Abdominal Obesity in the United States: Prevalence and Attributable Risk of Hypertension

Total Page:16

File Type:pdf, Size:1020Kb

Abdominal Obesity in the United States: Prevalence and Attributable Risk of Hypertension Journal of Human Hypertension (1999) 13, 425–430 1999 Stockton Press. All rights reserved 0950-9240/99 $12.00 http://www.stockton-press.co.uk/jhh ORIGINAL ARTICLE Abdominal obesity in the United States: prevalence and attributable risk of hypertension IS Okosun, TE Prewitt and RS Cooper Department of Preventive Medicine and Epidemiology, Loyola University Medical Center, Stritch School of Medicine, Maywood, IL, USA Objective: The aim of this study was to determine the Results: The prevalences of abdominal obesity were prevalence of abdominal obesity and its impact on the 27.1%, 20.2% and 21.4% in White, Black and Hispanic risks of hypertension in the US adult population. men, respectively. The corresponding values in women Design and methods: Data from the third US National were 43.2%, 56.0% and 55.4%. Abdominal obesity was Health and Nutrition Examination Surveys, 1988–1994, found to be associated with a two to three-fold were utilised. Abdominal obesity was defined as waist increased risk of hypertension in this population. In circumference у102 cm in men and у88 cm in women. men, the attributable risk percent ranged from 20.9% in Hypertension was defined as mean diastolic blood Hispanics to 27.3% in Whites and in women ranged from pressure у90 mm Hg, systolic blood pressure у140 36.5% in Whites to 56.5% in Hispanics. We estimated mm Hg or current treatment with prescribed hyperten- that 24 million adult men and 40 million adult women sion medication. Prevalences of abdominal obesity were of Hispanic and non-Hispanic Black and White ethnicity estimated in non-Hispanic White, non-Hispanic Black were suffering from abdominal obesity. and Hispanic Americans. Gender-specific logistic Conclusions: In this population, hypertension appears regression analysis using empirical waist cut-off points to be associated with abdominal obesity. The estimates was used to determine the risks of hypertension. The of population attributable risks suggest that the risk of impact of abdominal adiposity on risk of hypertension hypertension could be potentially reduced if waist size was estimated from population-attributable risk were reduced to Ͻ102 cm in men and Ͻ88 cm in women. adjusting for age, current smoking and alcohol intake. Keywords: abdominal obesity; hypertension; waist circumference Introduction used and acknowledged as the best anthropometric alternative to WHR, CT and MRI. WC measures sub- The importance of gynoid and android body habitus cutaneous and intra-abdominal adiposity.9 Unlike (now regarded as abdominal or central adiposity) to WHR, WC is easier to interpret and better correlated several diseases was first described by Vague in 10 1 with visceral fat mass. Visceral adiposity is highly 1956. Subsequently, numerous epidemiological correlated with many metabolic complications of studies supporting a positive association between the insulin resistance syndrome, including hyperin- central or abdominal adiposity and cardiovascular 2–8 sulinaemia, hypercholesterolaemia, gluconaemia, diseases (CVD) risk factors have been published. hypertriglyceridaemia and high levels of low-den- While computed tomography (CT) and magnetic res- sity cholesterol.11,12 Compared to WHR, WC is onance imaging (MRI) remain the best methods for strongly correlated with total body adiposity estimating abdominal adiposity, they are imprac- assessed by body mass index (BMI).12 tical in large epidemiological studies because they There is no consensus on the WC cut-off points are laborious and expensive. Hence, anthropometric for abdominal adiposity. The two most cited refer- alternatives are often used in epidemiological stud- ences for WC cut-off points were proposed by Lean ies to determine abdominal obesity. The most com- et al13 and Lemieux et al.14 The generalisability of monly used anthropometric surrogate being the the proposed WC cut-off points of Lean et al13 and waist-to-hip ratio (WHR). Lemieux et al14 is limited on the grounds that the Waist circumference (WC) is increasingly being samples used to derive the cut-off points were from White populations of Scotland and Canada. Recently, the US National Heart, Lung, Blood Correspondence: Dr Ike S. Okosun, Department of Preventive Institute/National Institute of Health (NHLBI/NIH) Medicine and Epidemiology, Loyola University Medical Center, expert panel on the identification, evaluation, and Stritch School of Medicine, 2160 S. First Ave, Maywood, IL 60153, USA the treatment of overweight and obesity in adults Received 9 February 1999; Revised 24 March 1999; Accepted 5 proposed WC cut-off points of 102 cm or more and April 1999 88 cm or more for men and women, respectively.15 Abdominal adiposity and hypertension in US adults IS Okosun et al 426 These cut-off points were recommended in ident- Definition of terms ifying increased relative risk for the development of Hypertension was defined as mean diastolic blood obesity-associated risk factors for most adults with у 2 15 pressure (DBP) 90 mm Hg and systolic blood BMI of 25–34.9 kg/m . The NHLBI/NIH panel у made the recommendations based on a review of pressure (SBP) 140 mm Hg or current treatment with prescribed hypertension medication.21 published scientific literature in MEDLINE from Abdominal obesity was defined as WC у102 cm for 1980 to 1997 of topics identified as key to obesity у 15 evidence model. men and WC 88 cm for women. Alcohol was cat- egorised as 1 and 0, for current drinkers and non- To our knowledge, no studies assessing the preva- lence of abdominal obesity have been carried out drinkers, respectively. Smoking was graded as 1 for using the NHLBI/NIH WC cut-off criteria on a US current smokers and 0 for non-smokers. adult population. Therefore, the present study was undertaken utilising the Third National Health and Statistical methods Nutrition Examination Survey (NHANES III) to esti- mate the prevalence of abdominal obesity in the US Statistical programmes available in SPSS version 8.0 adult population and determine the attributable for Windows and WesVarPC version 2.1 were util- 22,23 risks of hypertension to abdominal obesity. ised for these analyses. One-way analysis of vari- ance was used to compare means of anthropometric variables across ethnic groups. Subjects and methods Prevalence estimates were weighted to account for cluster design and to represent the total civilian Study design non-institutionalised population of the US. The NHANES III was a stratified multistage cluster prob- prevalence of hypertension and abdominal obesity were age-adjusted by direct methods using the 1990 ability sample of the non-institutionalised civilian 24 US population groups examined in two phases US population census data. Gender-specific empirical WC (quartiles of WC, WC у102 for men between 1988 and 1994. The sampling and measure- у ment procedures have been extensively described and WC 88 for women) were used to compare odds elsewhere.16,17 Only subjects identified as non-His- of hypertension for Whites, Blacks and Hispanics panic White, non-Hispanic Black and Hispanic adjusting for age, smoking and alcohol intake. We used the estimates of the prevalence (PE) of abdomi- Americans aged 17–90 years were eligible for this у у investigation. The NHANES III protocol included a nal obesity (WC 102 cm in men and WC 88 cm in women) to calculate population attributable risks home interview followed by a physical examination 25 in a mobile examination centre. This study was (PAR%) as follows: restricted to subjects that were examined in the = + PAR% PE (OR-1)/[PE (OR-1)] 1*100 mobile examination centre and for whom blood pressures and anthropometric measurements were Odds ratio (OR) compares men and women with Ͻ Ͻ available, including weight, height and waist. WC 102 cm and 88 cm women, respectively with those with abdominal obesity, adjusting for age, smoking and alcohol intake in the logistic regression Anthropometric measurements model. The customary P-value of 0.05 was used to indicate statistical significance. Weight was measured in the upright position using a digital scale. Height was measured with a stadi- ometer. Waist measurement was made to the nearest Results 0.1 cm at minimal respiration at midpoint between Means and standard deviations of age and the the bottom of the rib cage and above the top of the anthropometric variables as well as the prevalence iliac crest. Description of measurement precision of hypertension are presented in Table 1. Overall, between technicians has been described else- 6760 Whites, 4713 Blacks and 4621 Hispanics were where.18 BMI was calculated as the measured weight eligible for this investigation. In both men and in kilograms divided by height in metres squared women, the mean BMI was higher than the World (kg/m2). Health Organisation (WHO) recommended value.26 Also, overall mean values of SBP were slightly Blood pressure measurements higher in White men, Black men and Black women than the clinically acceptable values. There were Detailed descriptions of blood pressure measure- significant ethnic differences for most variables. ment techniques have been previously docu- Among men, WC was highest in Whites and among mented.19,20 Briefly, examiners underwent rigorous women WC was highest in Blacks compared to their training on blood pressure measurement techniques. ethnic counterparts. Whites were significantly older Blood pressure measurements were taken in the sit- than Blacks and Hispanics (P Ͻ 0.05). Mean values ting position after 5 min of resting using the stan- for DBP and SBP for Blacks were higher than Whites dard mercury sphygmomanometer. Three blood and Hispanics. Age-adjusted prevalences of hyper- pressures were taken from each participant, with tension were higher in Blacks than Whites and His- intervals of 30–60 sec between cuff inflation. The panics (P Ͻ 0.01). average of the three blood pressure readings was Table 2 presents age-specific mean WC values for used in this analysis. men and women.
Recommended publications
  • Abdominal Obesity and Cardiovascular Disease
    Advances in Obesity Weight Management & Control Mini Review Open Access Abdominal obesity and cardiovascular disease Abstract Volume 3 Issue 2 - 2015 There is no doubt that obesity has become a major disease in modern times and it Rayan Saleh is definitely associated with cancer, neurodegeneration and heart disease. Scientific Department of Food and Nutritional Sciences, University of studies have resulted in a growing consensus on the way abdominal obesity is Reading, UK associated with inflammation and cardiometabolic risk. Although the gender is a substantial factor of having abdominal fat, there are other protective factors including Correspondence: Rayan Saleh, Registered Dietitian, healthy eating and physical activity. Several techniques are used to assess obesity Department of Food and Nutritional sciences, University of and their utilization depends on their feasibility and economic cost. This research is Reading, White knights, Reading, RG6 6AH, Berkshire, UK, designed to address the important relationship between abdominal obesity and the risk Email [email protected] of developing cardiovascular disease. Received: August 19, 2015 | Published: September 15, 2015 Keywords: abdominal obesity, metabolic syndrome, cardiovascular disease, body shape, inflammation, insulin resistance Abbreviations: WHO, world health organization; T2D, type to hip ratio WHR), bioelectrical impedance analysis (BIA), Dual 2 diabetes; BMI, body mass index; WC, waist circumference; WHR, energy X-ray absorptiometry (DXA), Computed tomography (CT) waist
    [Show full text]
  • Metabolic Syndrome: Past, Present and Future
    nutrients Editorial Metabolic Syndrome: Past, Present and Future Isabelle Lemieux 1,* and Jean-Pierre Després 1,2,3 1 Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec—Université Laval, Québec, QC G1V 4G5, Canada; [email protected] 2 Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada 3 VITAM—Centre de recherche en santé durable, CIUSSS de la Capitale-Nationale, Québec, QC G1J 0A4, Canada * Correspondence: [email protected]; Tel.: +1-418-656-8711 (ext. 3603) Received: 28 October 2020; Accepted: 29 October 2020; Published: 14 November 2020 1. Syndrome X: A Tribute to a Pioneer, Gerald M. Reaven Most clinicians and health professionals have heard or read about metabolic syndrome. For instance, as of October 2020, entering “metabolic syndrome” in a PubMed search generated more than 57,000 publications since the introduction of the concept by Grundy and colleagues in 2001 [1]. Although many health professionals are familiar with the five criteria proposed by the National Cholesterol Education Program-Adult Treatment Panel III for its diagnosis (waist circumference, triglycerides, high-density lipoprotein (HDL) cholesterol, blood pressure and glucose), how these variables were selected and the rationale used for the identification of cut-offs remain unclear for many people. In addition, the conceptual definition of metabolic syndrome is often confused with the tools (the five criteria) that have been proposed to make its diagnosis [2,3]. In the seminal paper of his American Diabetes Association 1988 Banting award lecture, Reaven put forward the notion that insulin resistance was not only a fundamental defect increasing the risk of type 2 diabetes, but he also proposed that it was a prevalent cause of cardiovascular disease [4].
    [Show full text]
  • How Strong Is the Association Between Abdominal Obesity and the Incidence of Type 2 Diabetes? International Journal of Clinical Practice, Volume 62 (Number 9)
    Original citation: Freemantle, Nick, Holmes, J. (Jeremy), Hockey, A. and Kumar, Sudhesh. (2008) How strong is the association between abdominal obesity and the incidence of type 2 diabetes? International Journal of Clinical Practice, Volume 62 (Number 9). pp. 1391- 1396. Permanent WRAP url: http://wrap.warwick.ac.uk/29585 Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions. This article is made available under the Creative Commons Attribution- 2.5 Unported (CC BY NC 2.5) license and may be reused according to the conditions of the license. For more details see http://creativecommons.org/licenses/by-nc/2.5/ A note on versions: The version presented in WRAP is the published version, or, version of record, and may be cited as it appears here. For more information, please contact the WRAP Team at: [email protected] http://wrap.warwick.ac.uk/ doi: 10.1111/j.1742-1241.2008.01805.x META-ANALYSIS How strong is the association between abdominal obesity and the incidence of type 2 diabetes? N. Freemantle,1 J. Holmes,2 A. Hockey,3 S. Kumar4 OnlineOpen: This article is available free online at www.blackwell-synergy.com SUMMARY 1School of Primary Care, Review Criteria Occupational and Public Health, Background: Quantitative evidence on the strength of the association between • Comprehensive searches of Medline and Embase University of Birmingham, abdominal obesity and the incidence of type 2 diabetes was assessed. Methods: undertaken in March 2006. Exclusion criteria Birmingham, UK 2 Systematic review of longitudinal studies assessing the relationship between mea- agreed by authors.
    [Show full text]
  • Chapter 8 Abdominal Obesity and the Metabolic Syndrome
    Chapter 8 Abdominal Obesity and the Metabolic Syndrome Jean-Pierre Desprésa,b, Isabelle Lemieuxa and Natalie Almérasc aQuébec Heart Institute, Hôpital Laval Research Center, Hôpital Laval, Québec, Québec, Canada bDepartment of Social and Preventive Medicine, Université Laval, Québec, Québec, Canada cHôpital Laval Research Center, Hôpital Laval, Québec, Québec, Canada 1. INTRODUCTION Despite the fact that the obesity epidemic has received intense media cover- age, many physicians still fail to recognize that the rapidly growing prevalence of type 2 diabetes in their practice is the result of our “toxic” sedentary and affluent lifestyle that promotes weight gain, obesity, a positive energy balance, and the progressive development of a dysmetabolic state [1], potentially lead- ing to glucose intolerance and—eventually—outright hyperglycemia. Citing obesity’s key role in the etiology of type 2 diabetes, Zimmet foresaw a rapid increase in the prevalence of type 2 diabetes worldwide [2, 3]. Unfortunately, the progression of obesity has been so brisk that the worldwide prevalence of type 2 diabetes continues to grow at an alarming rate. This phenomenon should be of great concern to health care providers, as type 2 diabetes has been clearly linked to major health care expenses [4]. Indeed, it is a major cause of retinopa- thy causing blindness, of nephropathy leading to end-stage renal disease and dialysis, as well as of neuropathic complications, which are the leading cause of amputations [5]. In addition to the microcirculatory damage it causes, type 2 diabetes also plays a key role in atherosclerotic macrovascular disease. For in- stance, the majority of type 2 diabetic patients will die from cardiovascular disease [6–8].
    [Show full text]
  • The Link Between Abdominal Obesity and the Metabolic Syndrome
    The Link Between Abdominal Obesity and the Metabolic Syndrome Liza K. Phillips, MBBS (Hons), and Johannes B. Prins, MBBS, PhD, FRACP Corresponding author Johannes B. Prins, MBBS, PhD, FRACP associated metabolic dysfunction [4,5]. A growing body of Diamantina Institute for Cancer, Immunology, and Metabolic literature supports a causal relationship between visceral Medicine, University of Queensland, Princess Alexandra Hospital, obesity and the metabolic syndrome. Level 2, Building 35, Ipswich Road, Woolloongabba 4102, The recognition of fat as an endocrine organ pro- Queensland, Australia. vided an important link between obesity and metabolic E-mail: [email protected] dysfunction [6]. The past decade has seen increased Current Hypertension Reports 2008, 10:156–164 understanding of the mechanisms by which chronic Current Medicine Group LLC ISSN 1522-6417 Copyright © 2008 by Current Medicine Group LLC inflammation mediates insulin resistance [7]. Adipose tissue secretes so-called adipokines with inflammatory and immune functions. In addition to promoting insulin The clustering of cardiovascular risk factors associated resistance, these adipokines also mediate some cardio- with abdominal obesity is well established. Although vascular complications of obesity (cardiometabolic risk). currently lacking a universal definition, the metabolic Although the adipocyte per se is an important source of syndrome describes a constellation of metabolic abnor- chronic inflammation, other cell types within the adipose malities, including abdominal obesity, and was originally tissue—in particular, macrophages—are also significant introduced to characterize a population at high cardio- [8,9]. Increasing evidence supports the importance of vascular risk. Adipose tissue is a dynamic endocrine the site of excess adiposity. The inflammatory mediators organ that secretes several inflammatory and immune and free fatty acids secreted from the visceral adipose mediators known as adipokines.
    [Show full text]
  • Abdominal Obesity Defined As a Larger Than Expected Waist Girth Is
    Journal of Human Hypertension (2001) 15, 307–312 2001 Nature Publishing Group All rights reserved 0950-9240/01 $15.00 www.nature.com/jhh ORIGINAL ARTICLE Abdominal obesity defined as a larger than expected waist girth is associated with racial/ethnic differences in risk of hypertension IS Okosun, S Choi, MM Dent, T Jobin and GEA Dever Department of Community Medicine, Mercer University School of Medicine 1550 College Street Macon, GA, USA Objective: Waist circumference (WC) cut-points of Results: Relative to white, black race/ethnicity was у102 cm and у88 cm for men and women, respectively, associated with ෂ1.8 and ෂ2.7 greater risk of hyperten- representing abdominal obesity have been recom- sion in men and women, respectively, adjusting for mended for determining obesity related co-morbidities. abdominal obesity, age, smoking and alcohol consump- However, these cut-points carry the component of gen- tion. Having larger than expected waist girths were eralised obesity estimated by body mass index (BMI). associated with 1.58 and 1.39 increased risk of hyper- The aim of this investigation was to determine whether tension in black men and black women, respectively, abdominal obesity free of the influence of overall heavi- adjusting for confounders. Population attributable risks ness is associated with increased risk of hypertension of hypertension due to abdominal obesity were approxi- in a representative sample of white and black Amer- mately 24.9% and 15.9%, in black men and black icans. women, respectively. from the Third US National Conclusions: In Americans, hypertension is a public (11114 ؍ Methods: Data (n Health and Nutrition Examination Survey were used in health problem that is closely linked to abdominal adi- this investigation.
    [Show full text]
  • Abdominal Obesity and Metabolic Syndrome: Exercise As Medicine? Carole A
    Paley and Johnson BMC Sports Science, Medicine and Rehabilitation (2018) 10:7 https://doi.org/10.1186/s13102-018-0097-1 REVIEW Open Access Abdominal obesity and metabolic syndrome: exercise as medicine? Carole A. Paley1,2* and Mark I. Johnson2 Abstract Background: Metabolic syndrome is defined as a cluster of at least three out of five clinical risk factors: abdominal (visceral) obesity, hypertension, elevated serum triglycerides, low serum high-density lipoprotein (HDL) and insulin resistance. It is estimated to affect over 20% of the global adult population. Abdominal (visceral) obesity is thought to be the predominant risk factor for metabolic syndrome and as predictions estimate that 50% of adults will be classified as obese by 2030 it is likely that metabolic syndrome will be a significant problem for health services and a drain on health economies. Evidence shows that regular and consistent exercise reduces abdominal obesity and results in favourable changes in body composition. It has therefore been suggested that exercise is a medicine in its own right and should be prescribed as such. Purpose of this review: This review provides a summary of the current evidence on the pathophysiology of dysfunctional adipose tissue (adiposopathy). It describes the relationship of adiposopathy to metabolic syndrome and how exercise may mediate these processes, and evaluates current evidence on the clinical efficacy of exercise in the management of abdominal obesity. The review also discusses the type and dose of exercise needed for optimal improvements in health status in relation to the available evidence and considers the difficulty in achieving adherence to exercise programmes.
    [Show full text]
  • Abdominal Obesity
    Abdominal obesity Epidemiological studies published over the last 50 years have shed light on the many factors that increase cardiovascular disease (CVD) risk. Among them, although obesity is generally an acknowledged health hazard and a risk factor for CVD and type 2 diabetes, physicians have long been puzzled by the remarkable heterogeneity seen in clinical practice among individuals with a similar excess of body weight. Some obese patients have no clinical signs of CVD or type 2 diabetes, whereas other patients – who may be only slightly or moderately overweight – have a metabolic profile that predisposes them to CVD and/or type 2 diabetes. Indeed, studies have shown that the risk of CVD and type 2 diabetes does not depend on excess body weight per se, but rather on the location of this excess weight. In light of this, it is now recognized that abdominal obesity (or android obesity, central obesity or upper body obesity) is the form of obesity most likely to be associated with an altered risk factor profile contributing to an increased CVD and type 2 diabetes risk while gynoid obesity (or lower body obesity with fat located around the hips and buttocks) is seldom associated with metabolic complications1. Therefore, it is important to emphasize the importance of abdominal obesity as the form of overweight/obesity most likely to entail the highest risk of CVD and type 2 diabetes. With the development of sophisticated non-invasive imaging techniques such as computed tomography (CT scanners), it has even been possible to clearly distinguish two different depots of abdominal fat: 1- intra-abdominal (visceral) obesity (excess fat in the abdominal cavity) from 2- abdominal subcutaneous fat (the fat located just under the skin) (Figure 1)2.
    [Show full text]
  • Targeting Abdominal Obesity in Diabetes
    2015/06/26 ReVIew Diabetes Management Targeting abdominal obesity in diabetes Thinzar Min1 & Jeffrey Wayne Stephens*,1 Practice points ● Abdominal obesity is generally defined by waist circumference. ● Ethnic specific cut-off values for waist circumference exist. Min & Stephens ● Abdominal obesity is strongly associated with insulin resistance. ● Abdominal obesity is an independent risk factor for cardiovascular disease, Type 2 diabetes and metabolic syndrome. 301 ● Waist circumference is a better predictive measure than BMI, in identifying obesity related morbidity and mortality. ● Lifestyle interventions: healthy balanced diet, increasing physical activity is key to preventing obesity epidemic. 309 ● Pharmacological intervention has limited role. 10.2217/ ● Surgical intervention: bariatric surgery has become a recommended treatment option for super obese individuals. DMT.15.14 Bariatric surgery has additional metabolic benefit such as remission of Type 2 diabetes. © 2015 FUTURE MEDICINE Ltd SUmmARy Over recent years, there has been a better understanding of the role of that visceral adipose tissue plays in the pathogenesis of insulin resistance, Type 2 diabetes and the metabolic syndrome. Studies have consistently demonstrated that intra-abdominal fat Targeting abdominal accumulation, in other words, abdominal obesity is independently associated with Type obesity in diabetes 2 diabetes, hypertension, cardiovascular disease, nonalcoholic fatty liver disease and the metabolic syndrome. Furthermore, evidence supports the view that visceral adipose tissue is more closely associated with obesity related co-morbidities and mortality, compared with 5 the total body adipose tissue (subcutaneous and visceral adipose tissue). The management of abdominal obesity involves a multidisciplinary team approach. Active healthy life style is a key in preventing obesity epidemic. Surgical intervention has become part of obesity treatment.
    [Show full text]
  • General and Abdominal Obesity and Incident Distal Sensorimotor
    240 Diabetes Care Volume 42, February 2019 SabrinaSchlesinger,1,2 ChristianHerder,2,3,4 General and Abdominal Obesity Julia M. Kannenberg,2,3 Cornelia Huth,2,5 Maren Carstensen-Kirberg,2,3 and Incident Distal Sensorimotor Wolfgang Rathmann,1,2,4 Gidon J. Bonhof,¨ 3 Wolfgang Koenig,6,7,8 Margit Heier,5 Polyneuropathy: Insights Into Annette Peters,2,5 Christa Meisinger,5,9 fl Michael Roden,2,3,10 Barbara Thorand,2,5 In ammatory Biomarkers as and Dan Ziegler2,3,10 Potential Mediators in the KORA F4/FF4 Cohort Diabetes Care 2019;42:240–247 | https://doi.org/10.2337/dc18-1842 1Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Di- abetes Research at Heinrich Heine University OBJECTIVE Dusseldorf,¨ Dusseldorf,¨ Germany 2 To investigate the associations between different anthropometric measurements German Center for Diabetes Research, Munchen-Neuherberg,¨ Germany and development of distal sensorimotor polyneuropathy (DSPN) considering 3Institute for Clinical Diabetology, German Di- fl EPIDEMIOLOGY/HEALTH SERVICES RESEARCH interaction effects with prediabetes/diabetes and to evaluate subclinical in am- abetes Center, Leibniz Center for Diabetes Re- mation as a potential mediator. search at Heinrich Heine University Dusseldorf,¨ Dusseldorf,¨ Germany RESEARCH DESIGN AND METHODS 4Medical Faculty, Heinrich Heine University Dusseldorf,¨ Dusseldorf,¨ Germany This study was conducted among 513 participants from the Cooperative Health 5Institute of Epidemiology, Helmholtz Zentrum Research in the Region of Augsburg (KORA) F4/FF4 cohort (aged 62–81 years). Munchen,¨ German Research Center for Environ- Anthropometry was measured at baseline. Incident DSPN was defined by neu- mental Health, Neuherberg, Germany 6 ropathic impairments using the Michigan Neuropathy Screening Instrument at Deutsches Herzzentrum Munchen,¨ Technische Universitat¨ Munchen,¨ Munich, Germany baseline and follow-up.
    [Show full text]
  • Abdominal Obesity and Type 2 Diabetes
    Diabetes and Lifestyle Abdominal Obesity and Type 2 Diabetes a report by Dragan Micic 1 and Goran Cvijovic 2 1. Head; 2. Specialist in Internal Medicine, Department of Metabolic Disorders in Endocrinology, Institute of Endocrinology, Diabetes and Diseases of Metabolism, Clinical Centre of Serbia DOI:10.17925/EE.2008.04.00.26 Epidemiology body fat is not the only source of adverse health complications of obesity; Recent statistics from the World Health Organization (WHO) indicate that in fact, fat distribution and the relative portion of lipids in various insulin- in 2005 approximately 1.6 billion adults (aged 15 years and over) were sensitive tissues (skeletal muscle and liver), which affects their normal overweight worldwide, while at least 400 million adults were obese. metabolic pathways, actually determine metabolic risk.10 Accumulation of Furthermore, the WHO predicts that by 2015 approximately intra-abdominal or visceral fat is associated with insulin resistance and is 2.3 billion adults will be overweight and more than 700 million will be a major feature of metabolic syndrome, which confers a 1.5–2-fold obese.1 At the same time, diabetes currently affects 246 million people increased risk of developing diabetes and cardiovascular disease (CVD).11 worldwide. It is expected to affect 380 million by 2025, with the largest increases in diabetes prevalence in developing countries; most of the Abdominal obesity as a clinical feature of excessive accumulation of visceral cases will be type 2 diabetes.2,3 fat is usually associated with a cluster of cardiovascular risk factors, defined by the WHO as ‘metabolic syndrome’.
    [Show full text]
  • 821.Full-Text.Pdf
    Diabetes Care Volume 37, March 2014 821 Structural and Functional Kyriakoula Marinou,1,2 Leanne Hodson,1 Senthil K. Vasan,1,3 Barbara A. Fielding,1,4 Properties of Deep Abdominal Rajarshi Banerjee,5 Kerstin Brismar,3 Michael Koutsilieris,2 Anne Clark,1 Subcutaneous Adipose Tissue Matt J. Neville,1,6 and Fredrik Karpe1,6 Explain Its Association With Insulin Resistance and Cardiovascular Risk in Men OBJECTIVE Fat distribution is an important variable explaining metabolic heterogeneity of obesity. Abdominal subcutaneous adipose tissue (SAT) is divided by the Scarpa’s fascia into a deep subcutaneous adipose tissue (dSAT) and a superficial subcuta- neous adipose tissue (sSAT) layer. This study sought to characterize functional differences between the two SAT layers to explore their relative contribution to metabolic traits and cardiovascular risk (CVR) profile. RESEARCH DESIGN AND METHODS 1Oxford Centre for Diabetes, Endocrinology, and We recruited 371 Caucasians consecutively from a local random, population- Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom based screening project in Oxford and 25 Asian Indians from the local community. 2 Department of Experimental Physiology, Athens CARDIOVASCULAR AND METABOLIC RISK The depth of the SAT layers was determined by ultrasound (US), and adipose University School of Medicine, Athens, Greece tissue (AT) biopsies were performed under US guidance in a subgroup of 43 3Department of Molecular Medicine and Caucasians. Visceral adipose tissue (VAT) mass was quantified by dual-energy Surgery, Karolinska Institutet, Stockholm, X-ray absorptiometry scan. Sweden 4Faculty of Health and Medical Sciences, RESULTS University of Surrey, Guildford, United Kingdom 5Division of Cardiovascular Medicine, Radcliffe Male adiposity in both ethnic groups was characterized by a disproportionate Department of Medicine, University of Oxford, expansion of dSAT, which was strongly correlated with VAT mass.
    [Show full text]