Printed Here

Total Page:16

File Type:pdf, Size:1020Kb

Printed Here PHYSICAL REVIEW C, VOLUME 64, NUMBER 3 Selected Abstracts from Other Physical Review Journals Abstracts of papers which are published in other Physical Review journals and may be of interest to Physical Review C readers are printed here. The Editors of Physical Review C routinely scan the abstracts of Physical Review D papers. Appropriate abstracts of papers in other Physical Review journals may be included upon request. Polarization in hadronic ⌳ hyperon production and chiral-odd characterizing the vector and scalar 4-fermion interaction ␰ Ͻ twist-3 distribution. Y. Kanazawa and Yuji Koike, Department of ϵGV /GS . It is shown that for ␰ 0.4 matter is self-bound and for Physics, Niigata University, Ikarashi, Niigata 950-2181, Japan. ␰Ͻ0.65 it has a ®rst order phase transition of the liquid-gas type. ͑Received 3 April 2001; published 11 July 2001͒ The Gibbs conditions in the mixed phase are applied for the case of two chemical potentials associated with the baryon number and Polarization of the ⌳ hyperon produced with a large transverse electric charge. The characteristics of the quark stars are calculated momentum in unpolarized nucleon-nucleon collisions is analyzed in for ␰ϭ0, 0.5, and 1. It is found that the phase transition leads to a the framework of QCD factorization. We focus on the mechanism strong density variation at the surface of these stars. For ␰ϭ1 the in which the soft-gluon component of the chiral-odd spin- properties of quark stars show behaviors typical for neutron stars. independent twist-3 quark distribution EF(x,x) becomes a source of At ␰տ0.4 the stars near to the maximum mass have a large admix- the polarized quark fragmenting into the polarized ⌳. Our simple ture of strange quarks in their interiors. ͓Phys. Rev. D 64, 043005 model estimate for this contribution indicates that it gives rise to a ͑2001͔͒ signi®cant ⌳ polarization at large xF . This is in parallel with the observation that the soft gluon pole mechanism gives rise to a large → single transverse spin asymmetry in pion production at xF 1. ͓Phys. Rev. D 64, 034019 ͑2001͔͒ Standard model neutrinos as warm dark matter. Gian F. Giudice,1 Edward W. Kolb,2 Antonio Riotto,3 Dmitry V. Semikoz,4,5 1,5 1 Nucleon-nucleon bremsstrahlung of axions and pseudoscalar and Igor I. Tkachev, CERN Theory Division, CH- 2 particles from neutron-star matter. Naoki Iwamoto, Department 1211 Geneva 23, Switzerland, NASA/Fermilab Astrophysics Cen- of Physics and Astronomy, The University of Toledo, Toledo, ter, Fermi National Accelerator Laboratory, Batavia, Ohio 43606-3390 and Department of Advanced Materials Science, Illinois 60510-0500 and Department of Astronomy and Astrophys- Faculty of Engineering, Kagawa University, Takamatsu, ics, Enrico Fermi Institute, The University of Chicago, Chicago, 3 Kagawa 761-0396, Japan. ͑Received 16 February 2001; pub- Illinois 60637-1433, Scuola Normale Superiore, Piazza dei Cava- 4 lished 26 July 2001͒ lieri 7, I-56126 Pisa, Italy, Max Planck Insitut fuÈr Physik, FoÈ- hringer Ring 6, 80805 MuÈnchen, Germany, 5Institute for Nuclear The energy-loss rates of degenerate neutron-star matter due to Research of the Academy of Sciences of Russia, Moscow 117312, thermal bremsstrahlung of pseudoscalar particles and axions via Russia. ͑Received 22 December 2000; published 27 July 2001͒ neutron-proton collisions together with the mean-free path and the energy spectrum from neutron-neutron, neutron-proton, and Standard model neutrinos are not usually considered plausible neutron-neutron processes are calculated. Analytic expressions for dark matter candidates because the usual treatment of their decou- these quantities are obtained in the general case where the pseudo- pling in the early universe implies that their mass must be suf®- scalar particle couples to the proton and neutron with different ciently small to make them ``hot'' dark matter. In this paper we strengths and the protons and the neutrons have different Fermi show that decoupling of standard model neutrinos in low reheat momenta. These rates are compared with those of other authors. models may result in neutrino densities very much less than usually ͓Phys. Rev. D 64, 043002 ͑2001͔͒ assumed, and thus their mass may be in the keV range. Standard model neutrinos may therefore be warm dark matter candidates. ͓Phys. Rev. D 64, 043512 ͑2001͔͒ Strange quark stars within the Nambu±Jona-Lasinio model. M. Hanauske,1 L. M. Satarov,1,2 I. N. Mishustin, 1,2,3 H. StoÈcker,1 and W. Greiner,1 1Institut fuÈr Theoretische Physik, J. W. Goethe± Two-loop self-energy and multiple scattering at ®nite tempera- UniversitaÈt, D-60054 Frankfurt, Germany, 2The Kurchatov Insti- ture. J. I. Kapusta, School of Physics and Astronomy, University of tute, 123182 Moscow, Russia, 3The Niels Bohr Institute, DK-2100 Minnesota, Minneapolis, Minnesota 55455; S. M. H. Wong, De- Copenhagen O, Denmark. ͑Received 16 January 2001; published 30 partment of Physics, Ohio State University, Columbus, Ohio 43210. July 2001͒ ͑Received 5 March 2001; published 20 July 2001͒ We investigate the properties of charge-neutral ␤-equilibrium One- and two-loop self-energies are worked out explicitly for a cold quark matter within the Nambu±Jona-Lasinio model. The cal- heavy scalar ®eld interacting weakly with a light self-interacting culations are carried out for different ratios of coupling constants scalar ®eld at ®nite temperature. The ring or daisy diagrams and a i SELECTED ABSTRACTS PHYSICAL REVIEW C 64 set of necklace diagrams can be summed simultaneously. This 60616, 6Los Alamos National Laboratory, Los Alamos, New simple model serves to illustrate the connection between multiloop Mexico 87545, 7Louisiana State University, Baton Rouge, Louisi- self-energy diagrams and multiple scattering in a medium. ͓Phys. ana 70803, 8New Mexico State University, Las Cruces, New Rev. D 64, 045008 ͑2001͔͒ Mexico 88003, 9Oak Ridge National Laboratory, Oak Ridge, Ten- nessee 37831, 10Texas A & M University, College Station, Texas 77843, 11Valparaiso University, Valparaiso, Indiana 46383. ͑Re- ceived 14 March 2001; published 10 August 2001͒ Spontaneous parity violation in QCD at ®nite temperature: On Measurements of the ratio of Drell-Yan yields from an the inapplicability of the Vafa-Witten theorem. Thomas D. Co- 800 GeV/c proton beam incident on liquid hydrogen and deute- hen, Department of Physics, University of Maryland, College Park, rium targets are reported. Approximately 360 000 Drell-Yan muon Maryland 20742-4111. ͑Received 30 January 2001; published 30 pairs remained after all cuts on the data. From these data, the ratio July 2001͒ of down antiquark (Åd) to up (Åu) antiquark distributions in the pro- The generalization of the Vafa-Witten theorem, ruling out parity ton sea is determined over a wide range in Bjorken-x. These results violation to QCD at ®nite temperature is considered. It is shown con®rm previous measurements by E866 and extend them to lower that this generalization of the theorem rules out Lorentz-invariant x. From these data, (ÅdϪÅu) and ͐(ÅdϪÅu)dx are evaluated for parity violating operators from spontaneously acquiring vacuum ex- 0.015ϽxϽ0.35. These results are compared with parametrizations pectation values. However, it does not rule out Lorentz-noninvariant of various parton distribution functions, models and experimental parity-violating operators from acquiring expectation values. Other results from NA51, NMC and HERMES. ͓Phys. Rev. D 64, 052002 situations, where the theorem is inapplicable, are also discussed. ͑2001͔͒ ͓Phys. Rev. D 64, 047704 ͑2001͔͒ Discrete ¯avor symmetries and mass matrix textures. M. S. Relativistic corrections to the electromagnetic polarizabilities of Berger and Kim Siyeon, Physics Department, Indiana University, compound systems. R. N. Lee and A. I. Milstein, Budker Institute Bloomington, Indiana 47405. ͑Received 31 May 2000; revised of Nuclear Physics, 630090 Novosibirsk, Russia; M. Schumacher, manuscript received 22 March 2001; published 1 August 2001͒ Zweites Physikalisches Institut, UniversitaÈt GoÈttingen, D-37073 GoÈttingen, Germany. ͑Received 4 February 2001; published 20 Au- We show how introducing discrete Abelian ¯avor symmetries can gust 2001͒ produce texture zeros in the fermion mass matrices, while preserv- ing the correct relationships with the low-energy data on quark and The low-energy amplitude of Compton scattering on the bound lepton masses. We outline a procedure for de®ning texture zeros as state of two charged particles of arbitrary masses, charges, and spins suppressed entries in Yukawa matrices. These texture zeros can ac- is obtained. A case in which the bound state exists due to electro- count for the coexistence of the observed large mixing in atmo- 2 magnetic interaction is considered. The term, proportional to ␻ , is spheric neutrino oscillations with a hierarchy in the neutrino obtained taking into account the ®rst relativistic correction. It is masses, and offer the possibility of alignment of the quark and shown that the complete result for this correction differs essentially squark mass matrices, thus giving a solution to the supersymmetric from the commonly used term ⌬␣, proportional to the rms charge ¯avor problem. A requirement that the ¯avor symmetry commutes radius of the system. We propose that the same situation can take with the SU(5) grand uni®ed group can be used to explain the place in the more complicated case of hadrons. ͓Phys. Rev. A 64, lepton mass hierarchies as well as the neutrino parameters, includ- 032507 ͑2001͔͒ ing the large mixing observed in the atmospheric neutrino data. We present one such model that yields a large atmospheric neutrino mixing angle, as well as a solar neutrino mixing angle of order ␭ Ӎ0.22. ͓Phys. Rev. D 64, 053006 ͑2001͔͒ Improved measurement of the ÅdÕÅu asymmetry in the nucleon sea. R. S. Towell,1,6 P. L. McGaughey,6 T. C. Awes,9 M. E. Beddo,8 M. L. Brooks,6 C. N. Brown,3 J. D. Bush,1 T. A. Carey,6 T. H. Chang,8 W.
Recommended publications
  • Tests of a Family Gauge Symmetry Model at 103 Tev Scale
    Physics Letters B 695 (2011) 279–284 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Tests of a family gauge symmetry model at 103 TeV scale ∗ Yoshio Koide a, , Yukinari Sumino b, Masato Yamanaka c a Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan b Department of Physics, Tohoku University, Sendai 980-8578, Japan c MISC, Kyoto Sangyo University, Kyoto 603-8555, Japan article info abstract Article history: Based on a specific model with U(3) family gauge symmetry at 103 TeV scale, we show its experimental Received 5 October 2010 signatures to search for. Since the gauge symmetry is introduced with a special purpose, its gauge Received in revised form 16 November 2010 coupling constant and gauge boson mass spectrum are not free. The current structure in this model Accepted 20 November 2010 leads to family number violations via exchange of extra gauge bosons. We investigate present constraints Available online 24 November 2010 from flavor changing processes and discuss visible signatures at LHC and lepton colliders. Editor: T. Yanagida © 2010 Elsevier B.V. All rights reserved. Keywords: Family gauge symmetry Family number violations LHC extra gauge boson search 1. Introduction First,letusgiveashortreview:“Whydoweneedafamily gauge symmetry?” In the charged lepton sector, we know that an empirical relation [4] In the current flavor physics, it is a big concern whether fla- vors can be described by concept of “symmetry” or not. If the flavors are described by a symmetry (family symmetry), it is also me + mμ + mτ 2 K ≡ √ √ √ = (1) interesting to consider that the symmetry is gauged.
    [Show full text]
  • Publication List (2004 – April 2018)
    Publication List (2004 { April 2018) 1. \Another Formula for the Charged Lepton Masses", Yoshio Koide , Phys. Lett. B, 777 131-133 (2018) 2. \Structure of Right-Handed Neutrino Mass Matrix", Yoshio Koide , Phys. Rev. D, 96, 095005 (2017) 3. \Flavon VEV Scales in U(3)×U(3)0 Model", Yoshio Koide, Hiroyuki Nishiura, Int.J. Mod. Phys. A 32, 1750085-1-25 (2017) 4. \Sumino's Cancellation Mechanism in an Anomaly-Free Model", Yoshio Koide, Mod. Phys. Lett. A 32, 1750062-10 (2017) 5. \Muon-Electron Conversion in a Family Gauge Boson Model", Yoshio Koide, Masato Yamanaka, Phys. Lett. B 762, 41-46 (2016) 6. \Quark and Lepton Mass Matrices Described by Charged Lepton Masses", Yoshio Koide, Hiroyuki Nishiura, Mod. Phys. Lett. A, 31, 1650125-1-13 (2016) 7. \ Quark and Lepton Mass Matrix Model with Only Six Family-Independent Parameters", Yoshio Koide, Hiroyuki Nishiura, Phys.Rev.D 92, 111301(R) 1-6 (2015) 8. \Quark and lepton mass matrix model with only six family-independent parameters", Yoshio Koide, Hiroyuki Nishiura, Phys. Rev. D, 92, 111301(R)1-6 (2015). 9. \Family gauge boson production at the LHC", Yoshio Koide, Masato Yamanaka and Hiroshi Yokoya, Phys. Lett. B, 750, 384-389 (2015). 10. \Family gauge boson mass estimated from K+ ! π+νν¯", Yoshio Koide, Phys. Rev. D, 92, 036009-1 - 036009-5 (2015). 11. \Can family gauge bosons be visible by terrestrial experiments?", Yoshio Koide, JPS Conf. Proc. , 010009-010013 (2015). 12. \Origin of hierarchical structures of quark and lepton mass matrices", Yoshio Koide, Hiroyuki Nishiura, Phys. Rev. D, 91, 116002-1-10 (2015).
    [Show full text]
  • Koide Mass Equations for Hadrons
    Koide mass equations for hadrons Carl Brannen∗1 18500 148th Ave. NE, T-1064, Redmond, WA, USA Email: Carl Brannen∗- [email protected]; ∗Corresponding author Abstract Koide's mass formula relates the masses of the charged leptons. It is related to the discrete Fourier transform. We analyze bound states of colored particles and show that they come in triplets also related by the discrete Fourier transform. Mutually unbiased bases are used in quantum information theory to generalize the Heisenberg uncertainty principle to finite Hilbert spaces. The simplest complete set of mutually unbiased bases is that of 2 dimensional Hilbert space. This set is compactly described using the Pauli SU(2) spin matrices. We propose that the six mutually unbiased basis states be used to represent the six color states R, G, B, R¯, G¯, and B¯. Interactions between the colors are defined by the transition amplitudes between the corresponding Pauli spin states. We solve this model and show that we obtain two different results depending on the Berry-Pancharatnam (topological) phase that, in turn, depends on whether the states involved are singlets or doublets under SU(2). A postdiction of the lepton masses is not convincing, so we apply the same method to hadron excitations and find that their discrete Fourier transforms follow similar mass relations. We give 39 mass fits for 137 hadrons. PACS Codes: 12.40.-y, 12.40.Yx, 03.67.-a 1 Background Introduction The standard model of elementary particle physics takes several dozen experimentally measured characteristics of the leptons and quarks as otherwise arbitrary parameters to the theory.
    [Show full text]
  • Tests of a Family Gauge Symmetry Model at 103 Tev Scale ∗ Yoshio Koide A, , Yukinari Sumino B, Masato Yamanaka C
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Physics Letters B 695 (2011) 279–284 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Tests of a family gauge symmetry model at 103 TeV scale ∗ Yoshio Koide a, , Yukinari Sumino b, Masato Yamanaka c a Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan b Department of Physics, Tohoku University, Sendai 980-8578, Japan c MISC, Kyoto Sangyo University, Kyoto 603-8555, Japan article info abstract Article history: Based on a specific model with U(3) family gauge symmetry at 103 TeV scale, we show its experimental Received 5 October 2010 signatures to search for. Since the gauge symmetry is introduced with a special purpose, its gauge Received in revised form 16 November 2010 coupling constant and gauge boson mass spectrum are not free. The current structure in this model Accepted 20 November 2010 leads to family number violations via exchange of extra gauge bosons. We investigate present constraints Available online 24 November 2010 from flavor changing processes and discuss visible signatures at LHC and lepton colliders. Editor: T. Yanagida © 2010 Elsevier B.V. Open access under CC BY license. Keywords: Family gauge symmetry Family number violations LHC extra gauge boson search 1. Introduction First,letusgiveashortreview:“Whydoweneedafamily gauge symmetry?” In the charged lepton sector, we know that an empirical relation [4] In the current flavor physics, it is a big concern whether fla- vors can be described by concept of “symmetry” or not. If the flavors are described by a symmetry (family symmetry), it is also me + mμ + mτ 2 K ≡ √ √ √ = (1) interesting to consider that the symmetry is gauged.
    [Show full text]
  • YITP Workshop : “Progress in Particle Physics”
    YITP Workshop : \Progress in Particle Physics" June 29 { July 2, 2004 Yukawa Institute for Theoretical Physics, Kyoto University June 29 9:00 { 10:30 Yoshio Koide (U. Shizuoka) Can a Flavor Symmetry exist? Haruhiko Terao (Kanazawa) Democratic mass matrices by strong unification and the lepton mixing angles Nao-aki Yamashita (Saga) Neutrino Masses and Mixing Matrix from SU(1,1) Horizontal Symmetry | coffee break | 11:00 { 12:00 Tetsuo Shindou (KEK) Origins of CP phases in GUT models Koichi Matsuda (Osaka) Phenomenological analysis of lepton and quark Yukawa couplings in SO(10) two Higgs model | lunch | 14:00 { 15:30 Tatsu Takeuchi (Virginia Tech) Phenomenology of not-so-heavy neutral leptons Toshihiko Ota (Osaka) Lepton flavor violation via Higgs bosons Masato Senami (ICRR, Tokyo) B φK in vector-like quark model ! s | coffee break | 16:00 { 18:00 Shinya Kanemura (Osaka) A mechanism for the top-bottom mass hierarchy Kenichi Senda (GUAS/KEK) The observation of neutrino from J-PARC in Korea Zenro Hioki (Tokushima) Optimal-observable analysis of top production/decay at photon-photon collider Hiroyuki Kawamura (KEK) Soft gluon resummation in transversely polarized Drell-Yan process June 30 9:00 { 10:30 (English session) Michael Peskin (SLAC) [review] Beyond the Constrained Minimal Supersymmetric Standard Model Koichi Hamaguchi (DESY) Supergravity at Colliders | coffee break | 11:00 { 12:00 Satoshi Mishima (Tohoku) Implication of Rare B Meson Decays on Squark Flavor Mixing Hideo Itoh (Ibaraki) Tauonic B decay in a supersymmetric model | lunch | 14:00
    [Show full text]
  • Muon–Electron Conversion in a Family Gauge Boson Model
    Physics Letters B 762 (2016) 41–46 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Muon–electron conversion in a family gauge boson model ∗ Yoshio Koide a, Masato Yamanaka b, a Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan b Maskawa Institute, Kyoto Sangyo University, Kyoto 603-8555, Japan a r t i c l e i n f o a b s t r a c t 1 Article history: We study the μ–e conversion in muonic atoms via an exchange of family gauge boson (FGB) A2 in a Received 8 August 2016 U (3) FGB model. Within the class of FGB model, we consider three types of family-number assignments Accepted 1 September 2016 for quarks. We evaluate the μ–e conversion rate for various target nuclei, and find that next generation Available online 6 September 2016 μ–e conversion search experiments can cover entire energy scale of the model for all of types of the Editor: N. Lambert quark family-number assignments. We show that the conversion rate in the model is so sensitive to u d u† d up- and down-quark mixing matrices, U and U , where the CKM matrix is given by V CKM = U U . Precise measurements of conversion rates for various target nuclei can identify not only the types of quark family-number assignments, but also each quark mixing matrix individually. © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 3 (http://creativecommons.org/licenses/by/4.0/).
    [Show full text]
  • A Unified Description of Quark and Lepton Mass Matrices in A
    A Unified Description of Quark and Lepton Mass Matrices in a Universal Seesaw Model (a) Yoshio Koide∗†and Hideo Fusaoka‡ Department of Physics, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan (a) Department of Physics, Aichi Medical University, Nagakute, Aichi 480-1195, Japan (September 16, 2002) In the democratic universal seesaw model, the mass matrices are given by f LmLFR +F LmRfR + F LMF FR (f: quarks and leptons; F : hypothetical heavy fermions), mL and mR are universal for up- and down-fermions, and MF has a structure (1+bf X)(bf is a flavour-dependent parameter, and X is a democratic matrix). The model can successfully explain the quark masses and CKM mixing parameters in terms of the charged lepton masses by adjusting only one parameter, bf . However, so far, the model has not been able to give the observed bimaximal mixing for the neutrino sector. In the present paper, we consider that MF in the quark sectors are still “fully” democratic, while MF in the lepton sectors are partially democratic. Then, the revised model can reasonably give a nearly bimaximal mixing without spoiling the previous success in the quark sectors. PACS numbers: 14.60.Pq, 12.15.Ff, 11.30.Hv I. INTRODUCTION Thus, the model answers the question why the masses of quarks (except for top quark) and charged leptons are so small with respect to the electroweak scale Λ ( A. What is the universal seesaw model? L 102 GeV). On the other hand, the top quark mass en-∼ hancement is understood from the additional condition Stimulated by the recent progress of neutrino experi- detMF = 0 for the up-quark sector (F = U) [2–4].
    [Show full text]
  • Table of Contents (Online)
    PERIODICALS PHYSICAL REVIEW D Postmaster send address changes to: For editorial and subscription correspondence, American Institute of Physics please see inside front cover Suite 1NO1 „ISSN: 0556-2821… 2 Huntington Quadrangle Melville, NY 11747-4502 THIRD SERIES, VOLUME 66, NUMBER 11 CONTENTS 1 DECEMBER 2002 RAPID COMMUNICATIONS 2␪ ͑ ͒ Modified Paschos-Wolfenstein relation and extraction of the weak mixing angle sin W (5 pages) .......... 111301 R S. Kumano Renormalization invariants of the neutrino mass matrix (5 pages) .................................... 111302͑R͒ Sanghyeon Chang and T. K. Kuo Femtophotography of protons to nuclei with deeply virtual Compton scattering (5 pages) ................. 111501͑R͒ John P. Ralston and Bernard Pire Pinch technique to all orders (5 pages) .......................................................... 111901͑R͒ Daniele Binosi and Joannis Papavassiliou ARTICLES Search for minimal supergravity in single-electron events with jets and large missing transverse energy in pp¯ collisions at ͱsϭ1.8 TeV (15 pages) ........................................................... 112001 V. M. Abazov et al. ͑DØ Collaboration͒ Search for radiative b-hadron decays in pp¯ collisions at ͱsϭ1.8 TeV (19 pages) ....................... 112002 D. Acosta et al. ͑CDF Collaboration͒ Effects of new physics in neutrino oscillations in matter (7 pages) ................................... 113001 Mario Campanelli and Andrea Romanino Prompt TeV-PeV atmospheric neutrino window (5 pages) ........................................... 113002 C. G. S. Costa, F. Halzen, and C. Salles Lepton masses from a TeV scale in a 3-3-1 model (6 pages) ........................................ 113003 J. C. Montero, C. A. de S. Pires, and V. Pleitez Unified description of quark and lepton mass matrices in a universal seesaw model (7 pages) ............. 113004 Yoshio Koide and Hideo Fusaoka Solar neutrinos: Global analysis with day and night spectra from SNO (10 pages) .....................
    [Show full text]
  • Family Gauge Boson Production at The
    Physics Letters B 750 (2015) 384–389 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Family gauge boson production at the LHC ∗ Yoshio Koide a, Masato Yamanaka b, , Hiroshi Yokoya c,d a Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan b Kobayashi–Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya 464-8602, Japan c Quantum Universe Center, KIAS, Seoul 130-722, Republic of Korea d Theory Center, KEK, Tsukuba 305-0801, Japan a r t i c l e i n f o a b s t r a c t Article history: Family gauge boson production at the LHC is investigated according to a U (3) family gauge model Received 23 July 2015 with twisted family number assignment. In the model we study, a family gauge boson with the Received in revised form 10 September 1 lowest mass, A , interacts only with the first generation leptons and the third generation quarks. (The 2015 1 − − − family numbers are assigned, for example, as (e , e , e ) = (e , μ , τ ) and (d , d , d ) = (b, d, s) [or Accepted 10 September 2015 1 2 3 1 2 3 (d , d , d ) = (b, s, d)].) In the model, the family gauge coupling constant is fixed by relating to the Available online 25 September 2015 1 2 3 Editor: J. Hisano electroweak gauge coupling constant. Thus measurements of production cross sections and branching ratios of A 1 clearly confirm or rule out the model. We calculate the cross sections of inclusive A 1 1 √ 1 ¯ ¯ 1 = production and bb (tt) associated A1 production at s 14 TeV and 100 TeV.
    [Show full text]
  • Title YITP Annual Report, Yukawa Institute for Theoretical Physics
    YITP annual report, Yukawa Institute for Theoretical Physics, Title Kyoto University 2007 Author(s) YITP annual report, Yukawa Institute for Theoretical Physics, Citation Kyoto University (2007), 2007 Issue Date 2007 URL http://hdl.handle.net/2433/77950 Right Type Others Textversion publisher Kyoto University YITP Annual Report Yukawa Institute For Theoretical Physics Kyoto University 2007 Foreword We present here an annual report of the scientific activities of Yukawa Institute for Theo- retical Physics during the academic year 2007. First of all it is our great pleasure to report the 2008 Nobel physics prize awarded to our former director, Toshihide Maskawa for his contribution to the theory of CP violation. This is the 2nd Nobel prize given to the affiliates of our Institution. We consider that the award exemplifies the high standard of research conducted at our Institute and we would like to maintain our tradition of excellence in research in the future. From the academic year 2007 we started our new project of “Yukawa International Pro- gram of Quark-Hadron Sciences (YIPQS)” funded by Japan Minsitry of Education, Culture and Sports. In this project we select a few research topics in each year and host long-term workshops extending over periods of a few months. We invite leading experts from the world in each topic and aim at fruitful collaboration among the workshop participants. In the year 2007, workshops in the area of the interface of cosmology and string theory, condensed mat- ter theory and also quark hadron physics were held. Our report contains some of the new developments initiated by these workshops.
    [Show full text]
  • Universal Texture of Quark and Lepton Mass Matrices and a Discrete Symmetry Z3
    PHYSICAL REVIEW D 66, 093006 ͑2002͒ Universal texture of quark and lepton mass matrices and a discrete symmetry Z3 Yoshio Koide* Department of Physics, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan Hiroyuki Nishiura Department of General Education, Junior College of Osaka Institute of Technology, Asahi-ku, Osaka, 535-8585, Japan Koichi Matsuda, Tatsuru Kikuchi, and Takeshi Fukuyama Department of Physics, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan ͑Received 27 September 2002; published 19 November 2002͒ Recent neutrino data have been favorable to a nearly bimaximal mixing, which suggests a simple form of the neutrino mass matrix. Stimulated by this matrix form, the possibility that all the mass matrices of quarks and leptons have the same form as in neutrinos is investigated. The mass matrix form is constrained by a discrete symmetry Z3 and a permutation symmetry S2. The model, of course, leads to a nearly bimaximal mixing for the lepton sectors, while, for the quark sectors, it can lead to reasonable values of the CKM mixing matrix and masses. DOI: 10.1103/PhysRevD.66.093006 PACS number͑s͒: 12.15.Ff, 11.30.Hv, 14.60.Pq I. INTRODUCTION for the neutrino mass matrix in Refs. ͓2–7͔, using the basis where the charged-lepton mass matrix is diagonal, motivated Recent neutrino oscillation experiments ͓1͔ have highly by the experimental finding of maximal ␯␮Ϫ␯␶ mixing ͓1͔. 2 ␪ ϳ 2 ␪ suggested a nearly bimaximal mixing (sin 2 12 1,sin 2 23 In this paper, we consider that this structure is fundamental Ӎ ϵ⌬ 2 ⌬ 2 ϳ Ϫ2 1) together with a small ratio R m12/ m23 10 .
    [Show full text]
  • Arxiv:2007.05878V3 [Hep-Ph] 4 May 2021
    A modified version of the Koide formula from flavor nonets in a scalar potential model and in a Yukawaon model Zhengchen Lianga, b, *, Zheng Suna, † aCollege of Physics, Sichuan University, Chengdu 610064, P. R. China bDepartment of Physics, Tsinghua University, Beijing 100084, P. R. China E-mail: *[email protected], †sun [email protected] Abstract We present a modified version of the Koide formula from a scalar potential model or from a Yukawaon model, based on scalar fields set up in a nonet representation of the SU(3) flavor symmetry in the Standard Model. The Koide's character, which involves the Standard Model fermion mass ratios, is derived from the vacuum expectation value of the nonet field in either model. The scalar potential in the scalar potential model or the superpotential in the Yukawaon model is constructed with all terms invariant under symmetries. The resulting Koide's character, which is modified by two effective parameters, can fit the experimental mass data of charged leptons, up quarks and down quarks. It offers a natural interpretation of the Standard Model fermion mass spectrum. 1 Introduction Patterns of the Standard Model (SM) fermion masses may suggest undiscovered new physics in the SM Yukawa sector. Among various approaches to interpret the SM fermion mass spectrum, the Koide formula [1, 2, 3] m + m + m 2 K = e µ τ = (1) p p p 2 me + mµ + mτ 3 exhibits a great consistency with the current experimental data [4, 5, 6]. From the data of charged lepton masses 2 me = 0:5109989461 ± 0:0000000031 MeV=c ; (2) 2 arXiv:2007.05878v4 [hep-ph] 25 Sep 2021 mµ = 105:6583745 ± 0:0000024 MeV=c ; (3) 2 mτ = 1776:86 ± 0:12 MeV=c ; (4) with their 1-σ errors, the Koide's character K is calculated to be 2 K = 0:6666605 ± 0:0000068 = × (0:999991 ± 0:000010); (5) 3 which agrees with Eq.
    [Show full text]