Cultural Use & Functional Properties of Ancient Grains

Total Page:16

File Type:pdf, Size:1020Kb

Cultural Use & Functional Properties of Ancient Grains Cultural Use & Functional Properties of Ancient Grains: What it Means for New Product Applications MELANIE GOULSON, MSC GENERAL MANAGER & PRINCIPAL SCIENTIST, MERLIN DEVELOPMENT ADJUNCT PROFESSOR, ST. CATHERINE UNIVERSITY March 27-28, 2018 Ancient Grains . Some cultivated for 8,000+ years . Unchanged . Chia, quinoa, amaranth, teff . Buckwheat, farro, kamut, spelt, millet, einkorn, emmer . Cereal grains and pseudo-cereals . Nutrient dense . Some are gluten-free Agenda . Plants and seed . Traditional foods . Modern applications . Unique physicochemical properties . Potential opportunities Chia photo Chia . Salvia hispanica in the mint family . Native to Southern Mexico and Guatemala . Green bushy plant 4ft tall . Tiny gray, black, and white seeds . Aztec and Mayan food . Gluten-free Iskiate . Traditional chia seed energy drink . Chia seeds, lemon, and water . Tarahumara tribe in NW Mexico . Famous for their runners . “Born to Run” by C. McDougall source Chia Fresca . Popular drink in Mexico and Central America . Water and juice (agua fresca) with chia seeds photo Commercial Chia Products . Chia Pudding Cups, Pots, Pods . Juice drinks . Bars . Cereal and Granola . Tortillas and Wraps . Yogurt photo Chia Seed Gel . High mw, non-starch polysaccharide . Microgel particles . Weak gel, shear-thinning viscosity . Stable viscosity . heat up to 80◦C . pH 2-12 . ionic strength 0.01-0.5 M NaCl Source: Goh, K.K.T. et al., Carbohydrate Polymers (Sept, 2016) photo Effect of pH and shear on viscosity of 0.4% (w/w) chia mucilage at 20◦C (Goh 2016) Source: Goh, K.K.T. et al, Carbohydrate Polymers (Sept, 2016) Chia Opportunities . Stabilizer and emulsifier in ice cream (Campos 2016) . Gluten free fresh pasta (Menga 2017) . Reduced staling in bread (Iglesias-Puig 2013) . Emulsion stability (Capitani 2016) photo Quinoa photo Quinoa . Chenopodium quinoa in the amaranth family . Native to Andes Mountains in South America . Broadleaf plant grows up to 9 ft tall . White, red, and black seeds . Staple food of the Incas . Gluten-free . Saponins photo Peruvian Quinoa Stew . Hearty stew made with quinoa, broth, veggies . Quinoa starch thickens photo Popped Quinoa & Amaranth . Whole seeds may be popped . Breakfast cereal, snacks, bars in Peru . Amaranth (Kiwicha) . Alegría in Mexico . Luddos in India Commercial Quinoa Products . Side Dishes . Chips . Crackers . Puffed Snacks . Bars . Bread . Hot Cereal . Juice Drinks photo RVA Viscosity Regimen 95◦C 50◦C 50◦C Source: Araujo-Farro et al, 2nd Mercosur Congress on Chemical Engineering (Dec 2014) RVA Viscosity Profile of Various Native Starches at 0.4% w/w Source: Araujo-Farro et al, 2nd Mercosur Congress on Chemical Engineering (Dec 2014) RVA Viscosity Profile of Various Native Starches at 0.4% w/w Source: Araujo-Farro et al, 2nd Mercosur Congress on Chemical Engineering (Dec 2014) Addition of Andean Grains to Extruded Corn Snacks • Smaller pore structures with increasing use level • Increased crunchiness, reduced crispiness Source: Diaz et al Food Science and Technology (2015) Teff Teff . Eragrostis tef from the poaecea grass family . Cereal grain . Native to Ethiopia and Eritrea . Tufted grass, shallow root system . Tiny brown, black, white seeds . Mild, nutty flavor . Gluten-free photo Injera . Sourdough flatbread . Teff flour + water fermented . Thick batter steam-baked on a mitad . Large, flat, porous, spongy pancake . Base for other food photos Teff Commercial Products . Flatbread, wraps . Crackers . Pasta . Bread . Baking Mixes ). Teff Flour Fermentation - Yeast and Lactic Acid Unfermented Fermented Bacteria Susceptibility to 4.35 ± 0.43 1.66 ± 0.18 amylase (g ∗ ∗ - pH 6.25 -> 4.1 produces a released sourdough glucose/100 g starch) - Reduces phytic acid Pasting 72.3 ± 0.3 76.1 ± 0.1 content temperature ∗ ∗ (°C) - Removes sugars, converts Peak viscosity 212 ± 2 246 ± 3 insoluble to soluble fiber (BU) ∗ ∗ - Changes starch properties Breakdown 38 ± 2 70 ± 4 (BU) ∗ ∗ Setback (BU) 374.5 ± 0.5 365 ± 13 Sources: Marti et al Food Science & Technology (May 2017); Longoria-Garcia et al Journal of Food Sciene & Technology (Feb 2018) Performance of Fermented Teff (25%) In Gluten-Free Bread Application Corn Based GF Control 25% Unfermented Teff 25% Fermented Teff . Fermented teff increase loaf volume . Teff darkened crumb color . Teff increased initial crumb firmness, fermented less so . Teff flours had lower staling rate in storage Source: Marti et al Food Science & Technology (May 2017) Teff Opportunities . Teff research . Starch and protein characterization, varieties . Effects of processing . Fermentation . Wraps, flatbreads, cookies, snacks .GF or mainstream positioning . Probiotic benefits of sourdough photo Conclusion All evidence suggests popularity of ancient grains will endure . Nutrition . Food Trends – National Restaurant Assoc. 2018 . New Product Launches . Academic Research Topics Cues from traditional uses suggest where to look for unique functionality and applications Source: www.restaurant.org Thank You! Melanie Goulson [email protected] References Araujo-Farro, P.C., do Amaral, J.P., Menegalli, F.C., Dec 2014. Comparison of starch pasting and retrogradation properties of quinoa (Chenopodium quinoa willd), rice, potato, cassava, wheat, and corn starches. 2nd Mercosur Congress on Chemical Engineering. Campos, B.E., Ruivo, T.D., Scapim, M.R.S., Madrona, G.S., Bergamasco, R.C. Jan 2016. Optimization of the mucilage extraction process from chia seeds and application in ice cream as a stabilizer and emulsifier. Food Science and Technology, 65, 874-883. Capitani, M.I., Nolasco, S.M., Tomas, M.C. Jun 2016. Stability of oil-in-water (O/W) emulsions with chia (Salvia hispanica L.) mucilage. Centro di Investigacion y Desorrallo en Criotechnologia de Alimentos. Diza, J.M.R., Suuronen, J.P., Deegan, K.C., Serimaa, R., Tuorila, H., Jouppila, K. July 2015. Physical and sensory characteristics of corn-based extruded snacks containing amaranth, quinoa, and kaniwa flour. Food Science and Technology, 64, 1047-1056. Goh, K.K.T., Matia-Merino, L., Chiang, J.H., Quek, R., Soh, S.J.B., Lentle, R.G. Sep 2016. The physico-chemical properties of chia seed polysaccharide and its microgel dispersion rheology. Carbohydrate Polymers, 149 (20), 297-307. Iglesias-Puig, E., Haros, M. Dec 2013. Evaluation of performance of dough and bread incorporating chia (Salvia hispanica L.). European Food Research and Technology, 237 (6), 865-874. Longoria-Garcia, S., Cruz-Hernandez, M.A., Florez-Vastegui M.I.M., Belmares, R. Feb 2018. Potential Functional Bakery Products as Delivery Systems for Pre and Probiotic Health Enhancers. Journal of Foods Science & Technology –Mysore (55) 3. Marti, A., Marengo, M., Bonomi, F., Casiraghil, M.C., Franzetti, L., Ambrogina, M., Stefanialametti, P. May 2016. Molecular features of fermented teff flour relate to its suitability for the production of enriched gluten-free bread. Food Science & Technology, 78, 296-301. Menga, V., Amato, M., Phillips, T., Angelino, D., Morreale, F., Fares, C. Apr 2017. Gluten-free pasta incorporating chia (Salvia hispanica L.) as a thickening agent: An approach to naturally improve the nutritional profile and the in vitro carbohydrate digestibility. Food Chemistry, 221, 1954-1961. Thank You! March 28-29, 2017.
Recommended publications
  • Downloaded on 12 March 2021, Was Applied to Evaluate the Extent of Species Other Than Chia in RNA-Seq Assemblies
    plants Article Proteomic Identification and Meta-Analysis in Salvia hispanica RNA-Seq de novo Assemblies Ashwil Klein 1 , Lizex H. H. Husselmann 1 , Achmat Williams 1, Liam Bell 2 , Bret Cooper 3 , Brent Ragar 4 and David L. Tabb 1,5,6,* 1 Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; [email protected] (A.K.); [email protected] (L.H.H.H.); [email protected] (A.W.) 2 Centre for Proteomic and Genomic Research, Cape Town 7925, South Africa; [email protected] 3 USDA Agricultural Research Service, Beltsville, MD 20705, USA; [email protected] 4 Departments of Internal Medicine and Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02150, USA; [email protected] 5 Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa 6 Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch 7602, South Africa * Correspondence: [email protected]; Tel.: +27-82-431-2839 Abstract: While proteomics has demonstrated its value for model organisms and for organisms with mature genome sequence annotations, proteomics has been of less value in nonmodel organisms that are unaccompanied by genome sequence annotations. This project sought to determine the value of RNA-Seq experiments as a basis for establishing a set of protein sequences to represent a nonmodel organism, in this case, the pseudocereal chia. Assembling four publicly available chia RNA-Seq datasets produced transcript sequence sets with a high BUSCO completeness, though the Citation: Klein, A.; Husselmann, number of transcript sequences and Trinity “genes” varied considerably among them.
    [Show full text]
  • Seed Dormancy and Preharvest Sprouting in Quinoa (Chenopodium Quinoa Willd)
    plants Review Seed Dormancy and Preharvest Sprouting in Quinoa (Chenopodium quinoa Willd) Emma M. McGinty 1, Kevin M. Murphy 2 and Amber L. Hauvermale 2,* 1 The School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, WA 99164, USA; [email protected] 2 Department of Crop and Soil Science, Washington State University, Pullman, WA 99164, USA; [email protected] * Correspondence: [email protected]; Tel.:+1-509-335-3661 Abstract: Quinoa (Chenopodium quinoa Willd.) is a culturally significant staple food source that has been grown for thousands of years in South America. Due to its natural drought and salinity tolerance, quinoa has emerged as an agronomically important crop for production in marginal soils, in highly variable climates, and as part of diverse crop rotations. Primary areas of quinoa research have focused on improving resistance to abiotic stresses and disease, improving yields, and increasing nutrition. However, an evolving issue impacting quinoa seed end-use quality is preharvest sprouting (PHS), which is when seeds with little to no dormancy experience a rain event prior to harvest and sprout on the panicle. Far less is understood about the mechanisms that regulate quinoa seed dormancy and seed viability. This review will cover topics including seed dormancy, orthodox and unorthodox dormancy programs, desiccation sensitivity, environmental and hormonal mechanisms that regulate seed dormancy, and breeding and non-breeding strategies for enhancing resistance to PHS in quinoa. Citation: McGinty, E.M.; Murphy, Keywords: abscisic acid; desiccation sensitivity; gibberellin; hormone signaling; precocious germina- K.M.; Hauvermale, A.L. Seed tion; seed morphology Dormancy and Preharvest Sprouting in Quinoa (Chenopodium quinoa Willd).
    [Show full text]
  • Development of New Starch Formulations for Inclusion in the Dietotherapeutic Treatment of Glycogen Storage Disease †
    Proceedings Development of New Starch Formulations for Inclusion in the Dietotherapeutic Treatment of Glycogen Storage Disease † Raquel Selma-Gracia 1,2, José Moisés Laparra Llopis 2 and Claudia Monika Haros 1,* 1 Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Av. Agustín Escardino 7, Parque Científico, 46980 Paterna, Valencia, Spain; [email protected] 2 Molecular Immunonutrition Group, Madrid Institute for Advanced Studies in Food (IMDEA-Food), Ctra. de Canto Blanco n° 8, 28049 Madrid, Spain; [email protected] * Correspondence: [email protected] † Presented at the 2nd International Conference of Ia ValSe-Food Network, Lisbon, Portugal, 21–22 October 2019. Published: 4 August 2020 Abstract: In this study, the thermal properties of quinoa and maize starch were evaluated and related to their digestibility. Lower gelatinisation and retrogradation parameters were obtained in quinoa starch, suggesting a better susceptibility to the disruption of the crystalline structure. These results were accompanied with a higher percentage of hydrolysis in raw quinoa, reaching more twofold higher than in raw maize starch. Besides, the slopes calculated by a Lineweaver-Bürke transformation showed similar values in raw quinoa and maize starches. Taken together, these characteristics of quinoa starch could provide more digestible benefits than the current treatment, raw maize starch, in glycogen storage disease patients. Keywords: maize starch; quinoa starch; thermal properties; starch hydrolysis; glycogen storage disease 1. Introduction Previous research has shown variability in the susceptibility to digestion depending on structural differences in starches from different sources [1]. A crystalline structure is an important factor to take into account in digestibility, and can be modified by a gelatinisation process [2].
    [Show full text]
  • Comparative Transcriptome Analysis of Cultivated and Wild Seeds of Salvia
    www.nature.com/scientificreports OPEN Comparative transcriptome analysis of cultivated and wild seeds of Salvia hispanica (chia) Received: 17 October 2018 Pablo Peláez1, Domancar Orona-Tamayo2,4, Salvador Montes-Hernández3, Accepted: 17 May 2019 María Elena Valverde2, Octavio Paredes-López2 & Angélica Cibrián-Jaramillo 1 Published: xx xx xxxx Salvia hispanica (chia) constituted an important crop for pre-Columbian civilizations and is considered a superfood for its rich content of essential fatty acids and proteins. In this study, we performed the frst comprehensive comparative transcriptome analysis between seeds from cultivated varieties and from accessions collected from native wild populations in Mexico. From the 69,873 annotated transcripts assembled de novo, enriched functional categories and pathways revealed that the lipid metabolism was one of the most activated processes. Expression changes were detected among wild and cultivated groups and among growth conditions in transcripts responsible for triacylglycerol and fatty acid synthesis and degradation. We also quantifed storage protein fractions that revealed variation concerning nutraceutical proteins such as albumin and glutelin. Genetic diversity estimated with 23,641 single nucleotide polymorphisms (SNPs) revealed that most of the variation remains in the wild populations, and that a wild-type cultivated variety is genetically related to wild accessions. Additionally, we reported 202 simple sequence repeat (SSRs) markers useful for population genetic studies. Overall, we provided transcript variation that can be used for breeding programs to further develop chia varieties with enhanced nutraceutical traits and tools to explore the genetic diversity and history of this rediscovered plant. Mesoamerica is considered one of the most important centers of plant domestication1.
    [Show full text]
  • Chia Allergens
    24 CHATHAM PLACE, BRIGHTON, BN1 3TN (UK) TEL. (UK) 0845 310 8066 International Tel. +44 1273 746505 EMAIL: [email protected] Web Site: www.nhrorganicoils.com Allergens Declaration Organic Chia Seed Oil (Salvia hispanica) Produktname / name of product: Chiaöl kaltgepresst, kbA / Chia Oil Cold Pressed, Organic Verwendung allergener Zutaten gemäß EU-Einstufung / Ingredients with potential allergens in accordance with EU evtl. Kreuz- Allergene / Rezeptur / kontamination / Erläuterung / recipe possible cross- allergens contamination explanation Glutenhaltiges Getreide (Weizen, Roggen, present in the manufacturing location Gerste, Hafer, Dinkel, Kamut oder Due to Allergen Management System there is no critical level Hybridstämme / no yes of this allergen in the product but very small traces cannot be Cereals containing gluten (wheat, rye, barley, oat, excluded. We confirm that the product doesn´t have to be spelt, kamut or hybrids) labeled according current defined action level. Krebstiere und -erzeugnisse, Muscheln / no no Crustaceans and products thereof, mussels Eier und -erzeugnisse / no no Eggs and products thereof Fisch und -erzeugnisse / no no Fish and products thereof Erdnüsse und -erzeugnisse / no no Peanuts and products thereof Soja und -erzeugnisse / no no Soy and products thereof Milch und -erzeugnisse (inkl. Laktose) / no no Milk and products thereof (including lactose) Schalenfrüchte und daraus hergestellte Produkte (Mandel-, Hasel-, Wal-, Cashew-, present in the manufacturing location Pecan-, Para-, Macadamia-, Queenslandnuss, Due to Allergen Management System there is no critical level Pistazie) / no yes of this allergen in the product but very small traces cannot be Nuts and products thereof (almonds, hazelnuts, excluded. We confirm that the product doesn´t have to be walnuts, cashews, pecan nuts, Brazil nuts, labeled according current defined action level.
    [Show full text]
  • Cherry, Wild Rice & Quinoa Salad
    Cherry, Wild Rice & Quinoa Salad Recipe Source: www.eatingwell.com Servings: 3 Ingredients: ¾ cup wild rice ½ cup quinoa, rinsed and drained ¼ cup olive oil ¼ cup fruity vinegar, such as raspberry or pomegranate ¾ tsp salt ¼ tsp freshly ground black pepper 2 cups halved pitted sweet fresh cherries 2 stalks celery, diced ¾ cup diced aged goat cheese, smoked cheddar, or other smoked cheese ½ cup chopped pecans, toasted Steps: . Bring a large saucepan of water to a boil over high heat. Add wild rice and cook for 30 minutes. Add quinoa and cook until the rice and quinoa are tender, about 15 minutes more. Drain and rinse with cold water until cool to the touch. Drain well. Meanwhile, whisk oil, vinegar, salt and pepper in a large bowl. Add the rice and quinoa, cherries, celery, cheese, and pecans. Toss to combine. Serve at room temperature or cold. Tips from the Test Kitchen: Can be covered and refrigerated ahead of time. To save time pitting cherries, try a hand-held cherry pitter or use the tip of a paring knife or vegetable peeler. If cherries aren’t in season, apples are fantastic in this salad as well, or you can substitute 1 cup dried cranberries. Use reduced-fat cheese. If you don’t have a fruity vinegar, balsamic can be substituted. Nutritional Facts (Per Serving): Calories: 590, Carbohydrates: 50 grams, Protein:13 grams, Total Fat: 40 grams, Saturated Fat: 8 grams, Cholesterol: 35 mg, Sodium: 728 mg, Fiber: 8 grams, Total Sugars: 18 grams. .
    [Show full text]
  • Salvia Hispanica L.)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC 1 EVALUATION OF PERFORMANCE OF DOUGH AND BREAD 2 INCORPORATING CHIA (Salvia hispanica L.) 3 4 Esther Iglesias-Puig and Monika Haros* 5 6 Cereal Group, Institute of Agrochemistry and Food Technology (IATA-CSIC), 7 Av. Agustín Escardino 7. Parque Científico, 46980 Paterna, Valencia, Spain 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 *Corresponding Author. Tel.: +34 96 390 00 22; Fax.: +34 96 363 63 01 25 e-mail: [email protected] (Monika Haros) 1 26 Abstract 27 28 As a result of the opinion given by the European Food Safety Authority about the safety 29 of Chia seed (Salvia hispanica L) and whole ground Chia seed as food ingredients, they 30 may be placed on the market in the European Community as novel food ingredients to 31 be used in bread products. The objective of the present investigation was to develop 32 new cereal-based products with increased nutritional quality by using chia and ground 33 chia seeds (whole chia flour, semi-defatted chia flour and low-fat chia flour) in order to 34 evaluate its potential as a bread-making ingredient. The samples with chia addition 35 significantly increased the levels of proteins, lipids, ash and dietary fibre in the final 36 product compared to the control sample. Breads with seeds or ground seeds showed 37 similar technological quality to the control bread, except for the increase in specific 38 bread volume, decrease in crumb firmness and change in crumb colour.
    [Show full text]
  • Eurostat Handbook for Annual Crop Statistics
    Annual crop statistics Handbook 2020 Edition TABLE OF CONTENTS Table of Contents .............................................................................................................................. 3 1. Introduction ................................................................................................................................... 5 1.1 Changes from previous versions ............................................................................................. 6 1.1.1 Changes in classification .................................................................................................. 6 2. Methodology ................................................................................................................................. 9 2.1 Definitions and concepts ........................................................................................................... 9 2.1.1 Area ...................................................................................................................................... 9 2.1.2 Production ......................................................................................................................... 13 2.1.3 Humidity degree ............................................................................................................... 13 2.1.4 Yield ................................................................................................................................... 16 2.2 Units of measurement ............................................................................................................
    [Show full text]
  • Quinoa Industry Development in China
    International Quinoa Conference 2016: Quinoa for Future Food and Nutrition Security in Marginal Environments Dubai, 6-8 December 2016 www.quinoaconference.com Quinoa Industry Development in China By: REN Gui-xing Institute of Crop Science (ICS), Chinese Academy of Agricultural Sciences (CAAS) Presenter email: [email protected] Contents 1 Quinoa cultivation and breeding in China 2 Quinoa product and market in China 3 Opportunity and challenge for quinoa Brief introduction of ICS 4 research departments, 357 staff 3 academicians, 95 professors 1600 papers (SCI), 300 books 240 certified varieties, 290 issued patents The 2nd biggest genebank, with more than 400 000 germplasm Brief introduction of ICS The Crop Science Society of China (CSSC) belongs to ICS 19 committees belong to the society Quinoa Committee of the CSSC was founded in 2015 Brief introduction of ICS International cooperation project for quinoa between ICS and UNALM: China-Peru Joint Research and Demonstration of Quinoa Processing Technology Visit Dr. Luz Rayda Gomez Pando and Dr. Ritva Ann-Mari Repo-Carrasco Va of UNALM in Peru, 2015 Brief introduction of ICS Team achievements: 1st industrial standard for quinoa in China 1st translated book for quinoa in Chinese 9 papers (3 SCI indexed), 3 patents Yao, Yang, Shi et al. Anti-inflammatory activity of saponins from quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 macrophages cells. J. Food Sci. 2014, 79: 1018-1023. Yao, Shi, Ren. Antioxidant and immunoregulatory activity of polysaccharides from quinoa (Chenopodium quinoa Willd.). Int. J. Mol. Sci. 2014, 15, 19307-19318 Yao, Zhu, Gao, et al. Suppressive effects of saponin-enriched extracts from quinoa on 3T3-L1 adipocyte differentiation.
    [Show full text]
  • Gluten-Free Grains
    Gluten-Free Grains Amaranth Updated February 2021 Buckwheat The gluten-free diet requires total avoidance of the grains wheat, barley, rye and all varieties and hybrids of these grains, such as spelt. However, there are many wonderful gluten-free grains* to enjoy. Cornmeal, Amaranth Polenta, Grits, Once the sacred food of the Aztecs, amaranth is high in protein, calcium, iron, and fiber. Toasting this tiny grain before cooking brings out its nutty flavor. Hominy Makes a delicious, creamy hot breakfast cereal. Serve with fruit of choice on top and/or a touch of maple syrup. Millet Rice Rice comes in many varieties: short grain, long grain, jasmine and basmati to name a Oats few. Long grain rice tends to be fluffier while short grain rice is stickier. Rice also comes in various colors: black, purple, brown, and red. These colorful un-refined rices contribute more nutritional benefits than does refined white rice and have subtly unique flavors and Quinoa textures too. Wild rice is another different and delicious option. Versatile rice leftovers can go in many directions. Add to salads or sautéed vegetables; Rice make rice pancakes or rice pudding; season and use as filling for baked green peppers or winter squash. Sorghum Buckwheat Despite the name, buckwheat is a gluten-free member of the rhubarb family. Roasted buckwheat is called kasha. Buckwheat is high in B Vitamins, fiber, iron, magnesium, Teff phosphorous and zinc. Buckwheat has an earthy, nutty, slightly bitter taste. Experiment with using the cooked grain (buckwheat “groats”, or “kasha” which is the toasted version) as you would rice.
    [Show full text]
  • Alkaline Foods...Acidic Foods
    ...ALKALINE FOODS... ...ACIDIC FOODS... ALKALIZING ACIDIFYING VEGETABLES VEGETABLES Alfalfa Corn Barley Grass Lentils Beets Olives Beet Greens Winter Squash Broccoli Cabbage ACIDIFYING Carrot FRUITS Cauliflower Blueberries Celery Canned or Glazed Fruits Chard Greens Cranberries Chlorella Currants Collard Greens Plums** Cucumber Prunes** Dandelions Dulce ACIDIFYING Edible Flowers GRAINS, GRAIN PRODUCTS Eggplant Amaranth Fermented Veggies Barley Garlic Bran, wheat Green Beans Bran, oat Green Peas Corn Kale Cornstarch Kohlrabi Hemp Seed Flour Lettuce Kamut Mushrooms Oats (rolled) Mustard Greens Oatmeal Nightshade Veggies Quinoa Onions Rice (all) Parsnips (high glycemic) Rice Cakes Peas Rye Peppers Spelt Pumpkin Wheat Radishes Wheat Germ Rutabaga Noodles Sea Veggies Macaroni Spinach, green Spaghetti Spirulina Bread Sprouts Crackers, soda Sweet Potatoes Flour, white Tomatoes Flour, wheat Watercress Wheat Grass ACIDIFYING Wild Greens BEANS & LEGUMES Black Beans ALKALIZING Chick Peas ORIENTAL VEGETABLES Green Peas Maitake Kidney Beans Daikon Lentils Dandelion Root Pinto Beans Shitake Red Beans Kombu Soy Beans Reishi Soy Milk Nori White Beans Umeboshi Rice Milk Wakame Almond Milk ALKALIZING ACIDIFYING FRUITS DAIRY Apple Butter Apricot Cheese Avocado Cheese, Processed Banana (high glycemic) Ice Cream Berries Ice Milk Blackberries Cantaloupe ACIDIFYING Cherries, sour NUTS & BUTTERS Coconut, fresh Cashews Currants Legumes Dates, dried Peanuts Figs, dried Peanut Butter Grapes Pecans Grapefruit Tahini Honeydew Melon Walnuts Lemon Lime ACIDIFYING Muskmelons
    [Show full text]
  • (Salvia Hispanica L.) Seeds
    Imran et al. Lipids in Health and Disease (2016) 15:162 DOI 10.1186/s12944-016-0329-x RESEARCH Open Access Fatty acids characterization, oxidative perspectives and consumer acceptability of oil extracted from pre-treated chia (Salvia hispanica L.) seeds Muhammad Imran1*, Muhammad Nadeem2, Muhammad Faisal Manzoor3, Amna Javed3, Zafar Ali3, Muhammad Nadeem Akhtar4, Muhammad Ali3 and Yasir Hussain3 Abstract Background: Chia (Salvia hispanica L.) seeds have been described as a good source of lipids, protein, dietary fiber, polyphenolic compounds and omega-3 polyunsaturated fatty acids. The consumption of chia seed oil helps to improve biological markers related to metabolic syndrome diseases. The oil yield and fatty acids composition of chia oil is affected by several factors such as pre-treatment method and size reduction practices. Therefore, the main mandate of present investigate was to study the effect of different seed pre-treatments on yield, fatty acids composition and sensory acceptability of chia oil at different storage intervals and conditions. Methods: Raw chia seeds were characterized for proximate composition. Raw chia seeds after milling were passed through sieves to obtain different particle size fractions (coarse, seed particle size ≥ 10 mm; medium, seed particle size ≥ 5 mm; fine, seed particle size ≤ 5 mm). Heat pre-treatment of chia seeds included the water boiling (100 C°, 5 min), microwave roasting (900 W, 2450 MHz, 2.5 min), oven drying (105 ± 5 °C, 1 h) and autoclaving (121 °C, 15 lbs, 15 min) process. Extracted oil from pre-treated chia seeds were stored in Tin cans at 25 ± 2 °C and 4 ± 1 °C for 60–days and examined for physical (color, melting point, refractive index), oxidative (iodine value, peroxide value, free fatty acids), fatty acids (palmitic, stearic, oleic, linoleic, α-linolenic) composition and sensory (appearance, flavor, overall acceptability) parameters, respectively.
    [Show full text]