Permian Aquatic Reptiles

Total Page:16

File Type:pdf, Size:1020Kb

Permian Aquatic Reptiles Permian Aquatic Reptiles Mark A. S. McMenamin 1,* 1 Department of Geology and Geography, Mount Holyoke College, South Hadley, Massachusetts, United States *Correspondence: [email protected]; Tel.: 413-538-2280 Copyright©2019 by author, all rights reserved. Author agrees that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Abstract Eight amniote genera (representing four clades) amniotes returning to the water. Although several genera became aquatic during the Permian. The four clades were (Barasaurus and Hovasaurus) survived the Permo-Triassic mesosaurids, tangasaurids, the neodiapsid Claudiosaurus, mass extinction, in spite of opportunities to do so none of and the procolophonid Barasaurus. Two of eight genera these Paleozoic aquatic reptile lineages underwent major survived the end-Permian mass extinction, but did not last diversification in marine habitats. long into the Mesozoic. A previously undescribed specimen of Claudiosaurus germaini, preserved in a lacustrine concretion from the Sakamena Formation, Madagascar, 2. Modifications for Aquatic Life bears seventeen vertebrae that has been split along an approximate horizontal plane to reveal sections of neural A series of repeated and predictable sclerotome canal casted in white calcite. Enlargement of the neural modifications occur in amniote tetrapods after they return to canal in the sacral region of this specimen of Claudiosaurus an aquatic lifestyle. Before listing these modifications, it is (vertebral segments 22-26) is more similar to that of important to note that several aquatic reptiles today (certain Tupinambis (segments 24-28) than it is to Testudo crocodilians, marine iguanas [Amblyrhynchus cristatus], (segments 16-23). Claudiosaurus skeletal anatomy provides nile monitors [Varanus niloticus]) may show few if any evidence for swim propulsion by both hind limbs and by discernible modification to their sclerotome resulting from undulation of a dorsal-ventrally flattened tail. Evidence for their aquatic lifestyle. That said, skeletal changes in support the latter includes elongate transverse processes on distal of an aquatic lifestyle include the following: 1, changes in tail vertebrae. Other Permian aquatic reptile genera neck length; 2, decreased ossification of limb joints; 3, (Mesosaurus, Hovasaurus, Barasaurus) used snake-like thickening of the neural canal associated with enervation side-to-side tail undulation, whereas Claudiosaurus used demands of swim propulsion; 4, modification of fore and/or cetacean-like up-down tail undulation in the vertical plane. hind limbs into flippers, with or without development of It seems unlikely that any of these animals were particularly hyperphalangy [1]; 5, thickening of the ribs for ballast fast swimmers. (pachyostosis, which involves additions of lamellar bone); 6, changes in the number of caudal vertebrae [2]; 7, Keywords aquatic reptiles, parareptiles, procolophonids, enlarged coracoid or bone fusion to form scapulocoracoid; neodiapsids, Permian, Barasaurus, mesosaurs, Hovasaurus, 8, changes in rib length; 9, enlarged humerus with expanded Tangasauridae, Claudiosaurus, neuroanatomy, swim entepicondyle and corresponding foramina; 10, elongate kinematics, neural canal, caudal vertebrae, transverse neural spines on the caudal vertebrae for enhanced tail process propulsion; 11, enlarged transverse processes (caudal ribs) in vertebrae at the base of the tail; 12, transverse processes at the base of the tail curve to the anterior; 13, changes in forelimb length; 14, reduced ossification in the carpals and 1. Introduction tarsals, ostensibly to provide greater swimming flexibility. Mesozoic aquatic reptiles were a diverse group that Expansion of the entepicondyle improves the efficiency of included ichthyosaurs, plesiosaurs, thallatosaurs, the forelimb swimming stroke, but this feature is not thallatosuchians such as Dakosaurus, nothosaurs, exclusive to marine reptiles, as it is also seen in the pachypleurosaurs, placodonts, the shovel-jawed marine terrestrial Permian neodiapsid Thadeosaurus. A role likely reptile Atopodentatus, the herbivorous marine comparable to that of the expanded entepicondyle was sphenodontian Ankylosphenodon, sea turtles, palaeophilid played by the enlarged and flattened ulna in Triassic sea snakes, and mosasaurs [1]. Keichousaurus. In the category of behavioral modifications Paleozoic aquatic reptiles are much less diverse, but for aquatic life, small stones may also be ingested for nevertheless interesting as they represent the vanguard of ballast, as in Hovasaurus. Scoliosis has been reported from Paleozoic aquatic skink-like ventral scales in a configuration that was well reptiles [3, 4]. Whether or not these deformities correlate to suited for existence in an aquatic habitat. The Barasaurus osteological modifications acquired during transition to an lifestyle was comparable to that of the crab-eating modern aquatic lifestyle is at present unknown, but it seems likely Madagascan skink (Amphiglossus astrolabi [3]) and the that the hydrostatic support provided by an aquatic habitat Cuban aquatic anole (Anolis vermiculatus [8]). Although would somewhat reduce the lethality of sclerotome Barasaurus had the potential to do, especially considering aberrations as they would not have the same biomechanical that it survived the Permo-Triassic mass extinction, the requirements as would be the case for land tetrapod genus did not diversify into a major group of Mesozoic skeletons. marine tetrapods. 3. Paleozoic Aquatic Reptiles Brazilosaurus Amniotes first appear in the Carboniferous at 312 Ma [5]. Mesosaurids of Mesosauridae, constituting a part of the There are no reported cases of return to aquatic lifestyle Sauropsida, form a sister group to all other reptiles among Carboniferous amniotes. By the Early Permian, (Parareptilia and Eureptilia, respectively). This puts however, several lineages had returned to the water. All of mesosaurids in a curious phylogenetic position between these consisted of relatively small animals, most less than a synapsids and Reptilia. Indeed, suggestions that meter in length. mesosaurids may be synapsids themselves have recently The three Early Permian genera belong to the resurfaced [9]. It remains unclear at this point whether Mesosauridae (Mesosaurus, Stereosternum and mesosaurids are basal Parareptilia, Synapsida, or basal Brazilosaurus). These are followed by Late Permian genera Sauropsida, an unsettled placement for this iconic group of belonging to the aquatic neodiapsid family Tangasauridae Permian aquatic creatures, famous for their role in (Tangasaurus, Acerosodontosaurus, and Hovasaurus). Thus establishing the Pangaean paleobiogeographic linkage the Permian sees two radiations of marine reptiles, an between South America and Africa. earlier one consisting of mesosaurids and a later one Brazilosaurus is one of the three described mesosaurid consisting of tangasaurids. genera, and along with Mesosaurus occurs in Brazil [10]. Two additional genera added to the Late Permian Brazilosaurus has considerably smaller teeth than either diversification include the neodiapsid Claudiosaurus and Stereosternum or Mesosaurus [11]. Barasaurus, the only known aquatic procolophonid. As is the case for Hovasaurus, Barasaurus survives for a short time into the Triassic. Claudiosaurus Known from the Sakamena Formation of Madagascar, Acerosodontosaurus Claudiosaurus is the most basal neodiapsid and thus occupies an important position in diapsid phylogeny, close Acerosodontosaurus is an aquatic neodiapsid, closely to the Carboniferous-Permian Order Araeoscelidia. The related to Hovasaurus. Acerosodontosaurus is thought to largest claudiosaur individuals reach up to 60 cm length. have reached a total length of 70 cm. Its skull has lost the The fibula has a gentle S-shaped curve, comparable that of quadratojugal and thus develops a spacious lower temporal its terrestrial presumed close relative Thadeosaurus. arcade [6]. Acerosodontosaurus’s humeri have enlarged In Claudiosaurus, the transverse vertebral processes entepicondyles with corresponding foramina. occurring at the tail base are large and elongate, and curved Acerosodontosaurus’ femur is thicker than that of the in an anterior direction, evidently as muscle attachments for related terrestrial neodiapsid Kenyasaurus. the powerful caudofemoralis musculature that powered the hind limbs. The width of the long, narrow trunk vertebrae in Barasaurus Claudiosaurus are roughly 50% of their length, as opposed to Thadeosaurus where the ratio is 70% [12]. The typical procolophonoid parareptile (such as In Claudiosaurus, the “centra of the two principal sacrals Hypsognathus) is a rather squat creature with a pair of and the first four caudals are as long as the longest trunk pointed projections that jut out from the back of its skull, centra, after which the length somewhat decreases” [12]. giving the animal a resemblance to a desert horned lizard. Also, in addition to two pairs of primary sacral ribs, a third Interestingly, there was one successful aquatic pair is partially incorporated into the sacrum [12]. Growth procolophonoid, Barasaurus. The existence of Barasaurus rings occur on the zygapophyses of the trunk vertebrae [12]. recalls the single known successful aquatic sphenodontian, The margins of contact in the carpals “are poorly Ankylosphenodon from the Early Cretaceous of México [7]. defined” and therefore retained considerable cartilage,
Recommended publications
  • Sauropareion Anoplus, with a Discussion of Possible Life History
    The postcranial skeleton of the Early Triassic parareptile Sauropareion anoplus, with a discussion of possible life history MARK J. MACDOUGALL, SEAN P. MODESTO, and JENNIFER BOTHA−BRINK MacDougall, M.J., Modesto, S.P., and Botha−Brink, J. 2013. The postcranial skeleton of the Early Triassic parareptile Sauropareion anoplus, with a discussion of possible life history. Acta Palaeontologica Polonica 58 (4): 737–749. The skeletal anatomy of the Early Triassic (Induan) procolophonid reptile Sauropareion anoplus is described on the basis of three partial skeletons from Vangfontein, Middelburg District, South Africa. Together these three specimens preserve the large majority of the pectoral and pelvic girdles, articulated forelimbs and hindlimbs, and all but the caudal portion of the vertebral column, elements hitherto undescribed. Our phylogenetic analysis of the Procolophonoidea is consonant with previous work, positing S. anoplus as the sister taxon to a clade composed of all other procolophonids exclusive of Coletta seca. Previous studies have suggested that procolophonids were burrowers, and this seems to have been the case for S. anoplus, based on comparisons with characteristic skeletal anatomy of living digging animals, such as the presence of a spade−shaped skull, robust phalanges, and large unguals. Key words: Parareptilia, Procolophonidae, phylogenetic analysis, burrowing, Induan, Triassic, South Africa. Mark J. MacDougall [[email protected]], Department of Biology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada and Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Ontario, L5L 1C6, Canada; Sean P. Modesto [[email protected]], Department of Biology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada; Jennifer Botha−Brink [[email protected]], Karoo Palaeontology, National Museum, P.O.
    [Show full text]
  • Reptile Family Tree
    Reptile Family Tree - Peters 2015 Distribution of Scales, Scutes, Hair and Feathers Fish scales 100 Ichthyostega Eldeceeon 1990.7.1 Pederpes 91 Eldeceeon holotype Gephyrostegus watsoni Eryops 67 Solenodonsaurus 87 Proterogyrinus 85 100 Chroniosaurus Eoherpeton 94 72 Chroniosaurus PIN3585/124 98 Seymouria Chroniosuchus Kotlassia 58 94 Westlothiana Casineria Utegenia 84 Brouffia 95 78 Amphibamus 71 93 77 Coelostegus Cacops Paleothyris Adelospondylus 91 78 82 99 Hylonomus 100 Brachydectes Protorothyris MCZ1532 Eocaecilia 95 91 Protorothyris CM 8617 77 95 Doleserpeton 98 Gerobatrachus Protorothyris MCZ 2149 Rana 86 52 Microbrachis 92 Elliotsmithia Pantylus 93 Apsisaurus 83 92 Anthracodromeus 84 85 Aerosaurus 95 85 Utaherpeton 82 Varanodon 95 Tuditanus 91 98 61 90 Eoserpeton Varanops Diplocaulus Varanosaurus FMNH PR 1760 88 100 Sauropleura Varanosaurus BSPHM 1901 XV20 78 Ptyonius 98 89 Archaeothyris Scincosaurus 77 84 Ophiacodon 95 Micraroter 79 98 Batropetes Rhynchonkos Cutleria 59 Nikkasaurus 95 54 Biarmosuchus Silvanerpeton 72 Titanophoneus Gephyrostegeus bohemicus 96 Procynosuchus 68 100 Megazostrodon Mammal 88 Homo sapiens 100 66 Stenocybus hair 91 94 IVPP V18117 69 Galechirus 69 97 62 Suminia Niaftasuchus 65 Microurania 98 Urumqia 91 Bruktererpeton 65 IVPP V 18120 85 Venjukovia 98 100 Thuringothyris MNG 7729 Thuringothyris MNG 10183 100 Eodicynodon Dicynodon 91 Cephalerpeton 54 Reiszorhinus Haptodus 62 Concordia KUVP 8702a 95 59 Ianthasaurus 87 87 Concordia KUVP 96/95 85 Edaphosaurus Romeria primus 87 Glaucosaurus Romeria texana Secodontosaurus
    [Show full text]
  • A Revision of the Classification of the Plesiosauria with a Synopsis of the Stratigraphical and Geographical Distribution Of
    LUNDS UNIVERSITETS ARSSKRIFT. N. F. Avd. 2. Bd 59. Nr l. KUNGL. FYSIOGRAFISKA SÅLLSKAPETS HANDLINGAR, N. F. Bd 74. Nr 1. A REVISION OF THE CLASSIFICATION OF THE PLESIOSAURIA WITH A SYNOPSIS OF THE STRATIGRAPHICAL AND GEOGRAPHICAL DISTRIBUTION OF THE GROUP BY PER OVE PERSSON LUND C. W. K. GLEER UP Read before the Royal Physiographic Society, February 13, 1963. LUND HÅKAN OHLSSONS BOKTRYCKERI l 9 6 3 l. Introduction The sub-order Plesiosauria is one of the best known of the Mesozoic Reptile groups, but, as emphasized by KuHN (1961, p. 75) and other authors, its classification is still not satisfactory, and needs a thorough revision. The present paper is an attempt at such a revision, and includes also a tabular synopsis of the stratigraphical and geo­ graphical distribution of the group. Some of the species are discussed in the text (pp. 17-22). The synopsis is completed with seven maps (figs. 2-8, pp. 10-16), a selective synonym list (pp. 41-42), and a list of rejected species (pp. 42-43). Some forms which have been erroneously referred to the Plesiosauria are also briefly mentioned ("Non-Plesiosaurians", p. 43). - The numerals in braekets after the generic and specific names in the text refer to the tabular synopsis, in which the different forms are numbered in successional order. The author has exaroined all material available from Sweden, Australia and Spitzbergen (PERSSON 1954, 1959, 1960, 1962, 1962a); the major part of the material from the British Isles, France, Belgium and Luxembourg; some of the German spec­ imens; certain specimens from New Zealand, now in the British Museum (see LYDEK­ KER 1889, pp.
    [Show full text]
  • Reptiles A. Cladistics 1. Many Groups of Organisms
    Reptiles A. Cladistics 1. Many groups of organisms are “polyphyletic” a. This means that the group combines 2 or more lineages - example=fish 2. Cladistics follows only pure lineages going back in time - example Osteichthys B. Reptile Classifiecation - looks like a polyphyletic group 1. Dry skin - no loss of water through skin like amphibians 2. Aminotic egg - an egg that can survive on dry land - in contrast with the amphibian egg C. Mammals and Birds are derived from different lineages of reptiles (We will see below) D. Stem Reptiles 1. Different lineages based on the temporal region of their skulls - number of holes (or bars) a. These holes are necessary to accommodate large jaw muscles b. Anapsid Skull - no holes in temporal - jaws can move fast, but with little force 1. Muscles that move the jaw are small 2. There is no good paleotological evidence for the transition between amphibians and reptiles - no fossil intermediates a. Fossil amphibians have lots of dermal bones in skull b. Amphibians have no temporal openings in skull 1. (Aside) both fossil amphibians and primitive reptiles have a parietal “eye” that senses light and dark (“third” eye in middle of head) c. Reptile skull is higher than amphibian to accomodate larger jaw muscles d. Of the modern reptiles only turtles are anapsids 2. Diapsid Skull - has holes in the temporal region a. Diapsid reptiles gave rise to lizards and snakes - they have a diapsid skull 1. Also Tuatara, crocodiles, dinosaurs and pterydactyls Reptiles b. One group of diapsids also had a pre-orbital hole in the skull in front of eye - this hole is still preserved in the birds - this anatomy suggests strongly that the birds are derived from the diapsid reptiles 3.
    [Show full text]
  • A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes
    GENERAL COMMENTARY published: 03 December 2018 doi: 10.3389/feart.2018.00220 Response: Commentary: A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes Michel Laurin 1* and Graciela Piñeiro 2 1 CR2P (UMR 7207), CNRS/MNHN Sorbonne Université, “Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements”, Muséum National d’Histoire Naturelle, Paris, France, 2 Departamento de Paleontología, Facultad de Ciencias, Montevideo, Uruguay Keywords: Mesosauridae, Parareptilia, Synapsida, Sauropsida, Amniota, Paleozoic, temporal fenestration A Commentary on Commentary: A Reassessment of the Taxonomic Position of Mesosaurs, and a Surprising Phylogeny of Early Amniotes by MacDougall, M. J., Modesto, S. P., Brocklehurst, N., Verrière, A., Reisz, R. R., and Fröbisch, J. (2018). Front. Earth Sci. 6:99. doi: 10.3389/feart.2018.00099 INTRODUCTION Edited by: Corwin Sullivan, University of Alberta, Canada Mesosaurs, known from the Early Permian of southern Africa, Brazil, and Uruguay, are the oldest known amniotes with a primarily, though probably not strictly, aquatic lifestyle (Nuñez Demarco Reviewed by: et al., 2018). Despite having attracted the attention of several prominent scientists, such as Wegener Tiago Simoes, University of Alberta, Canada (1966), who used them to support his theory of continental drift, and the great anatomist and paleontologist von Huene (1941), who first suggested the presence of a lower temporal fenestra *Correspondence: Michel Laurin in Mesosaurus, several controversies still surround mesosaurs. One concerns the presence of the [email protected] lower temporal fenestra in mesosaurs, which we accept (Piñeiro et al., 2012a; Laurin and Piñeiro, 2017, p. 4), contrary to Modesto (1999, 2006) and MacDougall et al.
    [Show full text]
  • HOVASAURUS BOULEI, an AQUATIC EOSUCHIAN from the UPPER PERMIAN of MADAGASCAR by P.J
    99 Palaeont. afr., 24 (1981) HOVASAURUS BOULEI, AN AQUATIC EOSUCHIAN FROM THE UPPER PERMIAN OF MADAGASCAR by P.J. Currie Provincial Museum ofAlberta, Edmonton, Alberta, T5N OM6, Canada ABSTRACT HovasauTUs is the most specialized of four known genera of tangasaurid eosuchians, and is the most common vertebrate recovered from the Lower Sakamena Formation (Upper Per­ mian, Dzulfia n Standard Stage) of Madagascar. The tail is more than double the snout-vent length, and would have been used as a powerful swimming appendage. Ribs are pachyostotic in large animals. The pectoral girdle is low, but massively developed ventrally. The front limb would have been used for swimming and for direction control when swimming. Copious amounts of pebbles were swallowed for ballast. The hind limbs would have been efficient for terrestrial locomotion at maturity. The presence of long growth series for Ho vasaurus and the more terrestrial tan~saurid ThadeosauTUs presents a unique opportunity to study differences in growth strategies in two closely related Permian genera. At birth, the limbs were relatively much shorter in Ho vasaurus, but because of differences in growth rates, the limbs of Thadeosau­ rus are relatively shorter at maturity. It is suggested that immature specimens of Ho vasauTUs spent most of their time in the water, whereas adults spent more time on land for mating, lay­ ing eggs and/or range dispersal. Specilizations in the vertebrae and carpus indicate close re­ lationship between Youngina and the tangasaurids, but eliminate tangasaurids from consider­ ation as ancestors of other aquatic eosuchians, archosaurs or sauropterygians. CONTENTS Page ABREVIATIONS . ..... ... ......... .......... ... ......... ..... ... ..... .. .... 101 INTRODUCTION .
    [Show full text]
  • A Coluna Vertebral De Brazilosaurus Sanpauloensis Shikama
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Biblioteca Digital de Periódicos da UFPR (Universidade Federal do Paraná) Acta Biol. Par., Curitiba, 30 (1, 2, 3, 4): 151-173. 2001. 151 A coluna vertebral de Brazilosaurus sanpauloensis Shikama & Ozaki, 1966 da Formação Irati, Permiano da Bacia do Paraná (Brasil) (Proganosauria, Mesosauridae) The vertebral column of Brazilosaurus sanpauloensis Shikama & Ozaki, 1966 from Irati Formation, Permian of Paraná Basin, (Brazil) (Proganosauria, Mesosauridae) FERNANDO A. SEDOR1 & JORGE FERIGOLO2 Os Mesosauridae incluídos na ordem Proganosauria (BAUR, 1887) constituem dentre os “Reptilia”, um pequeno grupo extinto de formas lacertiformes esguias, de pequeno porte, adaptados à vida aquática ou semi-aquática (cf. ROMER, 1956; 1966). A distribuição temporal e geográfica do grupo restringe-se ao Permiano da América do Sul e da África. No Brasil, os Mesosauridae ocorrem na Formação Irati da Bacia do Paraná, e, no continente africano, ocorrem na Formação Whitehill, do Sistema Karoo (COPE, 1886; MCGREGOR, 1908; SHIKAMA & OZAKI, 1966; MENDES, 1967; ROÖSLER, 1970; ARAÚJO, 1976; BORGOMANERO & LEONARDI, 1979; MOREIRA et al., 1984). Também são referidas ocorrências de Mesosauridae no Paraguai (Beder; e Harrington, apud OELOFSEN & ARAÚJO, 1983) e no Uruguai (Guillemain; e Walther, apud MONES, 1986). 1 Museu de Ciências Naturais (MCN) — SCB, Universidade Federal do Paraná — Caixa Postal 19031 — 81531-990 Curitiba, Paraná, Brasil. Email: [email protected] Pesquisador do Museu de Ciências Naturais — Fundação Zoobotânica do Rio Grande do Sul, Porto Alegre, RS, Brasil. 152 Acta Biol. Par., Curitiba, 30 (1, 2, 3, 4): 151-173. 2001. Os sedimentos sul-americanos portadores de mesossaurídeos situam- se dentro do intervalo temporal do Kazaniano e os africanos entre Permiano Inferior e Permiano Médio (PINTO, 1972a; OELOFSEN & ARAÚJO, 1987), correspondendo à porção mais superior do Sakmariano.
    [Show full text]
  • The Shoulder Girdle and Anterior Limb of Drepanosaurus Unguicaudatus
    <oological Journal of the Linnean Socieg (1994), Ill: 247-264. With 12 figures The shoulder girdle and anterior limb of Drepanosaurus unguicaudatus (Reptilia, Neodiapsida) from the upper Triassic (Norian) Downloaded from https://academic.oup.com/zoolinnean/article/111/3/247/2691415 by guest on 27 September 2021 of Northern Italy SILVIO RENESTO Dipartimento di Scienze della Terra, Universita degli Studi, Via Mangiagalli 34, I-20133 Milano, Italy Received January 1993, accepted for publication February 1994 A reinvestigation of the osteology of the holotype of Drepanosaurus unguicaudatus Pinna, 1980 suggests that in earlier descriptions some osteological features were misinterpreted, owing to the crushing of the bones and because taphonomic aspects were not considered. The pattern of the shoulder girdle and fore-limb was misunderstood: the supposed interclavicle is in fact the right scapula, and the bones previously identified as coracoid and scapula belong to the anterior limb. The new reconstruction of the shoulder girdle, along with the morphology of the phalanges and caudal vertebrae, leads to a new hypothesis about the mode oflife of this reptile. Drepanosaurus was probably an arboreal reptile which used its enormous claws to scrape the bark from trees, perhaps in search of insects, just as the modern pigmy anteater (Cyclopes) does. Available diagnostic characters place Drepanosaurus within the Neodiapsida Benton, but it is impossible to ascribe this genus to one or other of the two major neodiapsid lineages, the Archosauromorpha and the Lepidosauromorpha. ADDITIONAL KEY WORDS:-Functional morphology - taxonomy - taphonomy - palaeoecology . CONTENTS Introduction ................... 247 Taphonomy ..... .............. 249 Systematic palaeontology . .............. 251 Genus Drepanosaurus Pinna, 1980 .............. 252 Drepannsaurus unguicaudatus Pinna, 1980.
    [Show full text]
  • (Diapsida: Saurosphargidae), with Implications for the Morphological Diversity and Phylogeny of the Group
    Geol. Mag.: page 1 of 21. c Cambridge University Press 2013 1 doi:10.1017/S001675681300023X A new species of Largocephalosaurus (Diapsida: Saurosphargidae), with implications for the morphological diversity and phylogeny of the group ∗ CHUN LI †, DA-YONG JIANG‡, LONG CHENG§, XIAO-CHUN WU†¶ & OLIVIER RIEPPEL ∗ Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, PO Box 643, Beijing 100044, China ‡Department of Geology and Geological Museum, Peking University, Beijing 100871, PR China §Wuhan Institute of Geology and Mineral Resources, Wuhan, 430223, PR China ¶Canadian Museum of Nature, PO Box 3443, STN ‘D’, Ottawa, ON K1P 6P4, Canada Department of Geology, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605-2496, USA (Received 31 July 2012; accepted 25 February 2013) Abstract – Largocephalosaurus polycarpon Cheng et al. 2012a was erected after the study of the skull and some parts of a skeleton and considered to be an eosauropterygian. Here we describe a new species of the genus, Largocephalosaurus qianensis, based on three specimens. The new species provides many anatomical details which were described only briefly or not at all in the type species, and clearly indicates that Largocephalosaurus is a saurosphargid. It differs from the type species mainly in having three premaxillary teeth, a very short retroarticular process, a large pineal foramen, two sacral vertebrae, and elongated small granular osteoderms mixed with some large ones along the lateral most side of the body. With additional information from the new species, we revise the diagnosis and the phylogenetic relationships of Largocephalosaurus and clarify a set of diagnostic features for the Saurosphargidae Li et al.
    [Show full text]
  • A Small Lepidosauromorph Reptile from the Early Triassic of Poland
    A SMALL LEPIDOSAUROMORPH REPTILE FROM THE EARLY TRIASSIC OF POLAND SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA Evans, S.E. and Borsuk−Białynicka, M. 2009. A small lepidosauromorph reptile from the Early Triassic of Poland. Palaeontologia Polonica 65, 179–202. The Early Triassic karst deposits of Czatkowice quarry near Kraków, southern Poland, has yielded a diversity of fish, amphibians and small reptiles. Two of these reptiles are lepido− sauromorphs, a group otherwise very poorly represented in the Triassic record. The smaller of them, Sophineta cracoviensis gen. et sp. n., is described here. In Sophineta the unspecial− ised vertebral column is associated with the fairly derived skull structure, including the tall facial process of the maxilla, reduced lacrimal, and pleurodonty, that all resemble those of early crown−group lepidosaurs rather then stem−taxa. Cladistic analysis places this new ge− nus as the sister group of Lepidosauria, displacing the relictual Middle Jurassic genus Marmoretta and bringing the origins of Lepidosauria closer to a realistic time frame. Key words: Reptilia, Lepidosauria, Triassic, phylogeny, Czatkowice, Poland. Susan E. Evans [[email protected]], Department of Cell and Developmental Biology, Uni− versity College London, Gower Street, London, WC1E 6BT, UK. Magdalena Borsuk−Białynicka [[email protected]], Institut Paleobiologii PAN, Twarda 51/55, PL−00−818 Warszawa, Poland. Received 8 March 2006, accepted 9 January 2007 180 SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA INTRODUCTION Amongst living reptiles, lepidosaurs (snakes, lizards, amphisbaenians, and tuatara) form the largest and most successful group with more than 7 000 widely distributed species. The two main lepidosaurian clades are Rhynchocephalia (the living Sphenodon and its extinct relatives) and Squamata (lizards, snakes and amphisbaenians).
    [Show full text]
  • Tiago Rodrigues Simões
    Diapsid Phylogeny and the Origin and Early Evolution of Squamates by Tiago Rodrigues Simões A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in SYSTEMATICS AND EVOLUTION Department of Biological Sciences University of Alberta © Tiago Rodrigues Simões, 2018 ABSTRACT Squamate reptiles comprise over 10,000 living species and hundreds of fossil species of lizards, snakes and amphisbaenians, with their origins dating back at least as far back as the Middle Jurassic. Despite this enormous diversity and a long evolutionary history, numerous fundamental questions remain to be answered regarding the early evolution and origin of this major clade of tetrapods. Such long-standing issues include identifying the oldest fossil squamate, when exactly did squamates originate, and why morphological and molecular analyses of squamate evolution have strong disagreements on fundamental aspects of the squamate tree of life. Additionally, despite much debate, there is no existing consensus over the composition of the Lepidosauromorpha (the clade that includes squamates and their sister taxon, the Rhynchocephalia), making the squamate origin problem part of a broader and more complex reptile phylogeny issue. In this thesis, I provide a series of taxonomic, phylogenetic, biogeographic and morpho-functional contributions to shed light on these problems. I describe a new taxon that overwhelms previous hypothesis of iguanian biogeography and evolution in Gondwana (Gueragama sulamericana). I re-describe and assess the functional morphology of some of the oldest known articulated lizards in the world (Eichstaettisaurus schroederi and Ardeosaurus digitatellus), providing clues to the ancestry of geckoes, and the early evolution of their scansorial behaviour.
    [Show full text]
  • Macropredatory Ichthyosaur from the Middle Triassic and the Origin of Modern Trophic Networks
    Macropredatory ichthyosaur from the Middle Triassic and the origin of modern trophic networks Nadia B. Fröbischa,1, Jörg Fröbischa,1, P. Martin Sanderb,1,2, Lars Schmitzc,1,2,3, and Olivier Rieppeld aMuseum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, 10115 Berlin, Germany; bSteinmann Institute of Geology, Mineralogy, and Paleontology, Division of Paleontology, University of Bonn, 53115 Bonn, Germany; cDepartment of Evolution and Ecology, University of California, Davis, CA 95616; and dDepartment of Geology, The Field Museum of Natural History, Chicago, IL 60605 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved December 5, 2012 (received for review October 8, 2012) The biotic recovery from Earth’s most severe extinction event at the Holotype and Only Specimen. The Field Museum of Natural His- Permian-Triassic boundary largely reestablished the preextinction tory (FMNH) contains specimen PR 3032, a partial skeleton structure of marine trophic networks, with marine reptiles assuming including most of the skull (Fig. 1) and axial skeleton, parts of the predator roles. However, the highest trophic level of today’s the pelvic girdle, and parts of the hind fins. marine ecosystems, i.e., macropredatory tetrapods that forage on prey of similar size to their own, was thus far lacking in the Paleozoic Horizon and Locality. FMNH PR 3032 was collected in 2008 from the and early Mesozoic. Here we report a top-tier tetrapod predator, middle Anisian Taylori Zone of the Fossil Hill Member of the Favret a very large (>8.6 m) ichthyosaur from the early Middle Triassic Formation at Favret Canyon, Augusta Mountains, Pershing County, (244 Ma), of Nevada.
    [Show full text]