On Vascular Bundle Modifications in Nodes and Internodes of Selected Grass Species
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Dissertação [ ] Tese
UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA CARACTERIZAÇÃO E GERMINAÇÃO DE Dendrocalamus asper (SCHULTES F.) BACKER EX HEYNE (POACEAE: BAMBUSOIDEAE) CRISTHIAN LORRAINE PIRES ARAUJO Orientadora: Profa. Dra. Larissa Leandro Pires Setembro - 2017 TERMO DE CIÊNCIA E DE AUTORIZAÇÃO PARA DISPONIBILIZAR VERSÕES ELETRÔNICAS DE TESES E DISSERTAÇÕES NA BIBLIOTECA DIGITAL DA UFG Na qualidade de titular dos direitos de autor, autorizo a Universidade Federal de Goiás (UFG) a disponibilizar, gratuitamente, por meio da Biblioteca Digital de Te- ses e Dissertações (BDTD/UFG), regulamentada pela Resolução CEPEC nº 832/2007, sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o documento conforme permissões assinaladas abaixo, para fins de leitura, impres- são e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. 1. Identificação do material bibliográfico: [ x ] Dissertação [ ] Tese 2. Identificação da Tese ou Dissertação: Nome completo do autor: Cristhian Lorraine Pires Araujo Título do trabalho: Caracterização e germinação de Dendrocalamus asper (Schultes f.) Backer ex Heyne (Poaceae: Bambusoideae) 3. Informações de acesso ao documento: Concorda com a liberação total do documento [ x ] SIM [ ] NÃO1 Havendo concordância com a disponibilização eletrônica, torna-se imprescin- dível o envio do(s) arquivo(s) em formato digital PDF da tese ou dissertação. Assinatura do(a) autor(a)2 Ciente e de acordo: Assinatura do(a) orientador(a)² Data: 26 / 06 / 2019 1 Neste caso o documento será embargado por até um ano a partir da data de defesa. A extensão deste prazo suscita justificativa junto à coordenação do curso. Os dados do documento não serão disponibilizados durante o período de embargo. -
Not All Trees Sleep the Same—High Temporal Resolution Terrestrial Laser Scanning Shows Differences in Nocturnal Plant Movement
ORIGINAL RESEARCH published: 20 October 2017 doi: 10.3389/fpls.2017.01814 Not All Trees Sleep the Same—High Temporal Resolution Terrestrial Laser Scanning Shows Differences in Nocturnal Plant Movement András Zlinszky 1, 2*, Bence Molnár 3 and Anders S. Barfod 2 1 Balaton Limnological Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Tihany, Hungary, 2 Ecoinformatics and Biodiversity Section, Department of Bioscience, Aarhus University, Aarhus, Denmark, 3 Department of Photogrammetry and Geoinformatics, Budapest University of Technology and Economics, Budapest, Hungary Circadian leaf movements are widely known in plants, but nocturnal movement of tree branches were only recently discovered by using terrestrial laser scanning (TLS), a high resolution three-dimensional surveying technique. TLS uses a pulsed laser emitted in a regular scan pattern for rapid measurement of distances to the targets, thus producing three dimensional point cloud models of sub-centimeter resolution and accuracy in a few minutes. Here, we aim to gain an overview of the variability of circadian movement of small Edited by: Yann Guédon, trees across different taxonomic groups, growth forms and leaf anatomies. We surveyed Centre de Coopération Internationale a series of 18 full scans over a 12-h night period to measure nocturnal changes in shape en Recherche Agronomique pour le Développement (CIRAD), France simultaneously for an experimental setup of 22 plants representing different species. Reviewed by: Resulting point clouds were evaluated by comparing changes in height percentiles of Franck Hétroy-Wheeler, laser scanning points belonging to the canopy. Changes in crown shape were observed Université de Strasbourg, France for all studied trees, but clearly distinguishable sleep movements are apparently rare. -
Vascular Construction and Development in the Aerial Stem of Prionium (Juncaceae) Author(S): Martin H
Vascular Construction and Development in the Aerial Stem of Prionium (Juncaceae) Author(s): Martin H. Zimmermann and P. B. Tomlinson Source: American Journal of Botany, Vol. 55, No. 9 (Oct., 1968), pp. 1100-1109 Published by: Botanical Society of America Stable URL: http://www.jstor.org/stable/2440478 . Accessed: 19/08/2011 13:58 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Botanical Society of America is collaborating with JSTOR to digitize, preserve and extend access to American Journal of Botany. http://www.jstor.org Amer.J. Bot. 55(9): 1100-1109.1968. VASCULAR CONSTRUCTION AND DEVELIOPMENT IN THE AERIAL STEM OF PRIONIUM (JUNCACEAE)1 MARTIN H. ZIMMERMANN AND P. B. TOMLINSON HarvardUniversity, Cabot Foundation,Petersham, Massachusetts and FairchildTropical Garden, Miami, Florida A B S T R A C T The aerial stemof Prioniumhas been studiedby motion-pictureanalysis which permits the reliabletracing of one amonghundreds of vascularstrands throughout long series of transverse sections.By plottingthe path of many bundles in the maturestem, a quantitative,3-dimensional analysisof their distribution has beenmade, and by repeatingthis in theapical regionan under- standingof vasculardevelopment has been achieved.In the maturestem axial continuityis maintainedby a verticalbundle which branches from each leaf tracejust beforethis enters the leaf base. -
Designing W Grasses Complete Notes
DESIGNING W/ GRASSES: SLIDESHOW NAMES TONY SPENCER Google search botanical plant names or visit Missouri Botanical Garden site for more info: 1. Pennisetum alopecuroides + Sanguisorba + Molinia arundinacea ‘Transparent’ 2. Pennisetum alopecuroides + Aster + Molinia arundinacea ‘Transparent’ 3. Calamagrostis x. acutiflora ‘Karl Foerster’ + Panicum ‘Shenandoah’ 4. Helianthus pauciflorus – Photo Credit: Chris Helzer 5. Nassella tenuissima + Echinacea simulata + Monarda bradburiana 6. Hordeum jubatum + Astilbe 7. Deschampsia cespitosa + Helenium autumnale 8. Calamagrostis brachytricha + Miscanthus sinensis + Cimicifuga atropurpurea 9. Sporobolus heterlolepis + Echinacea pallida 10. Panicum virgatum + Echinacea pallida + Monarda + Veronica 11. Molinia arundinacea ‘Transparent + Sanguisorba officinalis 12. Bouteloua gracilis 13. Calamagrostis brachytricha + Helenium autumnale 14. Peucedanum verticillare 15. Anemone ‘Honorine Jobert’ 2016 Perennial Plant of the Year 16. Miscanthus sinsensis 17. Calamagrostis brachytricha 18. Molinia caerulea + Calamagrostis ‘Karl Foerster’ 19. Calamagrostis ‘Karl Foerster’ + Lythrum alatum + Parthenium integrafolium 20. Panicum virgatum ‘Shenandoah’ 21. Bouteloua gracilis + Echinacea ‘Kim’s Knee High’ + Salvia nemorosa 22. Baptisia alba 23. Calamagrostis ‘Karl Foerster’ in Hummelo meadow planting 24. Panicum amarum ‘Dewey Blue’ + Helenium autumnale 25. Deschampsia cespitosa 26. Echinacea purpurea seedheads 27. Calamagrostis brachytricha + Calamagrostis ‘Karl Foerster’ + Echinacea + Veronicastrum + Eupatorium -
The Vascular System of Monocotyledonous Stems Author(S): Martin H
The Vascular System of Monocotyledonous Stems Author(s): Martin H. Zimmermann and P. B. Tomlinson Source: Botanical Gazette, Vol. 133, No. 2 (Jun., 1972), pp. 141-155 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/2473813 . Accessed: 30/08/2011 15:50 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to Botanical Gazette. http://www.jstor.org 1972] McCONNELL& STRUCKMEYER ALAR AND BORON-DEFICIENTTAGETES 141 tomato, turnip and cotton to variations in boron nutri- Further investigationson the relation of photoperiodto tion. II. Anatomical responses. BOT.GAZ. 118:53-71. the boron requirementsof plants. BOT.GAZ. 109:237-249. REED, D. J., T. C. MOORE, and J. D. ANDERSON. 1965. Plant WATANABE,R., W. CHORNEY,J. SKOK,and S. H. WENDER growth retardant B-995: a possible mode of action. 1964. Effect of boron deficiency on polyphenol produc- Science 148: 1469-1471. tion in the sunflower.Phytochemistry 3:391-393. SKOK, J. 1957. Relationships of boron nutrition to radio- ZEEVAART,J. A. D. 1966. Inhibition of stem growth and sensitivity of sunflower plants. -
Download Bamboo Records (Public Information)
Status Date Accession Number Names::PlantName Names::CommonName Names::Synonym Names::Family No. Remaining Garden Area ###########2012.0256P Sirochloa parvifolia Poaceae 1 African Garden ###########1989.0217P Thamnocalamus tessellatus mountain BamBoo; "BergBamBoes" in South Africa Poaceae 1 African Garden ###########2000.0025P Aulonemia fulgor Poaceae BamBoo Garden ###########1983.0072P BamBusa Beecheyana Beechy BamBoo Sinocalamus Beechyana Poaceae 1 BamBoo Garden ###########2003.1070P BamBusa Burmanica Poaceae 1 BamBoo Garden ###########2013.0144P BamBusa chungii White BamBoo, Tropical Blue BamBoo Poaceae 1 BamBoo Garden ###########2007.0019P BamBusa chungii var. BarBelatta BarBie BamBoo Poaceae 1 BamBoo Garden ###########1981.0471P BamBusa dolichoclada 'Stripe' Poaceae 2 BamBoo Garden ###########2001.0163D BamBusa dolichoclada 'Stripe' Poaceae 1 BamBoo Garden ###########2012.0069P BamBusa dolichoclada 'Stripe' Poaceae 1 BamBoo Garden ###########1981.0079P BamBusa dolichomerithalla 'Green Stripe' Green Stripe Blowgun BamBoo Poaceae 1 BamBoo Garden ###########1981.0084P BamBusa dolichomerithalla 'Green Stripe' Green Stripe Blowgun BamBoo Poaceae 1 BamBoo Garden ###########2000.0297P BamBusa dolichomerithalla 'Silverstripe' Blowpipe BamBoo 'Silverstripe' Poaceae 1 BamBoo Garden ###########2013.0090P BamBusa emeiensis 'Flavidovirens' Poaceae 1 BamBoo Garden ###########2011.0124P BamBusa emeiensis 'Viridiflavus' Poaceae 1 BamBoo Garden ###########1997.0152P BamBusa eutuldoides Poaceae 1 BamBoo Garden ###########2003.0158P BamBusa eutuldoides -
Ornamental Grasses for the Midsouth Landscape
Ornamental Grasses for the Midsouth Landscape Ornamental grasses with their variety of form, may seem similar, grasses vary greatly, ranging from cool color, texture, and size add diversity and dimension to season to warm season grasses, from woody to herbaceous, a landscape. Not many other groups of plants can boast and from annuals to long-lived perennials. attractiveness during practically all seasons. The only time This variation has resulted in five recognized they could be considered not to contribute to the beauty of subfamilies within Poaceae. They are Arundinoideae, the landscape is the few weeks in the early spring between a unique mix of woody and herbaceous grass species; cutting back the old growth of the warm-season grasses Bambusoideae, the bamboos; Chloridoideae, warm- until the sprouting of new growth. From their emergence season herbaceous grasses; Panicoideae, also warm-season in the spring through winter, warm-season ornamental herbaceous grasses; and Pooideae, a cool-season subfamily. grasses add drama, grace, and motion to the landscape Their habitats also vary. Grasses are found across the unlike any other plants. globe, including in Antarctica. They have a strong presence One of the unique and desirable contributions in prairies, like those in the Great Plains, and savannas, like ornamental grasses make to the landscape is their sound. those in southern Africa. It is important to recognize these Anyone who has ever been in a pine forest on a windy day natural characteristics when using grasses for ornament, is aware of the ethereal music of wind against pine foliage. since they determine adaptability and management within The effect varies with the strength of the wind and the a landscape or region, as well as invasive potential. -
THE BAMBOOS of NEPAL and BHUTAN PART II: Arundinaria, Thamnocalamus , Borinda, and Yushania (Gramineae: Poaceae, Bambusoideae)
EDINB. J. BOT. 51(2): 275–295 (1994) THE BAMBOOS OF NEPAL AND BHUTAN PART II: Arundinaria, Thamnocalamus , Borinda, and Yushania (Gramineae: Poaceae, Bambusoideae) C. M. A. S TAPLETON * This paper continues the systematic treatment of the bamboos of Nepal and Bhutan, covering four hardy temperate genera with semelauctant inflorescences and 3 stamens from the subtribe Arundinariinae Bentham. Arundinaria Michaux has leptomorph rhizomes, while Thamnocalamus Munro, Yushania Keng f., and the new genus Borinda have pachymorph rhizomes. The separation of these and related Sino-Himalayan genera is discussed. Sinarundinaria Nakai is treated as a synonym of Fargesia Franchet, a genus that is not known from the Himalayas. A new treatment of Himalayan Thamnocalamus species is given, including the description of two new subspecies of Thamnocalamus spathiflorus (Trin.) Munro, subsp . nepalensis and subsp . occidentalis, and one new variety, bhutanensis. T. aristatus is treated as a synonym of T. spathiflorus subsp. spathiflorus, and Fargesia crassinoda Yi is transferred and given new status as Thamnocalamus spathiflorus (Trin.) Munro var. crassinodus (Yi) Stapleton. Two new species of Borinda are described: B. chigar from West Nepal and B. emeryi from East Nepal. Six species of Fargesia from Tibet are transferred to Borinda, which thus comprises eight species. STATUS AND S EPARATION OF THE G ENERA Bamboos from the mountains of the Indian subcontinent and China with 3 stamens and terete culms were all placed in Arundinaria Michaux until late in the 19th century, when two genera for bamboos with spathate inflorescences were described. Munro (1868) described Thamnoca- lamus as a Himalayan genus with groups of one to four racemes at the tips of branchlets, each raceme being enclosed in a spathe. -
Plant Anatomy Lab 5
Plant Anatomy Lab 7 - Stems II This exercise continues the previous lab in studying primary growth in the stem. We will be looking at stems from a number of different plant species, and emphasize (1) the variety of stem tissue patterns, (2) stele types and the location of vascular tissues, (3) the development of the stem from meristem activity, and (4) the production of xylem and phloem by the procambium. All of the species studied are pictured either in your text or the atlases at the front of the lab. 1) Early vascular plants (cryptogams) A) Obtain a piece of the rachis of the fern (collected in the White Hall atrium). This structure is superficially analogous to a stem, although it has a different origin. Prepare a transverse section of the rachis and stain it in toluidine blue. Note the large amount of cortical tissue and the presence of sclerenchyma cells near the outer cortex. Also note that the stele vascular tissue appears to be amphiphloic. Lastly, you should be able to see readily the endodermal-style thickenings on the cells just outside each vascular bundle. B) Find prepared slides of the Osmunda and Polypodium (fern) rhizomes. Note the amphiphloic bundles (a protostele?), the presence of sclerenchyma in the cortex, and the thickened walls of the endodermis that you will find is not uncommon among many non-seed plants. Remember that rhizomes are modified stems that often occur underground. Osmunda fern vascular bundle. C) Obtain a prepared slide of Psilotum. This stele does not have a pith, so it is a protostele (or an actinostele because it has a star-like shape). -
Large Trees, Supertrees, and Diversification of the Grass Family Trevor R
Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 19 2007 Large Trees, Supertrees, and Diversification of the Grass Family Trevor R. Hodkinson Trinity College, Dublin, Ireland Nicolas Salamin University of Lausanne, Lausanne, Switzerland Mark W. Chase Royal Botanic Gardens, Kew, UK Yanis Bouchenak-Khelladi Trinity College, Dublin, Ireland Stephen A. Renvoize Royal Botanic Gardens, Kew, UK See next page for additional authors Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Hodkinson, Trevor R.; Salamin, Nicolas; Chase, Mark W.; Bouchenak-Khelladi, Yanis; Renvoize, Stephen A.; and Savolainen, Vincent (2007) "Large Trees, Supertrees, and Diversification of the Grass Family," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 19. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/19 Large Trees, Supertrees, and Diversification of the Grass Family Authors Trevor R. Hodkinson, Nicolas Salamin, Mark W. Chase, Yanis Bouchenak-Khelladi, Stephen A. Renvoize, and Vincent Savolainen This article is available in Aliso: A Journal of Systematic and Evolutionary Botany: http://scholarship.claremont.edu/aliso/vol23/iss1/ 19 Aliso 23, pp. 248–258 ᭧ 2007, Rancho Santa Ana Botanic Garden LARGE TREES, SUPERTREES, AND DIVERSIFICATION OF THE GRASS FAMILY TREVOR R. HODKINSON,1,5 NICOLAS SALAMIN,2 MARK W. CHASE,3 YANIS BOUCHENAK-KHELLADI,1,3 STEPHEN A. RENVOIZE,4 -
Secondary Thickening Vascular Cambium
nd th Plant Anatomy/ 2 class 12 lecture : Secondary thickening Secondary Thickening Any arising in plant thickness occur far away from the Apies occur as a result of secondary tissues formation & it represent secondary plant body. Secondary thickening occur in most of dicotyledonae & Gymnospermae & some of monocotyledonae as like as in Palmaceae. Secondary thickening occur as a result of 2 kinds of secondary meristematic and they are: 1- Cork cambium (explained in Periderm sub.) 2- Vascular cambium. Vascular cambium: The lateral meristem that forms the secondary vascular tissues, it is located between the xylem & phloem in the stem & root, cylinder in shape, in most petioles & leaf veins it appears as strips. Vascular cambium cells characteristic are: 1- thin cell wall plasmodesmata, dense cytoplasm, dense endoplasmic reticulum, with many rhibosomes. 2- contain (1) nucleus its size in fusiform initials larger than in ray initials. 3- cambium cells appear in radial arrangement with the cell that produce it. 4- usually divide periclinal division and sometimes divide anti linal division. Vascular cambium consist of 2 kind of cells: 1- Fusiform initials / cell: elongated cells with tapering ends (spindle – shaped). 2- Ray cell/ initials: small, isodiametric cells. 1 nd th Plant Anatomy/ 2 class 12 lecture : Secondary thickening Factors that effect on vascular cambium activity: (1)photoperiod, (2)temperature, and (3) water available. The Root The underground part of plant axis specialized as an absorbing & anchoring organ. Origin of the root is the radical which initiate from the hypocotyl of the embryo. The root functions are the absorption of water and other substances anchoring the plant in the substrate, store of vegetative reproduction. -
Large Trees, Supertrees and the Grass Phylogeny
LARGE TREES, SUPERTREES AND THE GRASS PHYLOGENY Thesis submitted to the University of Dublin, Trinity College for the Degree of Doctor of Philosophy (Ph.D.) by Nicolas Salamin Department of Botany University of Dublin, Trinity College 2002 Research conducted under the supervision of Dr. Trevor R. Hodkinson Department of Botany, University of Dublin, Trinity College Dr. Vincent Savolainen Jodrell Laboratory, Molecular Systematics Section, Royal Botanic Gardens, Kew, London DECLARATION I thereby certify that this thesis has not been submitted as an exercise for a degree at any other University. This thesis contains research based on my own work, except where otherwise stated. I grant full permission to the Library of Trinity College to lend or copy this thesis upon request. SIGNED: ACKNOWLEDGMENTS I wish to thank Trevor Hodkinson and Vincent Savolainen for all the encouragement they gave me during the last three years. They provided very useful advice on scientific papers, presentation lectures and all aspects of the supervision of this thesis. It has been a great experience to work in Ireland, and I am especially grateful to Trevor for the warm welcome and all the help he gave me, at work or outside work, since the beginning of this Ph.D. in the Botany Department. I will always remember his patience and kindness to me at this time. I am also grateful to Vincent for his help and warm welcome during the different periods of time I stayed in London, but especially for all he did for me since my B.Sc. at the University of Lausanne. I wish also to thank Prof.