A New Empirical Approach to Lepton and Quark Masses

Total Page:16

File Type:pdf, Size:1020Kb

A New Empirical Approach to Lepton and Quark Masses Anewempiricalapproachtoleptonandquarkmasses Kevin Loch⇤ (Dated: 2017 February 27, updated November 11) A novel alternative to the Koide formula and it’s extensions is presented. A new lepton ratio with 2 3 asmalldimensionlessresidualke = mem⌧ /mµ and mass scaling factor ↵f =27me/m⌧ are used to construct empirical formulas for charged leptons, left-handed neutrinos and quarks. The predicted masses are in excellent agreement with known experimental values and constraints. PACS numbers: 14.60.Pq, 12.15.Ff, 12.10.Kt I. INTRODUCTION to find factors that cancel out with this formula to learn more about the underlying structure. We can then at- One outstanding problem in modern physics is the tempt to apply those factors to search for similar struc- seemingly unrelated particle masses that exist as free tures in other sectors. parameters in the standard model. Numerous attempts Mac Gregor proposed using different exponents of the have been made over the years to derive a systematic QED coupling constant to explain fermion lifetimes and mathematical relationship between these masses, most mass relationships using the zero energy scale ↵QED(0) famously by Yoshio Koide with his charged lepton for- [25, 26]. While we have not found convincing relation- mula [1, 2] ships with ↵QED(0) we do find me me + mµ + m⌧ 2 ↵f = 27 (3) K = 2 . (1) m⌧ (pme + pmµ + pm⌧ ) ' 3 1 interesting with a value ↵f− 128.786. This is close While this approximation works for charged leptons, and ' 1 2 to the effective QED coupling constant ↵− (M )= appears to work for some combinations of quarks with QED Z running masses, it does not work for neutrinos or at- 128.944 [27]. Despite the similarity in value to an ef- tempt to relate all fundamental fermions in a consistent fective QED coupling constant we are assuming that ↵f manner. It does however hint at the possibility of find- is a separate parameter related only to mass generation ing other more fundamental relationships. Indeed, Koide and not electric charge. With (2) and (3) we can derive and others [1–24] have used it as inspiration for extended lepton formulas models to cover other fermions. m m =9 e , While these extended Koide models are interesting we µ 1 2 (4) k 3 ↵ 3 present an alternative structure for charged leptons that e f is easily applied to other sectors. we find these formu- las appear to relate all fundamental lepton and quark me m⌧ = 27 . (5) pole (physical) masses. This allows precise predictions ↵f of neutrino and quark pole masses. If correct this would significantly reduce the number of free parameters in the With our choice of definitions for ke and ↵f we have dis- standard model (extended for neutrinos with mass). covered an interesting and surprisingly simple charged lepton mass structure that could be used to look for sim- ilar patterns in other sectors. II. CHARGED LEPTONS We begin by introducing a charged lepton formula with III. NEUTRINO SECTOR asmalldimensionlessresidualvalue We will now use ↵f and a sector structure formula similar to (2) to look for formulas for left handed neu- 2 mem⌧ trinos and predict mass state values for them. While ke = 3 1.37. (2) mµ ' neutrino mass states have not been directly measured yet numerous neutrino oscillation experiments have es- As with the Koide formula most of the mass differences tablished increasingly refined limits on neutrino squared cancel despite the input masses having a range of over mass differences [28]. Cosmological models also put con- 3500:1. If this is not just a coincidence we can attempt straints on the sum of the three mass states [29]. By looking for equations of similar form to (4) and (5) and testing against the experimental neutrino constraints we can identify candidate neutrino mass formulas. Given ⇤ [email protected] that the experimental bounds on the neutrino mass states 2 o have them much closer together than the charged leptons with ✓ke⌫ 24.42 . This is smaller than the weak mixing ' o ⇡ we assume the same exponent of ↵f would need to ap- angle ✓W 28.17 by approximately 48 radians. If the ' ⇡ pear in each formula. By also using the same integer relationship is exactly ✓W = ✓ke⌫ + 48 then it would be 2 coefficients as the charged lepton formulas we find a sur- possible to calculate sin ✓W =0.222928(26) and mW = prisingly close match to the experimental squared mass 80.3834(32) MeV,anorderofmagnitudemoreprecise differences when setting the neutrino residual k⌫ 6.64. than previously known. ' This results in left-handed neutrino sector formulas IV. QUARK SECTOR 2 m1m3 k⌫ = 3 6.64. (6) m2 ' We will now attempt to apply the techniques we used relating masses in the lepton sector to quarks. The quark 4 3 2 sector residual formulas are m1 = ↵f me 1.86 10− eV/c , (7) ' ⇥ 2 mdmb kd = 3 , (17) 4 ms ↵f 3 2 m2 =9 1 me 8.90 10− eV/c , (8) 3 ' ⇥ k⌫ 2 mumtop k = . (18) u m 3 4 2 2 c m3 = 27↵f me 5.02 10− eV/c . (9) ' ⇥ While most attempts to find relationships between lep- These proposed masses give squared mass differences of tons and quarks use renormalized running masses we have surprisingly found the best overall results using pole 2 5 2 4 ∆m 7.56 10− eV /c , (10) masses for the heavy quarks. The deconfined nature 21 ' ⇥ 2 3 2 4 of the top quark has enabled It’s mass to be measured ∆m 2.51 10− eV /c , (11) 31 ' ⇥ through decay products in particle collision experiments. 2 3 2 4 ∆m 2.44 10− eV /c , (12) m 32 ' ⇥ The best fit we have found to the global average top pole mass using ↵f and simple coefficients is and the sum of all three mass states me 2 2 2 mtop = 3 173.72 GeV/c . (19) ⌃m =6.09 10− eV/c . (13) 2⇡↵ ' ⌫ '⇥ f These predicted values are in excellent agreement with Several different analysis modes exists on data from the recent global analysis of oscillation experiments [28, 30] ongoing top quark experiments at the LHC with a com- prehensive summary in [31]. Our predicted pole mass is for normal mass ordering (m⌫1 <m⌫2 <m⌫3 )andthe sum is just below cosmological model limits [29]. A com- an excellent match for recent analysis including the 2016 PDG pole mass average of m = 173.5 1.1GeV/c2 parison of our predicted values to experiments is shown top ± [30]. We also have a particularly close match to the cen- in table I. Remarkably, these equations have the identical +1.0 ter value of Mt = 173.7 1.5 1.4 0.5 reported in [32]. integer coefficients (1, 9, 27) as our charged lepton formu- ± ± − las and also satisfy a left handed neutrino sector struc- For the bottom and charm quarks we target the pole ture equation similar to (2) for charged leptons. Right masses derived from perturbative QCD MS mass analysis handed sterile neutrinos, if the exist do not yet have reli- from collider experiments. The best formulas we have able constraints established from which we could search found using ↵f and relatively simple coefficients for the for similar relationships. bottom and charm quarks are At this point we must ask why the sector residual fac- m m = e 4.78 GeV/c2, k k b 1 2 (20) tors e and ⌫ only appear as terms in the second gener- ⇡ 2 ↵ ' ation and if their values are related? While we do not yet f have an answer to the first question, the second may be answered by looking at the sum of the lepton residuals me 2 mc =2 1 1.69 GeV/c . (21) 3 2 ' ku ↵ k = k + k 8. (14) f ` e ⌫ ' If their sum is exactly 8 we can express the residuals with ku = 16 (22) an angle ✓ke⌫ such that These predicted pole masses are in excellent agreement 2 k = 8cos ✓ , (15) with recent pole mass evaluations of mb =4.78 ⌫ ke⌫ ± 0.06 GeV and m =1.67 0.07 GeV [30]. c ± For the light quarks perturbative QCD does not pro- k = 8sin2✓ , e ke⌫ (16) vide reliable pole masses so we are left to extrapolate 3 formulas from the heavy quarks. Having proposed for- pare them directly. The quark sector residuals can be mulas for m and m we can extract from (18) expressed in terms of an angle ✓ 19.47o such that top c kud ' 2 2 k = 144cos ✓ , ⇡ d kud (26) m = m 2.52 MeV/c2. u 2 e ' 2 ku = 144sin ✓kud . (27) While this value is close to the lattice theory derived MS mass commonly quoted m 2.2MeV/c2,wecaution Looking at different combinations of the lepton and quark u ' against comparing our predicted light quark pole masses residuals we find that to renormalized light quark masses directly. For the down kd quark we assume a similar structure to our up quark k` = =8, (28) formula and a ratio m /m 0.5.Withthatcriteria ku u d ' our proposed formulas for the down and strange quarks are ku =2. (29) k` m =⇡2m 5.04 MeV/c2, (23) d e ' 1 V. COMBINED VIEW ⇡ 3 me 2 ms = 1 4 96.6MeV/c , (24) 3 3 ' kd ↵f While the preceding formulas in terms of me are conve- nient for calculating precision predicted values it is more interesting to view them together in terms of the Higgs kd = 128. (25) vacuum expectation value v 246.22 GeV [30].
Recommended publications
  • Tests of a Family Gauge Symmetry Model at 103 Tev Scale
    Physics Letters B 695 (2011) 279–284 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Tests of a family gauge symmetry model at 103 TeV scale ∗ Yoshio Koide a, , Yukinari Sumino b, Masato Yamanaka c a Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan b Department of Physics, Tohoku University, Sendai 980-8578, Japan c MISC, Kyoto Sangyo University, Kyoto 603-8555, Japan article info abstract Article history: Based on a specific model with U(3) family gauge symmetry at 103 TeV scale, we show its experimental Received 5 October 2010 signatures to search for. Since the gauge symmetry is introduced with a special purpose, its gauge Received in revised form 16 November 2010 coupling constant and gauge boson mass spectrum are not free. The current structure in this model Accepted 20 November 2010 leads to family number violations via exchange of extra gauge bosons. We investigate present constraints Available online 24 November 2010 from flavor changing processes and discuss visible signatures at LHC and lepton colliders. Editor: T. Yanagida © 2010 Elsevier B.V. All rights reserved. Keywords: Family gauge symmetry Family number violations LHC extra gauge boson search 1. Introduction First,letusgiveashortreview:“Whydoweneedafamily gauge symmetry?” In the charged lepton sector, we know that an empirical relation [4] In the current flavor physics, it is a big concern whether fla- vors can be described by concept of “symmetry” or not. If the flavors are described by a symmetry (family symmetry), it is also me + mμ + mτ 2 K ≡ √ √ √ = (1) interesting to consider that the symmetry is gauged.
    [Show full text]
  • Publication List (2004 – April 2018)
    Publication List (2004 { April 2018) 1. \Another Formula for the Charged Lepton Masses", Yoshio Koide , Phys. Lett. B, 777 131-133 (2018) 2. \Structure of Right-Handed Neutrino Mass Matrix", Yoshio Koide , Phys. Rev. D, 96, 095005 (2017) 3. \Flavon VEV Scales in U(3)×U(3)0 Model", Yoshio Koide, Hiroyuki Nishiura, Int.J. Mod. Phys. A 32, 1750085-1-25 (2017) 4. \Sumino's Cancellation Mechanism in an Anomaly-Free Model", Yoshio Koide, Mod. Phys. Lett. A 32, 1750062-10 (2017) 5. \Muon-Electron Conversion in a Family Gauge Boson Model", Yoshio Koide, Masato Yamanaka, Phys. Lett. B 762, 41-46 (2016) 6. \Quark and Lepton Mass Matrices Described by Charged Lepton Masses", Yoshio Koide, Hiroyuki Nishiura, Mod. Phys. Lett. A, 31, 1650125-1-13 (2016) 7. \ Quark and Lepton Mass Matrix Model with Only Six Family-Independent Parameters", Yoshio Koide, Hiroyuki Nishiura, Phys.Rev.D 92, 111301(R) 1-6 (2015) 8. \Quark and lepton mass matrix model with only six family-independent parameters", Yoshio Koide, Hiroyuki Nishiura, Phys. Rev. D, 92, 111301(R)1-6 (2015). 9. \Family gauge boson production at the LHC", Yoshio Koide, Masato Yamanaka and Hiroshi Yokoya, Phys. Lett. B, 750, 384-389 (2015). 10. \Family gauge boson mass estimated from K+ ! π+νν¯", Yoshio Koide, Phys. Rev. D, 92, 036009-1 - 036009-5 (2015). 11. \Can family gauge bosons be visible by terrestrial experiments?", Yoshio Koide, JPS Conf. Proc. , 010009-010013 (2015). 12. \Origin of hierarchical structures of quark and lepton mass matrices", Yoshio Koide, Hiroyuki Nishiura, Phys. Rev. D, 91, 116002-1-10 (2015).
    [Show full text]
  • Koide Mass Equations for Hadrons
    Koide mass equations for hadrons Carl Brannen∗1 18500 148th Ave. NE, T-1064, Redmond, WA, USA Email: Carl Brannen∗- [email protected]; ∗Corresponding author Abstract Koide's mass formula relates the masses of the charged leptons. It is related to the discrete Fourier transform. We analyze bound states of colored particles and show that they come in triplets also related by the discrete Fourier transform. Mutually unbiased bases are used in quantum information theory to generalize the Heisenberg uncertainty principle to finite Hilbert spaces. The simplest complete set of mutually unbiased bases is that of 2 dimensional Hilbert space. This set is compactly described using the Pauli SU(2) spin matrices. We propose that the six mutually unbiased basis states be used to represent the six color states R, G, B, R¯, G¯, and B¯. Interactions between the colors are defined by the transition amplitudes between the corresponding Pauli spin states. We solve this model and show that we obtain two different results depending on the Berry-Pancharatnam (topological) phase that, in turn, depends on whether the states involved are singlets or doublets under SU(2). A postdiction of the lepton masses is not convincing, so we apply the same method to hadron excitations and find that their discrete Fourier transforms follow similar mass relations. We give 39 mass fits for 137 hadrons. PACS Codes: 12.40.-y, 12.40.Yx, 03.67.-a 1 Background Introduction The standard model of elementary particle physics takes several dozen experimentally measured characteristics of the leptons and quarks as otherwise arbitrary parameters to the theory.
    [Show full text]
  • Tests of a Family Gauge Symmetry Model at 103 Tev Scale ∗ Yoshio Koide A, , Yukinari Sumino B, Masato Yamanaka C
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Physics Letters B 695 (2011) 279–284 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Tests of a family gauge symmetry model at 103 TeV scale ∗ Yoshio Koide a, , Yukinari Sumino b, Masato Yamanaka c a Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan b Department of Physics, Tohoku University, Sendai 980-8578, Japan c MISC, Kyoto Sangyo University, Kyoto 603-8555, Japan article info abstract Article history: Based on a specific model with U(3) family gauge symmetry at 103 TeV scale, we show its experimental Received 5 October 2010 signatures to search for. Since the gauge symmetry is introduced with a special purpose, its gauge Received in revised form 16 November 2010 coupling constant and gauge boson mass spectrum are not free. The current structure in this model Accepted 20 November 2010 leads to family number violations via exchange of extra gauge bosons. We investigate present constraints Available online 24 November 2010 from flavor changing processes and discuss visible signatures at LHC and lepton colliders. Editor: T. Yanagida © 2010 Elsevier B.V. Open access under CC BY license. Keywords: Family gauge symmetry Family number violations LHC extra gauge boson search 1. Introduction First,letusgiveashortreview:“Whydoweneedafamily gauge symmetry?” In the charged lepton sector, we know that an empirical relation [4] In the current flavor physics, it is a big concern whether fla- vors can be described by concept of “symmetry” or not. If the flavors are described by a symmetry (family symmetry), it is also me + mμ + mτ 2 K ≡ √ √ √ = (1) interesting to consider that the symmetry is gauged.
    [Show full text]
  • YITP Workshop : “Progress in Particle Physics”
    YITP Workshop : \Progress in Particle Physics" June 29 { July 2, 2004 Yukawa Institute for Theoretical Physics, Kyoto University June 29 9:00 { 10:30 Yoshio Koide (U. Shizuoka) Can a Flavor Symmetry exist? Haruhiko Terao (Kanazawa) Democratic mass matrices by strong unification and the lepton mixing angles Nao-aki Yamashita (Saga) Neutrino Masses and Mixing Matrix from SU(1,1) Horizontal Symmetry | coffee break | 11:00 { 12:00 Tetsuo Shindou (KEK) Origins of CP phases in GUT models Koichi Matsuda (Osaka) Phenomenological analysis of lepton and quark Yukawa couplings in SO(10) two Higgs model | lunch | 14:00 { 15:30 Tatsu Takeuchi (Virginia Tech) Phenomenology of not-so-heavy neutral leptons Toshihiko Ota (Osaka) Lepton flavor violation via Higgs bosons Masato Senami (ICRR, Tokyo) B φK in vector-like quark model ! s | coffee break | 16:00 { 18:00 Shinya Kanemura (Osaka) A mechanism for the top-bottom mass hierarchy Kenichi Senda (GUAS/KEK) The observation of neutrino from J-PARC in Korea Zenro Hioki (Tokushima) Optimal-observable analysis of top production/decay at photon-photon collider Hiroyuki Kawamura (KEK) Soft gluon resummation in transversely polarized Drell-Yan process June 30 9:00 { 10:30 (English session) Michael Peskin (SLAC) [review] Beyond the Constrained Minimal Supersymmetric Standard Model Koichi Hamaguchi (DESY) Supergravity at Colliders | coffee break | 11:00 { 12:00 Satoshi Mishima (Tohoku) Implication of Rare B Meson Decays on Squark Flavor Mixing Hideo Itoh (Ibaraki) Tauonic B decay in a supersymmetric model | lunch | 14:00
    [Show full text]
  • Muon–Electron Conversion in a Family Gauge Boson Model
    Physics Letters B 762 (2016) 41–46 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Muon–electron conversion in a family gauge boson model ∗ Yoshio Koide a, Masato Yamanaka b, a Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan b Maskawa Institute, Kyoto Sangyo University, Kyoto 603-8555, Japan a r t i c l e i n f o a b s t r a c t 1 Article history: We study the μ–e conversion in muonic atoms via an exchange of family gauge boson (FGB) A2 in a Received 8 August 2016 U (3) FGB model. Within the class of FGB model, we consider three types of family-number assignments Accepted 1 September 2016 for quarks. We evaluate the μ–e conversion rate for various target nuclei, and find that next generation Available online 6 September 2016 μ–e conversion search experiments can cover entire energy scale of the model for all of types of the Editor: N. Lambert quark family-number assignments. We show that the conversion rate in the model is so sensitive to u d u† d up- and down-quark mixing matrices, U and U , where the CKM matrix is given by V CKM = U U . Precise measurements of conversion rates for various target nuclei can identify not only the types of quark family-number assignments, but also each quark mixing matrix individually. © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 3 (http://creativecommons.org/licenses/by/4.0/).
    [Show full text]
  • A Unified Description of Quark and Lepton Mass Matrices in A
    A Unified Description of Quark and Lepton Mass Matrices in a Universal Seesaw Model (a) Yoshio Koide∗†and Hideo Fusaoka‡ Department of Physics, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan (a) Department of Physics, Aichi Medical University, Nagakute, Aichi 480-1195, Japan (September 16, 2002) In the democratic universal seesaw model, the mass matrices are given by f LmLFR +F LmRfR + F LMF FR (f: quarks and leptons; F : hypothetical heavy fermions), mL and mR are universal for up- and down-fermions, and MF has a structure (1+bf X)(bf is a flavour-dependent parameter, and X is a democratic matrix). The model can successfully explain the quark masses and CKM mixing parameters in terms of the charged lepton masses by adjusting only one parameter, bf . However, so far, the model has not been able to give the observed bimaximal mixing for the neutrino sector. In the present paper, we consider that MF in the quark sectors are still “fully” democratic, while MF in the lepton sectors are partially democratic. Then, the revised model can reasonably give a nearly bimaximal mixing without spoiling the previous success in the quark sectors. PACS numbers: 14.60.Pq, 12.15.Ff, 11.30.Hv I. INTRODUCTION Thus, the model answers the question why the masses of quarks (except for top quark) and charged leptons are so small with respect to the electroweak scale Λ ( A. What is the universal seesaw model? L 102 GeV). On the other hand, the top quark mass en-∼ hancement is understood from the additional condition Stimulated by the recent progress of neutrino experi- detMF = 0 for the up-quark sector (F = U) [2–4].
    [Show full text]
  • Table of Contents (Online)
    PERIODICALS PHYSICAL REVIEW D Postmaster send address changes to: For editorial and subscription correspondence, American Institute of Physics please see inside front cover Suite 1NO1 „ISSN: 0556-2821… 2 Huntington Quadrangle Melville, NY 11747-4502 THIRD SERIES, VOLUME 66, NUMBER 11 CONTENTS 1 DECEMBER 2002 RAPID COMMUNICATIONS 2␪ ͑ ͒ Modified Paschos-Wolfenstein relation and extraction of the weak mixing angle sin W (5 pages) .......... 111301 R S. Kumano Renormalization invariants of the neutrino mass matrix (5 pages) .................................... 111302͑R͒ Sanghyeon Chang and T. K. Kuo Femtophotography of protons to nuclei with deeply virtual Compton scattering (5 pages) ................. 111501͑R͒ John P. Ralston and Bernard Pire Pinch technique to all orders (5 pages) .......................................................... 111901͑R͒ Daniele Binosi and Joannis Papavassiliou ARTICLES Search for minimal supergravity in single-electron events with jets and large missing transverse energy in pp¯ collisions at ͱsϭ1.8 TeV (15 pages) ........................................................... 112001 V. M. Abazov et al. ͑DØ Collaboration͒ Search for radiative b-hadron decays in pp¯ collisions at ͱsϭ1.8 TeV (19 pages) ....................... 112002 D. Acosta et al. ͑CDF Collaboration͒ Effects of new physics in neutrino oscillations in matter (7 pages) ................................... 113001 Mario Campanelli and Andrea Romanino Prompt TeV-PeV atmospheric neutrino window (5 pages) ........................................... 113002 C. G. S. Costa, F. Halzen, and C. Salles Lepton masses from a TeV scale in a 3-3-1 model (6 pages) ........................................ 113003 J. C. Montero, C. A. de S. Pires, and V. Pleitez Unified description of quark and lepton mass matrices in a universal seesaw model (7 pages) ............. 113004 Yoshio Koide and Hideo Fusaoka Solar neutrinos: Global analysis with day and night spectra from SNO (10 pages) .....................
    [Show full text]
  • Family Gauge Boson Production at The
    Physics Letters B 750 (2015) 384–389 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Family gauge boson production at the LHC ∗ Yoshio Koide a, Masato Yamanaka b, , Hiroshi Yokoya c,d a Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan b Kobayashi–Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya 464-8602, Japan c Quantum Universe Center, KIAS, Seoul 130-722, Republic of Korea d Theory Center, KEK, Tsukuba 305-0801, Japan a r t i c l e i n f o a b s t r a c t Article history: Family gauge boson production at the LHC is investigated according to a U (3) family gauge model Received 23 July 2015 with twisted family number assignment. In the model we study, a family gauge boson with the Received in revised form 10 September 1 lowest mass, A , interacts only with the first generation leptons and the third generation quarks. (The 2015 1 − − − family numbers are assigned, for example, as (e , e , e ) = (e , μ , τ ) and (d , d , d ) = (b, d, s) [or Accepted 10 September 2015 1 2 3 1 2 3 (d , d , d ) = (b, s, d)].) In the model, the family gauge coupling constant is fixed by relating to the Available online 25 September 2015 1 2 3 Editor: J. Hisano electroweak gauge coupling constant. Thus measurements of production cross sections and branching ratios of A 1 clearly confirm or rule out the model. We calculate the cross sections of inclusive A 1 1 √ 1 ¯ ¯ 1 = production and bb (tt) associated A1 production at s 14 TeV and 100 TeV.
    [Show full text]
  • Title YITP Annual Report, Yukawa Institute for Theoretical Physics
    YITP annual report, Yukawa Institute for Theoretical Physics, Title Kyoto University 2007 Author(s) YITP annual report, Yukawa Institute for Theoretical Physics, Citation Kyoto University (2007), 2007 Issue Date 2007 URL http://hdl.handle.net/2433/77950 Right Type Others Textversion publisher Kyoto University YITP Annual Report Yukawa Institute For Theoretical Physics Kyoto University 2007 Foreword We present here an annual report of the scientific activities of Yukawa Institute for Theo- retical Physics during the academic year 2007. First of all it is our great pleasure to report the 2008 Nobel physics prize awarded to our former director, Toshihide Maskawa for his contribution to the theory of CP violation. This is the 2nd Nobel prize given to the affiliates of our Institution. We consider that the award exemplifies the high standard of research conducted at our Institute and we would like to maintain our tradition of excellence in research in the future. From the academic year 2007 we started our new project of “Yukawa International Pro- gram of Quark-Hadron Sciences (YIPQS)” funded by Japan Minsitry of Education, Culture and Sports. In this project we select a few research topics in each year and host long-term workshops extending over periods of a few months. We invite leading experts from the world in each topic and aim at fruitful collaboration among the workshop participants. In the year 2007, workshops in the area of the interface of cosmology and string theory, condensed mat- ter theory and also quark hadron physics were held. Our report contains some of the new developments initiated by these workshops.
    [Show full text]
  • Universal Texture of Quark and Lepton Mass Matrices and a Discrete Symmetry Z3
    PHYSICAL REVIEW D 66, 093006 ͑2002͒ Universal texture of quark and lepton mass matrices and a discrete symmetry Z3 Yoshio Koide* Department of Physics, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan Hiroyuki Nishiura Department of General Education, Junior College of Osaka Institute of Technology, Asahi-ku, Osaka, 535-8585, Japan Koichi Matsuda, Tatsuru Kikuchi, and Takeshi Fukuyama Department of Physics, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan ͑Received 27 September 2002; published 19 November 2002͒ Recent neutrino data have been favorable to a nearly bimaximal mixing, which suggests a simple form of the neutrino mass matrix. Stimulated by this matrix form, the possibility that all the mass matrices of quarks and leptons have the same form as in neutrinos is investigated. The mass matrix form is constrained by a discrete symmetry Z3 and a permutation symmetry S2. The model, of course, leads to a nearly bimaximal mixing for the lepton sectors, while, for the quark sectors, it can lead to reasonable values of the CKM mixing matrix and masses. DOI: 10.1103/PhysRevD.66.093006 PACS number͑s͒: 12.15.Ff, 11.30.Hv, 14.60.Pq I. INTRODUCTION for the neutrino mass matrix in Refs. ͓2–7͔, using the basis where the charged-lepton mass matrix is diagonal, motivated Recent neutrino oscillation experiments ͓1͔ have highly by the experimental finding of maximal ␯␮Ϫ␯␶ mixing ͓1͔. 2 ␪ ϳ 2 ␪ suggested a nearly bimaximal mixing (sin 2 12 1,sin 2 23 In this paper, we consider that this structure is fundamental Ӎ ϵ⌬ 2 ⌬ 2 ϳ Ϫ2 1) together with a small ratio R m12/ m23 10 .
    [Show full text]
  • Printed Here
    PHYSICAL REVIEW C, VOLUME 64, NUMBER 3 Selected Abstracts from Other Physical Review Journals Abstracts of papers which are published in other Physical Review journals and may be of interest to Physical Review C readers are printed here. The Editors of Physical Review C routinely scan the abstracts of Physical Review D papers. Appropriate abstracts of papers in other Physical Review journals may be included upon request. Polarization in hadronic ⌳ hyperon production and chiral-odd characterizing the vector and scalar 4-fermion interaction ␰ Ͻ twist-3 distribution. Y. Kanazawa and Yuji Koike, Department of ϵGV /GS . It is shown that for ␰ 0.4 matter is self-bound and for Physics, Niigata University, Ikarashi, Niigata 950-2181, Japan. ␰Ͻ0.65 it has a ®rst order phase transition of the liquid-gas type. ͑Received 3 April 2001; published 11 July 2001͒ The Gibbs conditions in the mixed phase are applied for the case of two chemical potentials associated with the baryon number and Polarization of the ⌳ hyperon produced with a large transverse electric charge. The characteristics of the quark stars are calculated momentum in unpolarized nucleon-nucleon collisions is analyzed in for ␰ϭ0, 0.5, and 1. It is found that the phase transition leads to a the framework of QCD factorization. We focus on the mechanism strong density variation at the surface of these stars. For ␰ϭ1 the in which the soft-gluon component of the chiral-odd spin- properties of quark stars show behaviors typical for neutron stars. independent twist-3 quark distribution EF(x,x) becomes a source of At ␰տ0.4 the stars near to the maximum mass have a large admix- the polarized quark fragmenting into the polarized ⌳.
    [Show full text]