COPI Mediates Recycling of an Exocytic SNARE from Endosomes By

Total Page:16

File Type:pdf, Size:1020Kb

COPI Mediates Recycling of an Exocytic SNARE from Endosomes By bioRxiv preprint doi: https://doi.org/10.1101/133546; this version posted May 3, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 COPI mediates recycling of an exocytic SNARE from endosomes by 2 recognition of a ubiquitin sorting signal 3 4 Peng Xu1, Hannah M. Hankins1, Chris Macdonald2, Samuel J. Erlinger1, Meredith N. Frazier1, 5 Nicholas S. Diab1, Robert C. Piper2, Lauren P. Jackson1, Jason A. MacGurn3 and Todd R. 6 Graham1* 7 1Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA 8 2Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, 9 USA 10 3Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 11 Nashville, TN 37235, USA 12 *Correspondence to: email: [email protected] 13 14 ABSTRACT 15 The COPI coat forms transport vesicles from the Golgi complex and plays a poorly defined role 16 in endocytic trafficking. Here we show that COPI mediates delivery of a budding yeast SNARE 17 (Snc1) from early endosomes to the Golgi complex through recognition of a polyubiquitin sorting 18 signal. Snc1 is a v-SNARE that drives fusion of exocytic vesicles with the plasma membrane, and 19 then recycles through early endosomes back to the Golgi for reuse. Removal of ubiquitin from 20 Snc1, or deletion of a '-COP subunit propeller domain that binds K63-linked polyubiquitin, 21 causes aberrant accumulation of Snc1 in early endosomes. Moreover, replacement of the '-COP 22 propeller domain with unrelated ubiquitin-binding domains restores Snc1 recycling. These results 23 indicate that ubiquitination, a modification well known to target membrane proteins to the 24 lysosome or vacuole for degradation, can also function as recycling signal to sort a SNARE into 25 COPI vesicles at early endosomes for Golgi delivery. 26 27 28 29 30 31 32 1 bioRxiv preprint doi: https://doi.org/10.1101/133546; this version posted May 3, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 33 INTRODUCTION 34 Sequential rounds of vesicle budding and fusion reactions drive protein transport through 35 the secretory and endocytic pathways (Rothman, 1994). Vesicle budding often requires cytosolic 36 coat proteins, such as COPI, COPII or clathrin, that assemble onto the donor organelle to mold the 37 membrane into a tightly curved structure while collecting cargo for inclusion into the nascent 38 vesicle (Faini et al., 2013). Efficient departure of cargo from the donor organelle requires a sorting 39 signal within the protein that is recognized by the coat complexes. For example, the heptameric 40 COPI coat complex assembles onto Golgi membranes where it selects cargo bearing a C-terminal 41 di-lysine (KKxx-COO- or KxKxx-COO-) sorting signal exposed on the cytosolic side of the 42 membrane (Eugster et al., 2004; Letourneur et al., 1994; Waters et al., 1991). The two large COPI 43 subunits, - and ’-COP, each contain a pair of WD40 repeat domains that form twin -propellers 44 used to select cargo by binding to the sorting signal (Jackson, 2014; Jackson et al., 2012). After 45 budding, COPI vesicles uncoat and deliver the di-lysine bearing cargo to the ER by fusing to this 46 acceptor membrane in a SNARE-dependent reaction (Rein et al., 2002; Sudhof and Rothman, 47 2009). 48 Intrinsic to the SNARE hypothesis is the privileged selection of v-SNAREs (also called R- 49 SNAREs) by the vesicle budding machinery to ensure the nascent vesicle can fuse to its target 50 membrane bearing complementary t-SNAREs (Q-SNAREs), and the subsequent need for v- 51 SNARE recycling back to the donor compartment (Miller et al., 2011). v-SNAREs are small, 52 single-pass membrane proteins with the C-terminus embedded within the lumenal space (Weber 53 et al., 1998). Thus, COPI cannot select v-SNAREs using the canonical C-terminal motifs and there 54 is no known sorting signal within a v-SNARE that is recognized by COPI. A further complication 55 with the vesicular transport process is that it leads to depletion of v-SNAREs from the donor 56 membrane and their deposition in the acceptor membrane. Thus, it is essential to recycle the v- 57 SNAREs back to the donor compartment in order to sustain the vesicular transport pathway. 58 Exocytic v-SNAREs that bud from the trans-Golgi network and target vesicles to the plasma 59 membrane have served as models to understand the mechanisms of SNARE recycling, although 60 these studies have primarily focused on how the v-SNAREs are endocytosed from the plasma 61 membrane for delivery to early endosomes (Burston et al., 2009; Lewis et al., 2000; Miller et al., 62 2011). The subsequent step of transport from endosomes back to the Golgi, however, is poorly 63 understood. 2 bioRxiv preprint doi: https://doi.org/10.1101/133546; this version posted May 3, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 64 In the case of the yeast exocytic v-SNARE Snc1, recycling from endosomes back to the 65 Golgi is independent of retromer and clathrin adaptors known to mediate transport of other cargos 66 in these pathways (Lewis et al., 2000). Instead, an F-box protein (Rcy1) (Galan et al., 2001), a 67 phosphatidylserine flippase (Drs2) (Hua et al., 2002; Xu et al., 2013), an ArfGAP (Gcs1) 68 (Robinson et al., 2006) and a sorting nexin complex (Snx4/41) (Lewis et al., 2000; Ma et al., 2017) 69 are required for endosome to Golgi transport of Snc1, although the precise functions for these 70 proteins remain unclear. F-box proteins are best known as substrate-selecting adaptors in Skp1- 71 Cullin-F-box (SCF) E3 ubiquitin (Ub) ligases, but the Rcy1-Skp1 complex plays a role in Snc1 72 recycling that is independent of the cullin subunit or the Cdc34 E2 Ub ligase (Galan et al., 2001). 73 Moreover, ubiquitination of membrane proteins in the endocytic pathway is thought to set a course 74 for their degradation in the lysosome or vacuole via the ESCRT/MVB pathway (MacGurn et al., 75 2012). Thus, it seemed unlikely that Rcy1 mediates ubiquitination of Snc1 in order to recycle this 76 SNARE protein out of the endocytic pathway. Nonetheless, several high-throughput studies have 77 shown that Snc1 is ubiquitinated (Peng et al., 2003; Silva et al., 2015; Swaney et al., 2013), and 78 altering a targeted lysine to arginine (Snc1-K63R) surprisingly perturbed its early endosome (EE) 79 to TGN transport (Chen et al., 2011), suggesting ubiquitin (Ub) conjugation could play a role in 80 Snc1 recycling. 81 Here we show that K63-linked polyubiquitin (polyUb) chains are indeed a sorting signal 82 that drives EE to TGN transport of Snc1, and surprisingly find that COPI mediates this sorting 83 event by direct binding to the polyUb chain. COPI was observed to localize to EEs in mammalian 84 cells more than two decade ago (Aniento et al., 1996; Whitney et al., 1995), but had not previously 85 been shown to localize to EEs in yeast. In addition, COPI was initially thought to mediate transport 86 of proteins from EE to late endosomes in animal cells (Aniento et al., 1996). However, as models 87 for early to late endosome maturation emerged (Scott et al., 2014; Zerial and McBride, 2001), this 88 proposed role for endosomal COPI was abandoned and there remains no clearly defined role for 89 COPI in protein trafficking through the endosomal system. A major impediment to deciphering a 90 function for endosomal COPI is that mutations or knockdown approaches that inactivate COPI 91 grossly disrupt Golgi function. Thus, any endosomal defects observed in COPI-deficient cells 92 could be attributed to an indirect downstream effect of perturbing the Golgi complex. To 93 demonstrate a direct functional role of COPI at endosomes would require specific mutations or 94 variants of COPI that disrupt trafficking through the endosomes while maintaining its function at 3 bioRxiv preprint doi: https://doi.org/10.1101/133546; this version posted May 3, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 95 the Golgi. We describe here a set of COPI separation-of-function mutations and fusion proteins 96 that allow us to demonstrate a direct role of this coat at EEs to select cargo bearing K63-linked Ub 97 chains. 98 99 100 101 RESULTS 102 103 Snc1 ubiquitination is required for EE to TGN transport. 104 Snc1 is an exocytic v-SNARE that is incorporated into vesicles budding from the trans- 105 Golgi network (TGN) to drive fusion of these vesicles with the plasma membrane (Gerst et al., 106 1992). Afterwards, Snc1 is endocytosed, delivered to an early endosome population marked by the 107 t-SNARE Tlg1 and then delivered back to the TGN for reuse in exocytosis (Lewis et al., 2000; 108 Robinson et al., 2006). In wild-type (WT) cells, nearly half of GFP-Snc1 localizes to the plasma 109 membrane (preferentially at the buds relative to the mother cell) and the remainder is observed in 110 early endosomes and Golgi cisternae, which appear as small punctae (Figure 1A, B).
Recommended publications
  • Transcriptomic Analysis of the Aquaporin (AQP) Gene Family
    Pancreatology 19 (2019) 436e442 Contents lists available at ScienceDirect Pancreatology journal homepage: www.elsevier.com/locate/pan Transcriptomic analysis of the Aquaporin (AQP) gene family interactome identifies a molecular panel of four prognostic markers in patients with pancreatic ductal adenocarcinoma Dimitrios E. Magouliotis a, b, Vasiliki S. Tasiopoulou c, Konstantinos Dimas d, * Nikos Sakellaridis d, Konstantina A. Svokos e, Alexis A. Svokos f, Dimitris Zacharoulis b, a Division of Surgery and Interventional Science, Faculty of Medical Sciences, UCL, London, UK b Department of Surgery, University of Thessaly, Biopolis, Larissa, Greece c Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece d Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece e The Warren Alpert Medical School of Brown University, Providence, RI, USA f Riverside Regional Medical Center, Newport News, VA, USA article info abstract Article history: Background: This study aimed to assess the differential gene expression of aquaporin (AQP) gene family Received 14 October 2018 interactome in pancreatic ductal adenocarcinoma (PDAC) using data mining techniques to identify novel Received in revised form candidate genes intervening in the pathogenicity of PDAC. 29 January 2019 Method: Transcriptome data mining techniques were used in order to construct the interactome of the Accepted 9 February 2019 AQP gene family and to determine which genes members are differentially expressed in PDAC as Available online 11 February 2019 compared to controls. The same techniques were used in order to evaluate the potential prognostic role of the differentially expressed genes. Keywords: PDAC Results: Transcriptome microarray data of four GEO datasets were incorporated, including 142 primary Aquaporin tumor samples and 104 normal pancreatic tissue samples.
    [Show full text]
  • Coatomer-Rich Endoplasmic Reticulum LELIO ORCI*, ALAIN PERRELET*, MARIELLA RAVAZZOLA*, Myltne AMHERDT*, JAMES E
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 11924-11928, December 1994 Cell Biology Coatomer-rich endoplasmic reticulum LELIO ORCI*, ALAIN PERRELET*, MARIELLA RAVAZZOLA*, MYLtNE AMHERDT*, JAMES E. ROTHMANt, AND RANDY SCHEKMAN* *Department of Morphology, University of Geneva Medical School, 1211 Geneva 4, Switzerland; tDivision of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720; and tCellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 Contributed by Randy Schekman, August 30, 1994 ABSTRACT We identify in normal cells the existence of digestion and incubated at normal (370C) or low (220C, 15'C, two distinct sites of the transitional endoplasmic reticulum 40C) temperatures under continuous shaking and gassing with (ER), one housing the Sec23p protein complex (the classical 95% 02/5% CO2. Monolayer cultures ofpancreatic endocrine transitional element), the other the coatomer protein complex cells (24) were exposed to low temperatures as for isolated (the coatomer-rich ER). Experimental conditions that reduce islets. ATP depletion in both preparations was induced at transport from the ER to the Golgi complex lead to the 370C with 10 ImM antimycin or 1 mM dinitrophenol or by overexpression of this newly defined coatomer-rich ER. gassing the cells with N2 instead of the 02/CO2 mixture. At the end of the incubations, the samples were fixed with Progress in the identification and characterization of the 1% glutaraldehyde in 0.1 M sodium phosphate buffer (pH 7.4) carriers involved in membrane traffic from the endoplasmic for 1 hr at the final temperature of the incubation protocol, reticulum (ER) to and through the Golgi complex was pos- washed with buffer, and processed for Epon embedding sible by combining morphological and biochemical methods, (conventional thin sections) or for cryoultramicrotomy ac- cell-free assay systems, and yeast genetics (for review see refs.
    [Show full text]
  • Formation of COPI-Coated Vesicles at a Glance Eric C
    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs209890. doi:10.1242/jcs.209890 CELL SCIENCE AT A GLANCE Formation of COPI-coated vesicles at a glance Eric C. Arakel1 and Blanche Schwappach1,2,* ABSTRACT unresolved, this review attempts to refocus the perspectives of The coat protein complex I (COPI) allows the precise sorting of lipids the field. and proteins between Golgi cisternae and retrieval from the Golgi KEY WORDS: Arf1, ArfGAP, COPI, Coatomer, Golgi, Endoplasmic to the ER. This essential role maintains the identity of the early reticulum, Vesicle coat secretory pathway and impinges on key cellular processes, such as protein quality control. In this Cell Science at a Glance and accompanying poster, we illustrate the different stages of COPI- Introduction coated vesicle formation and revisit decades of research in the Vesicle coat proteins, such as the archetypal clathrin and the coat context of recent advances in the elucidation of COPI coat structure. protein complexes II and I (COPII and COPI, respectively) are By calling attention to an array of questions that have remained molecular machines with two central roles: enabling vesicle formation, and selecting protein and lipid cargo to be packaged within them. Thus, coat proteins fulfil a central role in the 1Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee homeostasis of the cell’s endomembrane system and are the basis 23, 37073 Göttingen, Germany. 2Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany. of functionally segregated compartments. COPI operates in retrieval from the Golgi to the endoplasmic reticulum (ER) and in intra-Golgi *Author for correspondence ([email protected]) transport (Beck et al., 2009; Duden, 2003; Lee et al., 2004a; Spang, E.C.A., 0000-0001-7716-7149; B.S., 0000-0003-0225-6432 2009), and maintains ER- and Golgi-resident chaperones and enzymes where they belong.
    [Show full text]
  • ADP-Ribosylation Factor, a Small GTP-Binding Protein, Is Required for Binding of the Coatomer Protein Fl-COP to Golgi Membranes JULIE G
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 6408-6412, July 1992 Biochemistry ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein fl-COP to Golgi membranes JULIE G. DONALDSON*, DAN CASSEL*t, RICHARD A. KAHN*, AND RICHARD D. KLAUSNER* *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, and tLaboratory of Biological Chemistry, Division of Cancer Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 Communicated by Marc Kirschner, April 20, 1992 (receivedfor review February 11, 1992) ABSTRACT The coatomer is a cytosolic protein complex localized to the Golgi complex, although their functions have that reversibly associates with Golgi membranes and is Impli- not been defined. Distinct among these proteins is the ADP- cated in modulating Golgi membrane transport. The associa- ribosylation factor (ARF), originally identified as a cofactor tion of 13-COP, a component of coatomer, with Golgi mem- required for in vitro cholera toxin-catalyzed ADP- branes is enhanced by guanosine 5'-[v-thioltriphosphate ribosylation of the a subunit of the trimeric GTP-binding (GTP[yS]), a nonhydrolyzable analogue of GTP, and by a protein G, (G,.) (19). ARF is an abundant cytosolic protein mixture of aluminum and fluoride ions (Al/F). Here we show that reversibly associates with Golgi membranes (20, 21). that the ADP-ribosylation factor (ARF) is required for the ARF has been shown to be present on Golgi coated vesicles binding of (-COP. Thus, 13-COP contained in a coatomer generated in the presence of GTP[yS], but it is not a com- fraction that has been resolved from ARF does not bind to Golgi ponent of the cytosolic coatomer (22).
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Human Gene Copy Number Spectra Analysis in Congenital Heart Malformations Aoy Tomita-Mitchell Medical College of Wisconsin
    CORE Metadata, citation and similar papers at core.ac.uk Provided by epublications@Marquette Marquette University e-Publications@Marquette Mathematics, Statistics and Computer Science Mathematics, Statistics and Computer Science, Faculty Research and Publications Department of 5-1-2012 Human gene copy number spectra analysis in congenital heart malformations Aoy Tomita-Mitchell Medical College of Wisconsin Donna K. Mahnke Medical College of Wisconsin Craig Struble Marquette University, [email protected] Maureen E. Tuffnell Marquette University Karl D. Stamm Marquette University See next page for additional authors Accepted version. Physiological Genomics, Vol. 44, No. 9 (May 2012): 518-541. DOI. © 2012 The American Physiological Society. Used with permission. Authors Aoy Tomita-Mitchell, Donna K. Mahnke, Craig Struble, Maureen E. Tuffnell, Karl D. Stamm, Mats Hidestrand, Susan Harris, Mary A. Goetsch, Pippa Simpson, David P. Bick, Ulrich Broeckel, Andrew N. Pelech, James S. Tweddell, and Michael Mitchell This article is available at e-Publications@Marquette: https://epublications.marquette.edu/mscs_fac/272 NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation at the bottom of the page. Human Gene Copy Number Spectra Analysis in Congenital Heart Malformations Aoy Tomita-Mitchell Department of Surgery, Division of Cardiothoracic Surgery; Biotechnology and Bioengineering Center; Human and Molecular Genetics Center; Medical College of Wisconsin; Milwaukee, WI Donna K. Mahnke Department of Surgery, Division of Cardiothoracic Surgery; Biotechnology and Bioengineering Center; Human and Molecular Genetics Center; Medical College of Wisconsin; Milwaukee, WI Craig A. Struble Department of Mathematics, Statistics and Computer Science; Marquette University; Milwaukee, WI Maureen E.
    [Show full text]
  • ADP-Ribosylation Factor and Coatomer Couple Fusion to Vesicle Budding Zvulun Elazar,* Lelio Orci,T Joachim Ostermann,* Myl~Nc Amherdt,* Gary Tanigawa,* and James E
    ADP-Ribosylation Factor and Coatomer Couple Fusion to Vesicle Budding Zvulun Elazar,* Lelio Orci,t Joachim Ostermann,* Myl~nc Amherdt,* Gary Tanigawa,* and James E. Rothman* * Program in Cellular Biochemistry and Biophysics, Memorial Sloan Kettering Cancer Center, New York 10021; and ¢Institute of Histology and Embryology, University of Geneva Medical School, 1211 Geneva 4, Switzerland Abstract. The coat proteins required for budding pair directly without an intervening vesicle. Coupling COP-coated vesicles from Golgi membranes, coatomer may therefore result from the sequestration of fuso- and ADP-ribosylation factor (ARF) protein, are shown genic membrane proteins into assembling coated vesi- to be required to reconstitute the orderly process of cles that are only exposed when the coat is removed transport between Golgi cisternae in which fusion of after budding is complete. This mechanism of cou- transport vesicles begins only after budding ends. pling explains the phenomenon of "retrograde transport" When either coat protein is omitted, fusion is uncou- triggered by uncouplers such as the drug brefeldin A. pled from budding-donor and acceptor compartments ow is membrane fusion coupled to vesicle budding? Orci et al., 1989). Purification of COP-coated vesicles (Mal- A transport vesicle must fuse with its target only hotra et al., 1989; Serafini et al., 1991a,b) revealed that their H after its budding from the parental membrane is coats consist of a small GTP-binding protein (ADP-ribosyla- completed. Otherwise, the various membrane-bound com- tion factor, ARF) ~ and a complex of seven distinct proteins partments connected by vesicle shuttles would fuse and the termed coatomer (Waters et al., 1992a; Stenbeck et al., topological organization of the endomembrane system in 1993), whose subunits are or, B, B', 3', ~, e, and ~'-COPs.
    [Show full text]
  • Molecular Genetics of Microcephaly Primary Hereditary: an Overview
    brain sciences Review Molecular Genetics of Microcephaly Primary Hereditary: An Overview Nikistratos Siskos † , Electra Stylianopoulou †, Georgios Skavdis and Maria E. Grigoriou * Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; [email protected] (N.S.); [email protected] (E.S.); [email protected] (G.S.) * Correspondence: [email protected] † Equal contribution. Abstract: MicroCephaly Primary Hereditary (MCPH) is a rare congenital neurodevelopmental disorder characterized by a significant reduction of the occipitofrontal head circumference and mild to moderate mental disability. Patients have small brains, though with overall normal architecture; therefore, studying MCPH can reveal not only the pathological mechanisms leading to this condition, but also the mechanisms operating during normal development. MCPH is genetically heterogeneous, with 27 genes listed so far in the Online Mendelian Inheritance in Man (OMIM) database. In this review, we discuss the role of MCPH proteins and delineate the molecular mechanisms and common pathways in which they participate. Keywords: microcephaly; MCPH; MCPH1–MCPH27; molecular genetics; cell cycle 1. Introduction Citation: Siskos, N.; Stylianopoulou, Microcephaly, from the Greek word µικρoκεϕαλi´α (mikrokephalia), meaning small E.; Skavdis, G.; Grigoriou, M.E. head, is a term used to describe a cranium with reduction of the occipitofrontal head circum- Molecular Genetics of Microcephaly ference equal, or more that teo standard deviations
    [Show full text]
  • Table S2.Up Or Down Regulated Genes in Tcof1 Knockdown Neuroblastoma N1E-115 Cells Involved in Differentbiological Process Anal
    Table S2.Up or down regulated genes in Tcof1 knockdown neuroblastoma N1E-115 cells involved in differentbiological process analysed by DAVID database Pop Pop Fold Term PValue Genes Bonferroni Benjamini FDR Hits Total Enrichment GO:0044257~cellular protein catabolic 2.77E-10 MKRN1, PPP2R5C, VPRBP, MYLIP, CDC16, ERLEC1, MKRN2, CUL3, 537 13588 1.944851 8.64E-07 8.64E-07 5.02E-07 process ISG15, ATG7, PSENEN, LOC100046898, CDCA3, ANAPC1, ANAPC2, ANAPC5, SOCS3, ENC1, SOCS4, ASB8, DCUN1D1, PSMA6, SIAH1A, TRIM32, RNF138, GM12396, RNF20, USP17L5, FBXO11, RAD23B, NEDD8, UBE2V2, RFFL, CDC GO:0051603~proteolysis involved in 4.52E-10 MKRN1, PPP2R5C, VPRBP, MYLIP, CDC16, ERLEC1, MKRN2, CUL3, 534 13588 1.93519 1.41E-06 7.04E-07 8.18E-07 cellular protein catabolic process ISG15, ATG7, PSENEN, LOC100046898, CDCA3, ANAPC1, ANAPC2, ANAPC5, SOCS3, ENC1, SOCS4, ASB8, DCUN1D1, PSMA6, SIAH1A, TRIM32, RNF138, GM12396, RNF20, USP17L5, FBXO11, RAD23B, NEDD8, UBE2V2, RFFL, CDC GO:0044265~cellular macromolecule 6.09E-10 MKRN1, PPP2R5C, VPRBP, MYLIP, CDC16, ERLEC1, MKRN2, CUL3, 609 13588 1.859332 1.90E-06 6.32E-07 1.10E-06 catabolic process ISG15, RBM8A, ATG7, LOC100046898, PSENEN, CDCA3, ANAPC1, ANAPC2, ANAPC5, SOCS3, ENC1, SOCS4, ASB8, DCUN1D1, PSMA6, SIAH1A, TRIM32, RNF138, GM12396, RNF20, XRN2, USP17L5, FBXO11, RAD23B, UBE2V2, NED GO:0030163~protein catabolic process 1.81E-09 MKRN1, PPP2R5C, VPRBP, MYLIP, CDC16, ERLEC1, MKRN2, CUL3, 556 13588 1.87839 5.64E-06 1.41E-06 3.27E-06 ISG15, ATG7, PSENEN, LOC100046898, CDCA3, ANAPC1, ANAPC2, ANAPC5, SOCS3, ENC1, SOCS4,
    [Show full text]
  • The Structure of the COPI Coat Determined Within the Cell
    RESEARCH ADVANCE The structure of the COPI coat determined within the cell Yury S Bykov1,2, Miroslava Schaffer3, Svetlana O Dodonova1†, Sahradha Albert3, Ju¨ rgen M Plitzko3, Wolfgang Baumeister3*, Benjamin D Engel3*, John AG Briggs1,2* 1Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; 2Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom; 3Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany Abstract COPI-coated vesicles mediate trafficking within the Golgi apparatus and from the Golgi to the endoplasmic reticulum. The structures of membrane protein coats, including COPI, have been extensively studied with in vitro reconstitution systems using purified components. Previously we have determined a complete structural model of the in vitro reconstituted COPI coat (Dodonova et al., 2017). Here, we applied cryo-focused ion beam milling, cryo-electron tomography and subtomogram averaging to determine the native structure of the COPI coat within vitrified Chlamydomonas reinhardtii cells. The native algal structure resembles the in vitro mammalian structure, but additionally reveals cargo bound beneath b’–COP. We find that all coat components *For correspondence: disassemble simultaneously and relatively rapidly after budding. Structural analysis in situ, [email protected] (WB); maintaining Golgi topology, shows that vesicles change their size, membrane thickness, and cargo [email protected] (BDE); content as they progress from cis to trans, but the structure of the coat machinery remains [email protected] constant. (JAGB) DOI: https://doi.org/10.7554/eLife.32493.001 Present address: †Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Go¨ ttingen, Germany Introduction Vesicular transport between cellular compartments is a fundamental mechanism of eukaryotic cells.
    [Show full text]
  • Ykt6 Membrane-To-Cytosol Cycling Regulates Exosomal Wnt Secretion
    bioRxiv preprint doi: https://doi.org/10.1101/485565; this version posted December 3, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Ykt6 membrane-to-cytosol cycling regulates exosomal Wnt secretion Karen Linnemannstöns1,2, Pradhipa Karuna1,2, Leonie Witte1,2, Jeanette Kittel1,2, Adi Danieli1,2, Denise Müller1,2, Lena Nitsch1,2, Mona Honemann-Capito1,2, Ferdinand Grawe3,4, Andreas Wodarz3,4 and Julia Christina Gross1,2* Affiliations: 1Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany. 2Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany. 3Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany 4Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne, Germany *Correspondence: Dr. Julia Christina Gross, Hematology and Oncology/Developmental Biochemistry, University Medical Center Goettingen, Justus-von-Liebig Weg 11, 37077 Goettingen Germany Abstract Protein trafficking in the secretory pathway, for example the secretion of Wnt proteins, requires tight regulation. These ligands activate Wnt signaling pathways and are crucially involved in development and disease. Wnt is transported to the plasma membrane by its cargo receptor Evi, where Wnt/Evi complexes are endocytosed and sorted onto exosomes for long-range secretion. However, the trafficking steps within the endosomal compartment are not fully understood. The promiscuous SNARE Ykt6 folds into an auto-inhibiting conformation in the cytosol, but a portion associates with membranes by its farnesylated and palmitoylated C-terminus. Here, we demonstrate that membrane detachment of Ykt6 is essential for exosomal Wnt secretion.
    [Show full text]
  • Silencing the COPB2 Gene Decreases the Proliferation, Migration and Invasion of Human Triple‑Negative Breast Cancer Cells
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 22: 792, 2021 Silencing the COPB2 gene decreases the proliferation, migration and invasion of human triple‑negative breast cancer cells WENCHENG WU1*, CHENYU WANG1*, FENGXIA WANG1, YAN WANG2, YANLING JIN1, JING LUO1, MIN WANG1, CHENLI ZHANG1, SHUYA WANG1, FANGFANG ZHANG1 and MIN LI1,3 1Department of Pathology, School of Basic Medical Sciences, Lanzhou University; 2Gansu Provincial Hospital; 3Gansu Provincial Key Laboratory of Preclinical Study for New Drug Development, Lanzhou University, Lanzhou, Gansu 730000, P.R. China Received November 11, 2020; Accepted April 23, 2021 DOI: 10.3892/etm.2021.10224 Abstract. Triple‑negative breast cancer (TNBC) is highly develops in young women and is phenotypically defined as invasive, has a high rate of recurrence and is associated with a the lack of receptors for estrogen (ER), progesterone (PR) poor clinical outcome when compared with non‑TNBC due to a and human epidermal growth factor receptor 2 (HER‑2) (3). lack of effective and targeted treatments. The coatomer protein Cells from TNBC are more invasive, prone to lymph node complex subunit β2 (COPB2) is upregulated in various types of metastasis and are associated with poor clinical outcomes, malignant cancer. The present study demonstrated that COPB2 when compared with cells from non‑TNBC (4‑6). TNBC cells expression levels were significantly upregulated in breast respond poorly to endocrine and anti‑HER‑2 therapeutic strate‑ carcinoma HS‑578T cells (clonal cells originating from TNBC) gies, as they lack the receptors targeted by these therapies and, when compared with non‑TNBC MCF‑7 cells. HS‑578T cells thus, surgical treatment is preferred, followed by postoperative also exhibited higher rates of proliferation, invasion and chemotherapy or radiotherapy (2).
    [Show full text]