The Spectrum Policy Dictionary Spectrum Primer Series

Total Page:16

File Type:pdf, Size:1020Kb

The Spectrum Policy Dictionary Spectrum Primer Series The spectrum policy dictionary Spectrum primer series Produced February 2017 Introduction to the primer series The spectrum policy dictionary Intro These handbooks provide a general introduction to mobile spectrum, how it is managed and the challenge posed by rapidly growing data usage. They have been designed for readers who don’t have a technical background in the subject. While this is only a very brief introduction to the subject, these handbooks ductionshould hopefully provide a useful overview. to Prime Series Intro The titles in this series are: Introducing radio spectrum; Introducing spectrum management; and duction The spectrum policy dictionary. to Prime SeriesThe spectrum policy dictionary 55 1G The first generation of ‘cellular’ mobile phone systems used in the late 1970s until the early 1990s. These analogue-based systems were replaced by 2G digital mobile systems — most notably GSM. Examples include Advanced Mobile Phone System (AMPS), Nordic Telecommunication System (NMTS) and Total Access Communications (TACS). 2G The second generation of ‘cellular’ mobile phone systems which appeared in the 1990s were the first to employ digital coding. The vast majority of 2G mobile networks around the world use GSM technology. However, there are other 2G systems including D-AMPs, PDC, iDEN and most notably cdmaOne which continues to be used by some operators around the world. 2.5G (See GPRS) 2.75G (See GPRS) 3G The third generation of ‘cellular’ mobile phone systems were the first to be designed from the outset to support high speed data services as well as voice. The most dominant system used is WCDMA which was deployed by the operators which previously used GSM. However, other systems are used including CDMA2000 (largely by operators that previously used cdmaOne) and the Chinese system TD-SCDMA. 66 The spectrum policy dictionary 3.5G (See GPRS) 3GPP (3G Partnership Project) The body which defines the standards for GSM (2G), WCDMA (3G), and LTE (4G) technologies. 3GPP2 (3G Partnership Project) The body which defines the standards for cdmaOne (2G) and CDMA2000 technologies (3G) that are sometimes referred to as the ‘CDMA family’. 4G The fourth generation of ‘cellular’ mobile phone technologies that support higher data rates through wider channel bandwidths and the use of Orthogonal Frequency Division Multiplexing which delivers higher spectrum efficiency. The vast majority of networks use the LTE (Long Term Evolution) system which is the fastest growing mobile technology in history although a small number use a similar but incompatible system called WiMAX. Use of the term 4G to describe LTE and WiMAX networks is sometimes controversial but the ITU decided it was an acceptable marketing term for the technologies as they present a significant advance on its IMT2000 criteria. However, the term may also be used to describe technologies which meet the ITU’s criteria for IMT-Advanced (see IMTAdvanced). 5G Next generation network architecture that could dramatically improve the delivery of services and support a variety of new applications. The mobile industry, wider telecommunication industry, academic institutions and national governments are currently defining requirements and investigating what technologies could be used in 5G networks. The speed and reach of 5G services will be heavily dependent on access to the right amount and type of spectrum. The spectrum policy dictionary 77 AA 88 The spectrum policy dictionary Administered Incentive Pricing (AIP) A model for setting fee levels for spectrum. It is based on the regulator’s estimate of the value of the spectrum rather than directly by the market, as in an auction. Administrative approach Sometimes known as ‘command and control’ this is the traditional regulatory approach whereby a regulator has overall control and chooses who should be assigned spectrum, often through a beauty contest where several companies outline their proposed service and the regulator chooses the one with the greatest socioeconomic benefit. This allows the regulator to protect spectrum for non-revenue making public interest services like the police, but decisions are subjective and can fail to ensure spectrum is used efficiently. Administrative Incentive Pricing (AIP) The concept where a fee is levied on the users (e.g. mobile operators) in order to incentivise them to only use the spectrum they need, and therefore freeing spectrum up for other services. AIP uses the opportunity cost method of valuation (see opportunity cost). Advanced Wireless Services (AWS) A collective term used to describe a number of different spectrum bands. The most well- known one is the 1710-1755 MHz and 2110-2155 MHz spectrum range — the former is used as the uplink and the latter for downlink traffic. African Telecommunications Union (ATU) A continental organization fostering developments of information and communications technologies infrastructure and services in Africa. The organisation was founded in 1977 and took its present name in 1999. Aggregation risk The risk of failing to aggregate spectrum. Aggregation risk arises when a spectrum bidder needs to secure two spectrum bands to offer a particular service, but there is a risk they may only secure one which will fail to meet their need and therefore be worth less than they would otherwise have paid. The spectrum policy dictionary 99 Allocation (of a spectrum band) The services which may operate in a specific frequency band (e.g. mobile services or terrestrial TV broadcasting). This process is overseen by the ITU and reviewed at its World Radiocommunication Conference when a band may be reallocated to allow it to be used differently. This is sometimes confused with assignment which is the decision made by a national regulator to grant a band for use by a specific company (e.g. a specific mobile operator). The ITU designates allocations as ‘primary’ when the service has priority use of the band (this is co-primary where there are several services) or ‘secondary’ when the service may operate as long as it does not interfere with ‘primary’ services. Ancillary Ground Terrestrial Component (ATC) The ground based infrastructure of a mobile satellite system. It is used to improve coverage in areas where traditional satellites struggle, such as cities. Arab Spectrum Management Group (ASMG) An organisation whose task is to manage and coordinate all issues related to Spectrum Management, World Radiocommunications Conferences and other spectrum matters between the Arab States. Ascending clock auction (aka Japanese auction) Sometimes known as a ‘Japanese auction’, this is a method whereby the auctioneer begins at a low price and only the bidders willing to pay it proceed to the next round. The price is raised again and the process is repeated until only one bidder remains. 1010 The spectrum policy dictionary Asia-Pacific Telecommunity (APT) An intergovernmental organisation that operates in conjunction with telecom service providers, manufacturers of communications equipment, and research and development organisation active in the field of communication, information and innovation technologies. Assignment (of a spectrum band) The process of awarding spectrum to a particular user (e.g. a mobile operator). It is usual for the national regulator acting on behalf of the government to be responsible for the process of spectrum assignment. They use a number of techniques to allocate spectrum to particular users: auctions and beauty contests are the most common. Often the term is confused with ‘allocation’. Auction A method used by a regulator to assign a licence to a specific user (e.g. a mobile operator) allowing them to use a specific frequency band in a certain area, at certain times, for a specific period. There are numerous auction methods (see ascending clock auction, combinatorial clock auction, Dutch auction, English auction, sealed bid auction, simultaneous (ascending) multi-round auction). The spectrum policy dictionary 1111 BB 1212 The spectrum policy dictionary Band (Spectrum Band) A discrete block of spectrum that may be allocated for use by certain services (e.g. mobile services) and assigned by a national regulator to a specific user (e.g. a mobile operator). Base station (aka cell tower) A base station is a structure that contains radio equipment which is used to link mobile devices in a specific geographical area to a mobile operator’s network. A base station may provide coverage over a large area (several miles), just a few city blocks, or even a single location such as a train station or home (see heterogeneous network). Beauty contest The process whereby a regulator issues a spectrum licence after listening to all proposals and choosing the one which offers the greatest benefit. Benchmarking Benchmarking uses the results of similar auctions in other markets to estimate the expected value of a spectrum band. The main criticism of benchmarking is that it is difficult to obtain like-for-like comparisons as market conditions are seldom identical. It is one of the three methods of valuing spectrum – the others are ‘modelling’ and ‘opportunity cost’. The spectrum policy dictionary 1313 CC CDMA development Channel group (CDG) The amount of spectrum used for the transmission of a radio signal. For An international consortium of example, a 2G (GSM) channel is 200 kHz companies — service providers, wide, a 3G (WCDMA) channel is 5 MHz infrastructure manufacturers, device wide and a 4G (LTE) channel can be up to suppliers, test equipment vendors, 20 MHz wide. application
Recommended publications
  • Guidelines on Mobile Device Forensics
    NIST Special Publication 800-101 Revision 1 Guidelines on Mobile Device Forensics Rick Ayers Sam Brothers Wayne Jansen http://dx.doi.org/10.6028/NIST.SP.800-101r1 NIST Special Publication 800-101 Revision 1 Guidelines on Mobile Device Forensics Rick Ayers Software and Systems Division Information Technology Laboratory Sam Brothers U.S. Customs and Border Protection Department of Homeland Security Springfield, VA Wayne Jansen Booz-Allen-Hamilton McLean, VA http://dx.doi.org/10.6028/NIST.SP. 800-101r1 May 2014 U.S. Department of Commerce Penny Pritzker, Secretary National Institute of Standards and Technology Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director Authority This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal Information Security Management Act of 2002 (FISMA), 44 U.S.C. § 3541 et seq., Public Law (P.L.) 107-347. NIST is responsible for developing information security standards and guidelines, including minimum requirements for Federal information systems, but such standards and guidelines shall not apply to national security systems without the express approval of appropriate Federal officials exercising policy authority over such systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as analyzed in Circular A- 130, Appendix IV: Analysis of Key Sections. Supplemental information is provided in Circular A- 130, Appendix III, Security of Federal Automated Information Resources. Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on Federal agencies by the Secretary of Commerce under statutory authority.
    [Show full text]
  • ITU-R FAQ on the Digital Dividend and the Digital Switchover (DSO)
    INTERNATIONAL TELECOMMUNICATION UNION – RADIOCOMMUNICATION SECTOR ITU-R FAQ on the DIGITAL DIVIDEND and the DIGITAL SWITCHOVER A: DIGITAL DIVIDEND Question: What is the Digital Dividend? The digital dividend is the amount of spectrum made available by the transition of terrestrial television broadcasting from analogue to digital. Question: What makes the Digital Dividend possible? The Digital Dividend is made possible by the transition from analogue to digital TV broadcasting as a result of the improved spectrum efficiency provided by the new digital technologies: a) Digital video compression reduces the transmission size (bits) of the video signal. As a result, instead of one analogue TV programme several (typical four to twelve) digital programmes of equivalent quality can be broadcast in the same 6-, 7- or 8-MHz wide channel. b) Digital modulation (COFDM) minimizes the multipath interference effect (phenomena when the signal is received directly from the transmitter and as reflection from various objects). Consequently, the signal level required for good TV reception is significantly lower for digital, hence transmitter power is lower. Since the need to cope with multipath reception is reduced, this may also lead to a decrease in the number of broadcasting stations. c) The re-use distance is smaller, i.e. the same frequency or TV channel (for other programmes) can be used at locations that are closer to each other than in the analogue case. This reduction in the re-use distance is due to the fact that digital TV can operate at significantly lower protection ratios than analogue TV. d) The same frequency can be used by adjacent transmitters as long as the same broadcast content is transmitted, i.e.
    [Show full text]
  • Migration to 3G Technology Standards: Europe, Japan, South Korea, and the U.S. by Richard Nunno, International Bureau, FCC
    Migration to 3G Technology Standards: Europe, Japan, South Korea, and the U.S. By Richard Nunno, International Bureau, FCC Revised July 21, 2003 For over a decade, the International Telecommunication Union (ITU) has been supporting the international effort to develop an advanced third-generation (3G) mobile telecommunications service that has a higher bandwidth than previous and existing mobile services and that subscribers can seamlessly use across international borders (known as global roaming). To that end, the ITU has identified spectrum and developed technical standards for International Mobile Telecommunications 2000 (IMT-2000), the official name for 3G services. The ITU’s World Administrative Radiocommunication Conference (WARC) in 1992 and World Radiocommunication Conference (WRC) in 2000 identified several bands of spectrum that could be used for 3G services. The mobile telecommunications industry has started delivering 3G services that provide broadband applications including voice, data, and video. As defined by the ITU, 3G signal transmission rates must be able to reach 2 megabits per second (Mbps) or higher for indoor (low mobility) wireless applications (more than 35 times faster than today’s 56 kilobits per second (kbps) dial-up PC modems). 3G rates may be slower (384 kbps) for pedestrian traffic, and 144 kbps for high mobility (vehicular) traffic.1 How each country is implementing 3G systems depends on a number of factors, such as the country’s 3G spectrum allocations, the standards it adopts for 3G (if it adopts any standards vs. letting the marketplace make the decision), and the country’s current mobile telephony system configuration. Because a great deal of information and analysis is already available on the spectrum-related issues surrounding 3G implementation, this report focuses only on the technology standards issues pertaining to 3G.
    [Show full text]
  • Smart Devices and Services Connected by CDMA2000 WHITE PAPER WHITE
    Smart Devices and Services Connected by CDMA2000 WHITE PAPER WHITE This paper explores the application opportunities, technology requirements and business benefits arising from machine-to- machine (M2M) communication. Intelligent device networking is the next big thing in information technology. It will enable the transition from “dumb” products to smart products as portals into a whole new world of customer value-creation and “smart services.” CDMA-based wireless networks are at the forefront of this transformation. This paper is for the vast community of play- ers that make up the CDMA2000® M2M ecosystem. M2M solution providers, device suppliers, network operators, system integra- tors, thought leaders in various vertical markets, and investors will benefit from this exploration. Harbor Research, Inc. SAN FRANCISCO | LONDON Smart Devices and Services Connected by CDMA2000 White Paper Table of Contents • Executive Summary ...................................................................................................................... 2 • Introduction ..................................................................................................................................... 3 • Advantages of Using CDMA2000 Networks for M2M..................................................... 5 - Enhanced Security and Privacy ...................................................................................... 7 - Network Reliability .............................................................................................................
    [Show full text]
  • SPECTRUM for MOBILE Digital Dividend Status
    SPECTRUM FOR MOBILE Digital Dividend Status Peter Lyons, Head of Middle East and North Africa, Government & Regulatory Affairs, GSMA 11 APRIL 2013 17 MAY 2014 © GSMA 2014 GSMA OVERVIEW GSMA BY THE NUMBERS SPECTRUM FOR MOBILE © GSMA 2014 ENABLING A MOBILE FUTURE ACCELERATING MOBILE INNOVATION THROUGH GLOBAL INITIATIVES FUTURE COMMUNICATIONS CONNECTED LIVING Creating an enhanced mobile experience via Realising the potential of connected devices voice-over-IP, messaging and content- across many sectors to improve lives sharing applications MOBILE COMMERCE NETWORK APIs Enabling transactional services via Developing interfaces to fully exploit mobile contactless radio technology network capabilities MOBILE IDENTITY SPECTRUM Authenticating users securely Promoting effective spectrum policy and and conveniently delivery of mobile broadband SPECTRUM FOR MOBILE © GSMA 2014 BENEFITS OF THE DIGITAL DIVIDEND ATTRACTIVENESS OF THE SUB 1GHZ BANDS The benefits of sub-1GHz spectrum are crucial for high quality, cost effective mobile broadband deployment Cell radius Ideal for economically deploying mobile broadband over large areas - especially in rural areas <700MHz 700MHz Improved saturation in urban areas and better in- 800MHz building penetration improves quality of service 2100MHz 5800MHz The digital dividend means more 1GHz spectrum is being made available for mobile broadband services around the world SPECTRUM FOR MOBILE © GSMA 2014 THE DIGITAL DIVIDEND AS TELEVISION BROADCASTING MOVES TO DIGITAL, MORE CAN BE DONE WITH LESS SPECTRUM. Unique opportunity
    [Show full text]
  • CDMA2000—A World View
    CDMA2000—A world view Johan Langer and Gwenn Larsson The world’s first CDMA2000 networks were launched in Korea in October while maintaining the 1.25 MHz band- 2000, providing 144 kbit/s data rates to subscribing customers and deliv- width. Operators and manufactures soon re- ering nearly twice the voice capacity that operators experienced with their alized that there were inherent cost, back- cdmaOne (IS-95) systems. The success of the CDMA2000 1X system in ward compatibility and timing advantages Korea has encouraged many operators in the Americas and Asia to follow in keeping with the 1.25 MHz bandwidth for evolution. Thus, CDMA2000 3X has through with their plans to launch CDMA2000 this year. now been put on the wayside until market The authors outline some of the products and describe product advan- demands make it necessary to migrate to a tages that Ericsson CDMA customers will gain when rolling out Ericsson’s widerband carrier (3.75 MHz). CMS 11 R3 to provide third-generation services early next year. The authors also describe some of the key enablers in CMS 11 R3. 1xEV-DO The two phases of 1xEV are labeled 1xEV-DO and 1xEV-DV. DO stands for data only; DV stands for data and voice. Updates in the evolution CDMA2000 1xEV-DO was standardized by the Telecommunications Industry Associa- of CDMA2000 tion (TIA) in October 2000. 1xEV-DO was Since the spring of 2000, the evolution of recently recognized by the ITU-R WP8F as third-generation CDMA systems has an IMT-2000 standard. Formal approval is changed dramatically.
    [Show full text]
  • CDMA2000 – a New Challenge for 3G Mobile Radio Testers
    MOBILE RADIO Radiocommunication testers Universal Radio Communication Tester R&S CMU200 CDMA2000 – a new challenge for 3G mobile radio testers The CDMA world is facing its next The CDMA2000 market 120 100 decisive step: the introduction of Since the launch of the first commercial 80 cdmaOne network in Hong Kong in 60 CDMA2000 1X, handling packet data September 1995, CDMA has established 40 itself worldwide as a mobile radio Subscribers (millions) 20 rates of up to 307.2 kbit/s. The standard. It has advanced triumphantly 0 far beyond the USA, its country of origin, Jun. 98 Jun. 99 Jun. 00 Jun. 01 future-oriented measurement platform Korea and Japan. With rocketing growth Dec. 97 Dec. 98 Dec. 99 Dec. 00 Dec. 01 rates, CDMA ranks besides GSM as a Universal Radio Communication Tester major digital standard of the second FIG 1 Development of cdmaOne/CDMA2000 subscriber figures generation. Now the CDMA world is R&S CMU200 also supports this third- entering a new and decisive phase, the introduction of CDMA2000 1X, which is generation mobile radio standard. capable of working with packet data rates of up to 307.2 kbit/s. in Korea and Japan is almost saturated, the highest growth rates have lately In recent years, cdmaOne has expanded come from North and South America, tremendously fast. In April 1998, there and a large market is emerging in were around ten million subscribers China. The network operator China worldwide, but now more than Unicom is presently setting up a 100 million customers make their calls cdmaOne/CDMA2000 network, with through CDMA networks (FIG 1).
    [Show full text]
  • International Harmonisation and National Spectrum Management
    Imperfect Harmony: International harmonisation and national spectrum management Imperfect Harmony: International harmonisation and national spectrum management Introduction Final preparations are underway for the World Radiocommunication Conference 2019 (WRC-19), a two-month conference beginning this October in Egypt. The world radiocommunication conference (WRC) is held every three to four years, with the overarching objective to review and revise the Radio Regulations. The Radio Regulations are international treaties between member states of the International Telecommunications Union (ITU)1 that govern the use of radio spectrum and satellite orbits. International governance of radio spectrum use aims to reduce cross-border interference and develop equipment ecosystems. This is done by regional (or global) allocation of frequencies for particular communications services2 and through implementation of technical and regulator standards. This process is referred to as spectrum harmonisation. Although spectrum harmonisation is an international effort, spectrum resources are (typically) managed and assigned at a national level. Harmonisation can therefore limit the decisions of national spectrum managers, and there may be instances where the collective international interest does not align with national interests. Though the role of spectrum harmonisation and role of cross-country coordination between national spectrum managers are well established, this essay discusses the benefits and limitations of harmonisation and considers emerging coordination issues that need to be addressed at national and international scale3. This essay argues that the harmonisation facilitates benefits of coordination – but fundamentally cannot deliver without national action. It also supports the view that national spectrum managers should, at times, prioritise national interests over international harmonisation. The essay concludes by summarising future issues beyond the scope of coordination that are relevant to cross-country coordination.
    [Show full text]
  • Assessment on Use of Spectrum in the 10-17 Ghz Band for the GSO Fixed-Satellite Service in Region 1
    Report ITU-R S.2365-0 (09/2015) Assessment on use of spectrum in the 10-17 GHz band for the GSO fixed-satellite service in Region 1 S Series Fixed satellite service ii Rep. ITU-R S.2365-0 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • TS 101 756 V1.2.1 (2005-01) Technical Specification
    ETSI TS 101 756 V1.2.1 (2005-01) Technical Specification Digital Audio Broadcasting (DAB); Registered Tables European Broadcasting Union Union Européenne de Radio-Télévision EBU·UER 2 ETSI TS 101 756 V1.2.1 (2005-01) Reference RTS/JTC-DAB-32 Keywords DAB, digital, audio, broadcasting, radio, broadcast, registration ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission.
    [Show full text]
  • CDMA2000 Basestation Mit
    Products: R&S® SMU200A Vector Signal Generator, R&S® FSP, R&S® FSU, R&S® FSQ Spectrum Analyzers, R&S® CMU200 Radio Communication Tester 1xEV-DO – Test Solutions Application Note 1MA112 This application note provides a summary of the current test solutions available with Rohde & Schwarz equipment. The opportunities provided by the individual devices are presented briefly and a demonstration using a spectrum analyzer and a vector signal generator is described. Subject to change – Bernhard Schulz 04/2007 – 1MA112_0e 1xEV-DO – Test Solutions Contents 1 Overview ................................................................................................. 3 2 CMU200 Radiocommunication Tester .................................................... 3 3 FSQ, FSU, and FSP Spectrum Analyzers............................................... 7 Measurements on the base station (forward link).............................. 7 Measurements on the mobile station (reverse link) ........................... 8 4 SMU200A, SMJ100A Vector Signal Generator....................................... 8 5 SMU – FSx Example............................................................................. 11 Forward link...................................................................................... 11 Reverse link ..................................................................................... 13 6 Appendix ............................................................................................... 15 Abbreviations ..................................................................................
    [Show full text]
  • Wireless E9-1-1 Phase II Stage 2 Feature Analysis ______
    ESRE0049 – Wireless E9-1-1 Phase II Stage 2 Feature Analysis _______________________________________________________________________ Canadian Radio – television and Telecommunications Commission Interconnection Steering Committee Report to the CRTC by the Emergency Services Working Group (ESWG) Wireless E9-1-1 Phase II Stage 2 Feature Analysis Report Number: ESRE0049 August 21, 2009 August 21, 2009 Version 1.03 Page 1 ESRE0049 – Wireless E9-1-1 Phase II Stage 2 Feature Analysis _______________________________________________________________________ Revision History: Version Date Editor Summary of Changes 1.0 July 31, Nancy Initial draft version proposed to the ESWG. 2009 Banks 1.01 August Nancy Initial version proposed to the ESWG. 12, 2009 Banks Roamer Options 2 & 3 added. 1.02 August Nancy Initial version proposed to the ESWG. Final 13, 2009 Banks conclusions completed. 1.03 August Gerry Final updates as reviewed and approved on 20, 2009 Thompson the August 20 ESWG monthly conference for Nancy call. Banks August 21, 2009 Version 1.03 Page 2 ESRE0049 – Wireless E9-1-1 Phase II Stage 2 Feature Analysis _______________________________________________________________________ Table of Contents 1 Background ................................................................................................................. 5 2 Introduction ................................................................................................................. 5 3 ESWG Approach .......................................................................................................
    [Show full text]