 0.004250 ECONOMETRICA 3 35,846 3.992 0.040750 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 4 36,843 3.989 0.032370 JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY 5 25,492 3.965 0.018040 STATISTICAL SCIENCE 6 6,545 3.583 0.007500 R Journal 7 1,811 3.312 0.007320 FUZZY SETS AND SYSTEMS 8 17,605 3.305 0.008740 BIOSTATISTICS 9 4,048 3.098 0.006780 STATISTICS AND COMPUTING 10 4,519 3.035 0.011050 IEEE-ACM Transactions on Computational Biology and Bioinformatics 11 3,542 3.015 0.006930 JOURNAL OF BUSINESS & ECONOMIC STATISTICS 12 5,921 2.935 0.008680 CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS 13 9,421 2.895 0.007790 MULTIVARIATE BEHAVIORAL RESEARCH 14 7,112 2.750 0.007880 INTERNATIONAL STATISTICAL REVIEW 15 1,807 2.740 0.002560 Bayesian Analysis 16 2,000 2.696 0.006600 ANNALS OF STATISTICS 17 21,466 2.650 0.027080 PROBABILISTIC ENGINEERING MECHANICS 18 2,689 2.411 0.002430 BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY 19 1,965 2.388 0.003480 ANNALS OF PROBABILITY 20 5,892 2.377 0.017230 STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT 21 4,272 2.351 0.006810 JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 22 4,369 2.319 0.008900 STATISTICAL METHODS IN
    [Show full text]
  • An Information Theoretical Method for Analyzing Unreplicated Designs with Binary Response
    REVSTAT – Statistical Journal Volume 17, Number 3, July 2019, 383–399 AN INFORMATION THEORETICAL METHOD FOR ANALYZING UNREPLICATED DESIGNS WITH BINARY RESPONSE Authors: Krystallenia Drosou – Department of Mathematics, National Technical University of Athens, Athens, Greece [email protected] Christos Koukouvinos – Department of Mathematics, National Technical University of Athens, Athens, Greece [email protected] Received: February 2017 Revised: March 2017 Accepted: April 2017 Abstract: • The analysis of unreplicated factorial designs constitutes a challenging but difficult issue since there are no degrees of freedom so as to estimate the error variance. In the present paper we propose a method for screening active effects in such designs, as- suming Bernoulli distributed data rather than linear; something that hasn’t received much attention yet. Specifically, we develop an innovating algorithm based on an information theoretical measure, the well-known symmetrical uncertainty, so that it can measure the relation between the response variable and each factor separately. The powerfulness of the proposed method is revealed via both, a thorough simulation study and a real data set analysis. Key-Words: • two-level factorial designs; unreplicated experiments; generalized linear models; symmetrical uncertainty. AMS Subject Classification: • 62-07, 62K15, 62J12. 384 Krystallenia Drosou and Christos Koukouvinos Analysis of Unreplicated Designs with Binary Response 385 1. INTRODUCTION Factorial designs constitute a powerful tool especially in screening experi- ments where the goal is to identify the factors with a significant impact on the response of interest. Although two-level factorial designs are commonly used as experimental plans, the number of runs grows exponentially as the number of factors increases; thus, in case when the replication of the experiment is pro- hibitive due to economical or technical issues, unreplicated designs constitute an appropriate choice.
    [Show full text]
  • Abbreviations of Names of Serials
    Abbreviations of Names of Serials This list gives the form of references used in Mathematical Reviews (MR). ∗ not previously listed The abbreviation is followed by the complete title, the place of publication x journal indexed cover-to-cover and other pertinent information. y monographic series Update date: January 30, 2018 4OR 4OR. A Quarterly Journal of Operations Research. Springer, Berlin. ISSN xActa Math. Appl. Sin. Engl. Ser. Acta Mathematicae Applicatae Sinica. English 1619-4500. Series. Springer, Heidelberg. ISSN 0168-9673. y 30o Col´oq.Bras. Mat. 30o Col´oquioBrasileiro de Matem´atica. [30th Brazilian xActa Math. Hungar. Acta Mathematica Hungarica. Akad. Kiad´o,Budapest. Mathematics Colloquium] Inst. Nac. Mat. Pura Apl. (IMPA), Rio de Janeiro. ISSN 0236-5294. y Aastaraam. Eesti Mat. Selts Aastaraamat. Eesti Matemaatika Selts. [Annual. xActa Math. Sci. Ser. A Chin. Ed. Acta Mathematica Scientia. Series A. Shuxue Estonian Mathematical Society] Eesti Mat. Selts, Tartu. ISSN 1406-4316. Wuli Xuebao. Chinese Edition. Kexue Chubanshe (Science Press), Beijing. ISSN y Abel Symp. Abel Symposia. Springer, Heidelberg. ISSN 2193-2808. 1003-3998. y Abh. Akad. Wiss. G¨ottingenNeue Folge Abhandlungen der Akademie der xActa Math. Sci. Ser. B Engl. Ed. Acta Mathematica Scientia. Series B. English Wissenschaften zu G¨ottingen.Neue Folge. [Papers of the Academy of Sciences Edition. Sci. Press Beijing, Beijing. ISSN 0252-9602. in G¨ottingen.New Series] De Gruyter/Akademie Forschung, Berlin. ISSN 0930- xActa Math. Sin. (Engl. Ser.) Acta Mathematica Sinica (English Series). 4304. Springer, Berlin. ISSN 1439-8516. y Abh. Akad. Wiss. Hamburg Abhandlungen der Akademie der Wissenschaften xActa Math. Sinica (Chin. Ser.) Acta Mathematica Sinica.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae PERSONAL INFORMATION Norbert Benda WORK EXPERIENCE February 2010- Present Head of Biostatistics and Special Pharmacokinetics Unit BfArM (Federal Institute for Drugs and Medical Devices) (Germany) Managing Biostatistics and Special Pharmacokinetics Unit, biostatistical assessment of European and national German drug applications, biostatistical support in scientific advices, biostatistical input to guidelines, biostatistical input to clinical and methodological research projects November 2006-January 2010 (Senior) Expert Statistical Methodologist Novartis Pharma AG (Switzerland) Development and application of novel statistical methodologies (dose-finding, adaptive designs, longitudinal data analysis, missing data, optimal design), methodological support for Trial and Program Statisticians, clinical scenario evaluations (simulations) for clinical trial planning, internal training courses in statistics July 1997-October 2006 Statistician Schering AG (Germany) Statistical design and analysis of clinical studies (phase I - IV), statistical consultant for preclinical and clinical development, project statistician for international drug development projects, member of the Global Pharmacometrics Team October 1993-July 1997 Research Assistant University of Tübingen, Department of Medical Biometry (Germany) Statistical consultant in statistics for medical PhD students and researchers, lectures in medical statistics, design and evaluation of medical studies, research projects in ophthalmology April 1989-September 1993 Research Assistant
    [Show full text]
  • Joshua M. Tebbs
    Joshua M. Tebbs Department of Statistics 215C LeConte College University of South Carolina Columbia, SC 29208 USA tel: +1 803 576-8765 fax: +1 803 777-4048 email: [email protected] www: http://people.stat.sc.edu/tebbs/ Date and Place of Birth: 1973; Fort Madison, Iowa, USA Degrees 2000 Ph.D., Statistics, North Carolina State University Advisor: William H. Swallow 1997 M.S., Statistics, University of Iowa 1995 B.S., Mathematics, Statistics; Honors: Statistics; Minor: Spanish, University of Iowa Professional Experience 2012- Professor, Department of Statistics, University of South Carolina 2010-2012 Graduate Director, Department of Statistics, University of South Carolina 2008-2011 Associate Professor, Department of Statistics, University of South Carolina 2006-2009 Undergraduate Director, Department of Statistics, University of South Carolina 2005-2008 Assistant Professor, Department of Statistics, University of South Carolina 2004-2005 Undergraduate Director, Department of Statistics, Kansas State University 2003-2005 Assistant Professor, Department of Statistics, Kansas State University 2001-2003 Assistant Professor, Department of Statistics, Oklahoma State University 2000-2001 Statistician, United Technologies 1997-2000 Teaching Assistant, Department of Statistics, North Carolina State University 1995-1997 Teaching Assistant, Department of Statistics, University of Iowa Current Research Interests Categorical data, statistical methods for pooled data (group testing), order-restricted inference, applications in epidemiology and public
    [Show full text]
  • Sanat K. Sarkar Cyrus
    September 2019 Sanat K. Sarkar Cyrus. H. K. Curtis Professor and Chair Department of Statistical Science Temple University http://sites.temple.edu/sanat/ https://scholar.google.com/citations?user=FtID5t0AAAAJ&hl=en https://www.researchgate.net/profile/Sanat_Sarkar Experience ACADEMIC 2016 – Full Professor, Department of Statistical Science, Temple University, Philadelphia, PA 1994 - 2016 Full Professor, Department of Statistics, Temple University, Philadelphia, PA 1988 - 1994 Associate Professor, Department of Statistics, Temple University, Philadelphia, PA 1983 - 1988 Assistant Professor, Department of Statistics, Temple University, Philadelphia, PA 1982 - 1983 Adjunct Assistant Professor, Department of Statistics, Temple University, Philadelphia, PA 1980 - 1982 Research Associate, Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, PA 1976 - 1980 Lecturer, Department of Statistics, Calcutta University, Calcutta, India NON-ACADEMIC 2019- Member, Advisory Board, Prosoft Clinical and LogEcal Data Analytics, Wayne, PA 2008 Member, Scientific Advisory Committee, Merck Research Labs, 2007 Statistical Consultant, Novartis Pharmaceuticals 2006 Statistical Consultant, Cephalon Inc. 1991 - 2000 Statistical Consultant, Merck Research Lab, Blue Bell, PA Summer, 1991 Senior Biometrician, Merck Research Lab, Blue Bell, PA Summer, 1986 Visiting Scientist, Epi-Stat Research Lab, Fox Chase Cancer Research Center, Philadelphia, PA Professional Societies • Calcutta Statistical Association (Life member) • International Indian
    [Show full text]
  • Classifying Antibodies Using Flow Cytometry Data: Class Prediction and Class Discovery
    Biometrical Journal 47 (2005) 5, 740--754 DOI: 10.1002/bimj.200310142 Classifying Antibodies Using Flow Cytometry Data: Class Prediction and Class Discovery M. P. Salganik*; 1, E. L. Milford2, D. L. Hardie3, S. Shaw4, and M. P. Wand5 1 Department of Biostatistics, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA 2 Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA 3 MRC Centre for Immune Regulation, Institute of Biomedical Research, University of Birmingham, Birmingham 2TT, UK 4 Experimental Immunology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20892-1360, USA 5 Department of Statistics, School of Mathematics, University of New South Wales, Sydney, 2052, Australia Received 21 October 2003, revised 14 January 2005, accepted 16 March 2005 Summary Classifying monoclonal antibodies, based on the similarity of their binding to the proteins (antigens) on the surface of blood cells, is essential for progress in immunology, hematology and clinical medicine. The collaborative efforts of researchers from many countries have led to the classification of thousands of antibodies into 247 clusters of differentiation (CD). Classification is based on flow cytometry and biochemical data. In preliminary classifications of antibodies based on flow cytometry data, the object requiring classification (an antibody) is described by a set of random samples from unknown densities of fluorescence intensity. An individual sample is collected in the experiment, where a population of cells of a certain type is stained by the identical fluorescently marked replicates of the antibody of interest. Samples are collected for multiple cell types.
    [Show full text]
  • PERPUSTAKAAN UTM 2015 Categories: STATISTICS & PROBABILITY Quartiles: Q2 by Wos
    PERPUSTAKAAN UTM 2015 Categories: STATISTICS & PROBABILITY Quartiles: Q2 by WoS Journal Impact Factor 5-Year JCR Abbreviated Rank Full Journal Title ISSN Total Cites Impact without Journal Impact Title Factor Self Cites Factor 1 ANNALS OF PROBABILITY ANN PROBAB 0091-1798 4,226 1.42 1.326 1.701 2 BIOMETRIKA BIOMETRIKA 0006-3444 15,774 1.418 1.359 2.281 SCANDINAVIAN ACTUARIAL 3 SCAND ACTUAR J 0346-1238 370 1.412 1.265 1.212 JOURNAL COMPUTATIONAL COMPUT STAT DATA UTM 4 STATISTICS & DATA 0167-9473 6,012 1.4 1.07 1.51 AN ANALYSIS REVSTAT-STATISTICAL 4 REVSTAT-STAT J 1645-6726 92 1.4 1.333 0.794 JOURNAL OXFORD BULLETIN OF OXFORD B ECON 6 0305-9049 1,986 1.368 1.356 1.885 ECONOMICS AND STATISTICS STAT 7 BAYESIAN ANALYSIS BAYESIAN ANAL 1931-6690 841 1.343 1.239 2.443 SORT-STATISTICS AND SORT-STAT OPER RES 8 OPERATIONS RESEARCH 1696-2281 85 1.333 1.292 1.133 T TRANSACTIONS 8 EXTREMES EXTREMES 1386-1999 457 1.333 1.156 1.5 JOURNAL OF J COMPUT GRAPH 2015 10 COMPUTATIONAL AND 1061-8600 2,699 1.222 1.121 1.812 STAT GRAPHICAL STATISTICS INTERNATIONAL 11 INT STAT REV 0306-7734 1,131 1.2 1.15 1.28 STATISTICAL REVIEW 12 ECONOMETRIC REVIEWS ECONOMET REV 0747-4938 730 1.189 1.17 1.116 13 BERNOULLIPERPUSTAKAANBERNOULLI 1350-7265 1,327 1.161 1.083 1.296 14 STATISTICA SINICA STAT SINICA 1017-0405 2,269 1.158 1.099 1.591 JOURNAL OF QUALITY 15 J QUAL TECHNOL 0022-4065 2,046 1.152 0.848 2.096 TECHNOLOGY INSURANCE MATHEMATICS 16 INSUR MATH ECON 0167-6687 2,141 1.128 0.646 1.582 & ECONOMICS STATISTICAL APPLICATIONS STAT APPL GENET 17 IN GENETICS AND 2194-6302 1,415
    [Show full text]
  • Bounds for the Weight of External Data in Shrinkage Estimation
    Biometrical Journal XX (2020) YY, zzz–zzz / DOI: 10.1002/bimj.DOIsuffix Bounds for the weight of external data in shrinkage estimation ,1 1 Christian Rover¨ ∗ and Tim Friede 1 Department of Medical Statistics, University Medical Center G¨ottingen, Humboldtallee 32, 37073 G¨ottingen, Germany Received xxx, revised yyy, accepted zzz Shrinkage estimation in a meta-analysis framework may be used to facilitate dynamical borrowing of infor- mation. This framework might be used to analyze a new study in the light of previous data, which might differ in their design (e.g., a randomized controlled trial (RCT) and a clinical registry). We show how the common study weights arise in effect and shrinkage estimation, and how these may be generalized to the case of Bayesian meta-analysis. Next we develop simple ways to compute bounds on the weights, so that the contribution of the external evidence may be assessed a priori. These considerations are illustrated and dis- cussed using numerical examples, including applications in the treatment of Creutzfeldt-Jakob disease and in fetal monitoring to prevent the occurrence of metabolic acidosis. The target study’s contribution to the re- sulting estimate is shown to be bounded below. Therefore, concerns of evidence being easily overwhelmed by external data are largely unwarranted. Key words: Random-effects meta-analysis; Bayesian statistics; Between-study heterogeneity; Shrinkage estimation; Inverse-variance weights. 1 Introduction In some situations it is useful to support an estimate using additional external evidence, for example, when a small study in the context of a rare disease may be supplemented with data from a clinical registry or electronic health records, or when the result from a meta-analysis may be backed by an analysis in a sim- ilar field, e.g., a related but somewhat different population.
    [Show full text]
  • On Switching from Research to Tenure Track
    Department of Public Health Sciences (DPHS) Guideline for Promotion for Research and Tenure Track Faculty This DPHS Guideline is to provide more specific information about the College of Medicine Appointments, Promotions, and Tenure criteria (see http://academicdepartments.musc.edu/com/faculty/apt/forms/guidelines.pdf). A. Distinction between Tenure and Research Tracks The research and (tenure) track require similar research output, but the distinction between them is the differing expectations of teaching and service. In the Tenure track (TT), expectations include excellence in didactic teaching and student mentoring/advising as well as increased involvement in service activities at MUSC and beyond (e.g., institutional, departmental and divisional committees, national committee service, journal editing). In Research track (RT) the emphasis is on research output only, and this track does not require involvement in teaching or service activities. B. Rank Criteria (adapted from the College of Medicine APT Guidelines) R=Required; S =Suggested Assistant Professor (from Instructor, Post-Doctoral Trainee, Academic Academic Research or Assistant Professor elsewhere) Investigator Clinician/ Academic (TT) Collaborator Clinician/ (TT) Collaborator (RT) Clear commitment to an academic career in research, teaching, R R R and/or collaboration (TT), and research (RT) Commitment to and potential for performing independent research. R R R Receipt, active pursuit, or development of the skills necessary to R R R apply for local, regional and national grants. Developing skills for directing or contributing to publications related to research, teaching, and/or collaboration. Participation in R R R interprofessional teaching and/or interdisciplinary research encouraged. Active in training of students and/or post graduates.
    [Show full text]
  • Statistics Promotion and Tenure Guidelines
    Approved by Department 12/05/2013 Approved by Faculty Relations May 20, 2014 UFF Notified May 21, 2014 Effective Spring 2016 2016-17 Promotion Cycle Department of Statistics Promotion and Tenure Guidelines The purpose of these guidelines is to give explicit definitions of what constitutes excellence in teaching, research and service for tenure-earning and tenured faculty. Research: The most common outlet for scholarly research in statistics is in journal articles appearing in refereed publications. Based on the five-year Impact Factor (IF) from the ISI Web of Knowledge Journal Citation Reports, the top 50 journals in Probability and Statistics are: 1. Journal of Statistical Software 26. Journal of Computational Biology 2. Econometrica 27. Annals of Probability 3. Journal of the Royal Statistical Society 28. Statistical Applications in Genetics and Series B – Statistical Methodology Molecular Biology 4. Annals of Statistics 29. Biometrical Journal 5. Statistical Science 30. Journal of Computational and Graphical Statistics 6. Stata Journal 31. Journal of Quality Technology 7. Biostatistics 32. Finance and Stochastics 8. Multivariate Behavioral Research 33. Probability Theory and Related Fields 9. Statistical Methods in Medical Research 34. British Journal of Mathematical & Statistical Psychology 10. Journal of the American Statistical 35. Econometric Theory Association 11. Annals of Applied Statistics 36. Environmental and Ecological Statistics 12. Statistics in Medicine 37. Journal of the Royal Statistical Society Series C – Applied Statistics 13. Statistics and Computing 38. Annals of Applied Probability 14. Biometrika 39. Computational Statistics & Data Analysis 15. Chemometrics and Intelligent Laboratory 40. Probabilistic Engineering Mechanics Systems 16. Journal of Business & Economic Statistics 41. Statistica Sinica 17.
    [Show full text]