University Microfilms, Inc., Ann Arbor, Michigan the UNIVERSITY of OKLAHOMA

Total Page:16

File Type:pdf, Size:1020Kb

University Microfilms, Inc., Ann Arbor, Michigan the UNIVERSITY of OKLAHOMA This dissertation has been microiUmed exactly as received 68-17 591 LAWRENCE, Gerald Charles, 1931- THE ASSIMILATION OF NEWTONIAN MECHANICS, 1687-1736. The University of Oklahoma, Ph,D,, 1968 History, modem University Microfilms, Inc., Ann Arbor, Michigan THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE THE ASSIMILATION OF NEWTONIAN MECHANICS, 1687-1736 A DISSERTATION SUBlfflTTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY BY GERALD CHARLES LAWRENCE Norman, Oklahoma 1968 THE ASSIMILATION OF NEWTONIAN MECHANICS 1687-1736 APPROVED BY —] DISSERTATION COMMITTEE ACKNOWLEDGMENTS To Professor Duane H. D. Roller who provided the initial stimulus to my study of the history of science, and to Professor Thomas M. Smith who guided me through my first year as a graduate student in the history of science, for their suggestions and criticisms concerning this dissertation. To Professor David B. Kitts for awakening in me the interest in the structure of scientific knowledge that provided the main thesis of this dissertation, and for his reading and criticism of it. And'^to my wife, Dora, without whose constant support this work would not have been possible. Ill TABLE OF CONTENTS Page INTRODUCTION................................... 1 Chapter I. THE MECHANICAL THEORY OF NEWTON'S PRINCIPIA. 18 II. THE NEWTONIANS AND ANTI-NEWTONIANS......... 69 III. FRENCH MECHANICS IN TRANSITION.............. ILA IV. FRENCH AND ENGLISH MECHANICS IN CONFLICT..... 216 CONCLUSION..................... 254 BIBLIOGRAPHY.............. 260 IV THE ASSIMILATION OF NEWTONIAN MECHANICS, 1687-1736 INTRODUCTION The period extending from the publication of the Philosophiae naturalis nrincipia mathematica of Isaac Newton (1642-1728) in l687 to the publication of the Mechanica sive motus scientia analvtice exposita of Leonhard Euler (1707-1785) in 1736 is one that shows no profound new developments in mechanical theory and is, for this reason, passed over in works dealing with the development of mechanical thought on a large scale.^ However, precisely because there seems to be so little advance, this period is of interest from the standpoint of the process through which ideas are assimilated by what might be~t.ermed second-rate thinkers. These are the men who perform the work of criticism and elaboration on the ideas provided by the men of superior creative insight. The par­ ticular period under consideration here is unusually illuminating for a number of reasons : the tension in the political atmosphere between England and France, the impact of the initial phases of industrial rev­ olution, but especially because of the nature of Newton’s innovations in See René Dugas, A History of Mechanics (New York: Central Book Company, Inc., 1955), Eugen K. Duhring, Kritische Geschichte der allgemeinen Prinzioien der Mechanik (Leipzig: Fues's Verlag, 1887) Ernst Mach, Die Mechanik in ihrer Eutwickelung historisch-kritisch dargestellt (Leipzig: F. A. Brockhaus, 1904). 2 mechanical thought and in the conception of the nature of scientific explanationo In the Princinia. Newton laid out an extremely impressive, but somewhat obscure theory of mechanics. It takes a good measure of hind­ sight and a considerable amount of analysis to make out the true nature of Newton's thought, so that the vast array of theorems presented in the Princinia seemed to his contemporaries more an achievement inviting awe and belief than an understandable theoretical system. In contrast to this, Euler, in his Mechanics. elaborated mechanical theory in terms of analysis, as is indicated in the title of the book, and, in so doing, produced a work that represented an understandable system, provided of course that one understood analysis, i.e., the differential and integral calculus. Euler wrote that the use of geometrical demonstrations— the means of demonstration employed by Newton— serves to convince one of the truth of a statement of principle, but does not give understanding. This 2 can only be achieved in analysis. Euler's use of the word "understanding" seems to imply more than comprehension of a merely logical system. It demands insight into the actual physical processes whose observable consequences are represented by theory as well as insight into the ultimate nature of the matter involved in these processes. This sort of understanding is what was provided by the calculus. 2 Leonhard Euler, Leonhard Euler's Mechanik oder analvtische Darstellung der Wissenschaft mit Anmerkungen und Erlauterungen. heraus- gegeben von J. Ph. Wolfers (Greifswald: C, A. Kogh's Verlagshandlung, 184.8), I, pp. 3-4.. 3 However, since Euler's formulation of mechanical theory, as well as those of Joseph-Louis Lagrange (1736-1813) and William Rowan Hamilton (l805-l865), was mathematically equivalent to Newton’s formula- tion, it seems likely that both, or all, were founded on the same mathematical basis. Further, there is the age-old distinction between mathematics as a method of discovery and mathematics as a means of demon­ stration to consider: how did Newton come by the discoveries which he proved in the traditional, geometrical manner? Since Newton was the inventor of an infinitesimal calculus, the so-called calculus of fluxions, there is a possibility that calculus was the tool used in the construc­ tion of his theory. As such, the calculus would constitute the "under­ standable" structure of the theory. It is upon this thesis that the present work rests; with the assumption that analysis is the implicit structure of Newton's mechanics the period under examination takes on, in one aspect, the form of a dissemination.of a new type of mathematical thought, i.e., the infini­ tesimal calculus. This would suggest that Gottfried Wilhelm Leibniz (1646-1716), who was an independent inventor of the infinitesimal calcu­ lus, might have exerted a large influence on mechanical thought in the period. In fact, as will be shown, the influence of Leibniz, especially through John Bernoulli (1667-174-8), was more decisive than that of Newton on the French mechanicians, who were, on the whole, far advanced over their English contemporaries. O Ernest Nagel, The Structure of Science. Problems in the Logic of Scientific Explanation (New York: Harcourt, Brace and World, Inc., 1961), p. 158. u With this in mind, the study of the history of mechanical thought between 1687 and 1736 can be broken down into a number of major, problems: the mathematical nature and origins of Newton's theory of mechanics, the difficulties that that theory entailed for his English followers, the differences between English and French mechanical tradi­ tion, the nature and scope of Leibniz's contributions to mathematical- mechanical thought, grounds for the French acceptance and English rejection of Leibniz, and finally the basis on which a reconciliation of French and English mechanical thought could be made. These subsidiary problems suggested by the mathematical aspect of the development of mechanical theory can be more easily and adequately treated when the relation of mathematics to physical theory is understood. According to Ernest Nagel, scientific theory can be analyzed into three major components: an abstract calculus^ which is the logical skeleton of the theory; a set of rules that assign an empirical content to the abstract calculus (so-called rules of correspondence); and an interpretation for the abstract calculus, which gives "flesh" to the skeletal structure From this analysis of the component parts of theory, the infinitesimal calculus invented by Newton and Leibniz should correspond to the logical structure of mechanics. That is, the system of postulates and definitions that constitute the basis of the theory should form an abstract relational structure for the terms of the theory which is the same as the infinitesimal calculus. For instance, the relationships between force, distance, velocity, and acceleration defined in the '^Ibid. ; p. 90. 5 mechanical theory should correspond exactly to the relationships between similar terms in the infinitesimal calculus. If the abstract calculus were the only significant aspect of scientific theory, the history of mechanics in the period would be simply a matter of tracing the spread of mathematical understanding; anybody who could operate with the calculus could understand and accept the corres­ ponding theory of mechanics. However, the other two components of theory are of equal importance and are capable of producing controversy and even of obscuring the understanding or preventing the acceptance of the cal­ culus as a proper relational structure for mechanics. With regard to the matter of assigning empirical content to the theory, a long and acrimonious dispute was carried on between Newtonian and Leibnizian adherents over the proper empirical determination of force in a moving body; the Newtonians insisted that force was proportional to the velocity and the Leibnizians insisted that it was proportional to the square of the velocity. Both of these results could be derived from the theory and verified in experience, depending on whether one assumed that the time factor or the distance factor was of basic significance in the understanding of force. The interpretation of the abstract calculus was, however, the popularly significant aspect of any mechanical theory, from the point of view of its acceptance or rejection. As has been stated, the interpre­ tation gives "flesh" to the abstract calculus; it provides the physical and metaphysical elaboration that ties the theory to reality. The pic­ ture of reality carried in Newton's mechanics, for instance, offended many men because in it particles of matter could affect other particles of 6 matter without being in contact with them; it offended others because it seemed to make the world too deterministic and to leave no place for the free action of God or the freedom of the human mind. Leibnizian ideas on mechanics, on the other hand, were associated with his theory of "monads," which had a somewhat mystical character and was simply unacceptable in an individualistic and materialistic age; matter as hard massy particles did not have real existence for Leibniz.
Recommended publications
  • The Philosophy of Physics
    The Philosophy of Physics ROBERTO TORRETTI University of Chile PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK www.cup.cam.ac.uk 40 West 20th Street, New York, NY 10011-4211, USA www.cup.org 10 Stamford Road, Oakleigh, Melbourne 3166, Australia Ruiz de Alarcón 13, 28014, Madrid, Spain © Roberto Torretti 1999 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 1999 Printed in the United States of America Typeface Sabon 10.25/13 pt. System QuarkXPress [BTS] A catalog record for this book is available from the British Library. Library of Congress Cataloging-in-Publication Data is available. 0 521 56259 7 hardback 0 521 56571 5 paperback Contents Preface xiii 1 The Transformation of Natural Philosophy in the Seventeenth Century 1 1.1 Mathematics and Experiment 2 1.2 Aristotelian Principles 8 1.3 Modern Matter 13 1.4 Galileo on Motion 20 1.5 Modeling and Measuring 30 1.5.1 Huygens and the Laws of Collision 30 1.5.2 Leibniz and the Conservation of “Force” 33 1.5.3 Rømer and the Speed of Light 36 2 Newton 41 2.1 Mass and Force 42 2.2 Space and Time 50 2.3 Universal Gravitation 57 2.4 Rules of Philosophy 69 2.5 Newtonian Science 75 2.5.1 The Cause of Gravity 75 2.5.2 Central Forces 80 2.5.3 Analytical
    [Show full text]
  • Moral Values in Duhem's Philosophy of Science
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of San Francisco The University of San Francisco USF Scholarship: a digital repository @ Gleeson Library | Geschke Center Philosophy College of Arts and Sciences 2011 The cS ientist as Impartial Judge: Moral Values in Duhem’s Philosophy of Science David J. Stump University of San Francisco, [email protected] Follow this and additional works at: http://repository.usfca.edu/phil Part of the Philosophy Commons Recommended Citation Stump, David J., "The cS ientist as Impartial Judge: Moral Values in Duhem’s Philosophy of Science" (2011). Philosophy. Paper 13. http://repository.usfca.edu/phil/13 This Article is brought to you for free and open access by the College of Arts and Sciences at USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. It has been accepted for inclusion in Philosophy by an authorized administrator of USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact [email protected]. The Scientist as Impartial Judge: Moral Values in Duhem’s Philosophy of Science (Part of a book symposium New Perspectives on Pierre Duhem’s Aim and Structure of Scientific Theory in Metascience (2011) 20(1): 1-25) David J. Stump Department of Philosophy University of San Francisco 2130 Fulton Street San Francisco, CA 94117 [email protected] Rereading Duhem’s classic work in the philosophy of science is a true pleasure that I highly recommend. There is of course more in Duhem’s work than can possibly be covered in a short review, so I will focus on his famous epistemological claims and the solution that Duhem proposes to them.
    [Show full text]
  • Dossier Pierre Duhem Pierre Duhem's Philosophy and History of Science
    Transversal: International Journal for the Historiography of Science , 2 (201 7) 03 -06 ISSN 2526 -2270 www.historiographyofscience.org © The Author s 201 7 — This is an open access article Dossier Pierre Duhem Pierre Duhem’s Philos ophy and History of Science Introduction Fábio Rodrigo Leite 1 Jean-François Stoffel 2 DOI: http://dx.doi.org/10.24117/2526-2270.2017.i2.02 _____________________________________________________________________________ We are pleased to present in this issue a tribute to the thought of Pierre Duhem, on the occasion of the centenary of his death that occurred in 2016. Among articles and book reviews, the dossier contains 14 contributions of scholars from different places across the world, from Europe (Belgium, Greece, Italy, Portugal and Sweden) to the Americas (Brazil, Canada, Mexico and the United States). And this is something that attests to the increasing scope of influence exerted by the French physicist, philosopher and 3 historian. It is quite true that since his passing, Duhem has been remembered in the writings of many of those who knew him directly. However, with very few exceptions (Manville et al. 1927), the comments devoted to him exhibited clear biographical and hagiographic characteristics of a generalist nature (see Jordan 1917; Picard 1921; Mentré 1922a; 1922b; Humbert 1932; Pierre-Duhem 1936; Ocagne et al. 1937). From the 1950s onwards, when the studies on his philosophical work resumed, the thought of the Professor from Bordeaux acquired an irrevocable importance, so that references to La théorie physique: Son objet et sa structure became a common place in the literature of the area. As we know, this recovery was a consequence of the prominence attributed, firstly, to the notorious Duhem-Quine thesis in the English- speaking world, and secondly to the sparse and biased comments made by Popper that generated an avalanche of revaluations of the Popperian “instrumentalist interpretation”.
    [Show full text]
  • From Natural Philosophy to Natural Science: the Entrenchment of Newton's Ideal of Empirical Success
    From Natural Philosophy to Natural Science: The Entrenchment of Newton's Ideal of Empirical Success Pierre J. Boulos Graduate Pro gram in Philosophy Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Faculty of Graduate Studies The Universly of Western Ontario London, Ontario April 1999 O Pierre J- Boulos 1999 National Library Bibliotheque nationale of Canada du Canada Acquisitions and Acquisitions et Bibliographic Services services bibliographiques 395 Wellington Street 395, rue Wellington Ottawa ON KIA ON4 Ottawa ON KIA ON4 Canada Canada Your Me Voue reference Our file Notre rddrence The author has granted a non- L'auteur a accorde me licence non exclusive licence dowing the exclusive pennettant a la National Library of Canada to Bibliotheque nationale du Canada de reproduce, loan, distribute or sell reproduire, preter, distribuer ou copies of this thesis in microform, vendre des copies de cette these sous paper or electronic formats. la forme de microfiche/£ih, de reproduction sur papier ou sur format electronique. The author retains ownership of the L'auteur conserve la propriete du copyright in this thesis. Neither the droit d'auteur qui protege cette these. thesis nor substantial extracts &om it Ni la these ni des extraits substantieis may be printed or otherwise de celle-ci ne doivent Stre imprimes reproduced without the author's ou autrement reproduits sans son permission. autorisation. ABSTRACT William Harper has recently proposed that Newton's ideal of empirical success as exempli£ied in his deductions fiom phenomena informs the transition fiom natural philosophy to natural science. This dissertation examines a number of methodological themes arising fiom the Principia and that purport to exemplifjr Newton's ideal of empirical success.
    [Show full text]
  • Avicenna's Theory of Minima Naturalia Jon Mcginnis University of Missouri-St
    University of Missouri, St. Louis IRL @ UMSL Philosophy Faculty Works Philosophy 1-2015 A Small Discovery: Avicenna's Theory of Minima Naturalia Jon McGinnis University of Missouri-St. Louis, [email protected] Follow this and additional works at: http://irl.umsl.edu/philosophy-faculty Part of the Philosophy Commons Recommended Citation McGinnis, J. "A Small Discovery: Avicenna’s Theory of Minima Naturalia." Journal of the History of Philosophy, vol. 53 no. 1, 2015, pp. 1-24. Project MUSE, doi:10.1353/hph.2015.0002 http://irl.umsl.edu/philosophy-faculty/1 This Article is brought to you for free and open access by the Philosophy at IRL @ UMSL. It has been accepted for inclusion in Philosophy Faculty Works by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. A Small Discovery: Avicenna’s Theory of Minima Naturalia Jon McGinnis Journal of the History of Philosophy, Volume 53, Number 1, January 2015, pp. 1-24 (Article) Published by Johns Hopkins University Press DOI: https://doi.org/10.1353/hph.2015.0002 For additional information about this article https://muse.jhu.edu/article/566924 Access provided by Missouri @ St Louis, Univ of (17 Feb 2017 19:06 GMT) A Small Discovery: Avicenna’s Theory of Minima Naturalia JON MCGINNIS* ABSTRACT There has been a long-held misconception among historians of philosophy and science that apart from brief comments in Aristotle and Averroes, the theory of minima naturalia had to await Latin Schoolmen for its full articulation. Recently scholars have shown that far from sporadic comments on minima naturalia, Averroes in fact had a fully developed and well-integrated theory of them.
    [Show full text]
  • Was Pierre Duhem an Esprit De Finesse ?
    Transversal: International Journal for the Historiography of Science , 2 (201 7) 93 -107 ISSN 2526 -2270 www.historiographyofscience.org © The Author 201 7 — This is an open access article Dossier Pierre Duhem Was Pierre Duhem an Esprit de finesse ? Víctor Manuel Hernández Márquez 1 Abstract: Although Pierre Duhem is well known for his conventionalist outlook and, in particular, for his critique of crucial experiments outlined in his thesis on the empirical indeterminacy of theory, he also contributed to the scholarship on the psychological profiles of scientists by revising Pascal’s famous distinction between the subtle mind and the geometric mind ( esprits fins and esprits géométriques ). For Duhem, the ideal scientist is the one who combines the defining qualities of both types of intellect. As a physicist, Duhem made important theoretical contributions to the field of thermodynamics as well as to the then-nascent physical chemistry. Due to his rejection of atomism and his unrelenting critique of Maxwell’s electrodynamics, however, in his later years, Duhem’s work was surpassed and abandoned by the dominant tendencies of physics of the time. In this essay, I will discuss whether Duhem himself can be understood through the lens of his own account of the scientist’s psychological profile. More specifically, I examine whether the subtle 93 mind – to which he seems to assign greater cognitive value – in fact plays a key role in Duhem’s critique of the English School ( école anglaise ), or if his preference for the axiomatic structure of theoretical physics shows a greater affinity with the geometric mind. Keywords: Pierre Duhem; subtle and geometric minds; abstract and axiomatic theories; physical theory Received: 30 March 2017.
    [Show full text]
  • Continental Philosophy of Science: Mach, Duhem, and Bachelard Babette Babich Fordham University, [email protected]
    Fordham University Masthead Logo DigitalResearch@Fordham Articles and Chapters in Academic Book Philosophy Collections 2003 Continental Philosophy of Science: Mach, Duhem, and Bachelard Babette Babich Fordham University, [email protected] Follow this and additional works at: https://fordham.bepress.com/phil_babich Part of the Continental Philosophy Commons, and the Philosophy of Science Commons Recommended Citation Babich, Babette, "Continental Philosophy of Science: Mach, Duhem, and Bachelard" (2003). Articles and Chapters in Academic Book Collections. 5. https://fordham.bepress.com/phil_babich/5 This Article is brought to you for free and open access by the Philosophy at DigitalResearch@Fordham. It has been accepted for inclusion in Articles and Chapters in Academic Book Collections by an authorized administrator of DigitalResearch@Fordham. For more information, please contact [email protected]. CHAPTER 6 Philosophies of science Mach, Duhem, Bachelard Babette E.Babich THE TRADITION OF CONTINENTAL PHILOSOPHY OF SCIENCE If the philosophy of science is not typically represented as a ‘continental’ discipline it is nevertheless historically rooted in the tradition of continental thought. The different approaches to the philosophy of science apparent in the writings of Ernst Mach, Pierre Duhem and Gaston Bachelard suggest the range of these roots. But for a discussion of the tradition of continental philosophy of science—as the term ‘continental’ characterizes a contemporary style of philosophic thinking—it is important to emphasize that while Mach, Duhem and Bachelard may be said to be historically continental, a properly continental-style philosophy of science should not be ascribed to any one of them. Contemporary philosophy of science is pursued in what is largely an analytic or Anglo- American-style philosophic tradition.
    [Show full text]
  • Hyman, Arthur/ Averroes' 'De Substantia Orbis': Critical Edition Of
    MEDIEVAL ACADEMY BOOKS, NO. 96 CORPUS PHILOSOPHORUM MEDII AEVI AVERROIS HEBRAICUS CORPUS PHILOSOPHORUM MEDII AEVI ACADEMIARUM CONSOCIATARUM AUSPICIIS ET CONSILIO EDITUM OPERA AVERROIS Ediderunt HENRICUS AUSTRYN WOLFSON V't SHLOMO PINES THE MEDIEVAL ACADEMY OF AMERICA AND THE ISRAEL ACADEMY OF SCIENCES AND HUMANITIES AVERROES' DE SUBSTANTIA ORBIS Critical Edition of the Hebrew Text with English Translation and Commentary by ARTHUR HYMAN Cambridge, Massachusetts and Jerusalem 1986 ISBN 965-208-071-3 Library of Congress Catalog Card Number: 85-61823 Copyright ©1986 by the Medieval Academy of America Printed in Israel In 1931, the Medieval Academy of America undertook the publication of Averroes' Commentaries on Aristotle in accordance with H.A. Wolfson's "Plan for the publication of a Corpus Commentariorum Averrois in Aristotelem"', published in Speculum, VI (1931), pp. 412-427. In 1977, the Israel Academy of Sciences and Humanities undertook to publish the Hebrew translations of the works of Averroes. The present volume is a joint publication of both academies. It is the last to be published in the framework of the Medieval Academy series of Corpus Commentariorum Averrois in Aristoielem. S. Pines CONTENTS Preface 7 Introduction 13 CONCERNING THE SUBSTANCE OF THE CELESTIAL SPHERE BY AVERROES Chapter One 39 Chapter Two 74 Chapter Three 99 Chapter Four 112 Chapter Five 120 Chapter Six 123 Bibliography 139 Index of References 144 Index of Names and Subjects 148 Hebrew Section see p. 7 PREFACE Averroes is primarily known for his many commentaries on Aristotle's works and for his Tahdfut al-Tahafut, "The Incoherence of the Incoherence." He was also the author of a number of independent treatises dealing with a variety of philosophical and theological topics.
    [Show full text]
  • THE UNINTENDED CONSEQUENCES of the CONDEMNATION of 1277: DIVINE POWER and the ESTABLISHED ORDER in QUESTION Alexander S
    -? THE UNINTENDED CONSEQUENCES OF THE CONDEMNATION OF 1277: DIVINE POWER AND THE ESTABLISHED ORDER IN QUESTION Alexander S. Jensen School of Social Sciences and Humanities, Murdoch University and Perth Theological Hall INTRODUCTION In 1277, Bishop Stephen Tempier of Paris condemned two hundred and nineteen propositions, most inspired by Aristotelian thought, at the university there. With this condemnation, he cut short the academic debate about the latest theological developments, i.e., the reception of Aristotle's teaching. This was the first time that a whole coherent understanding of the world had come under attack, as opposed to the condemnation of an individual or a few theses. The condemnation of 1277 had astonishing unintended consequences. Even if most people would not agree with the brave statement of Pierre Duhem, that the condemnation of 1277 marked the birthday of modern science, it still had far-reaching effects.1 In this essay, I shall explore some of the unintended consequences of the condemnation of 1277. In particular, I shall discuss the impact ofthe insistence on the absolute freedom of God. This will take place in two steps. First, I shall examine the reception of the condemnation in the work of Duns Scotus. Second, I shall investigate two areas in the development of Western thinking in which the impact of the condemnation was felt, namely, the development of modern science and the theological understanding of God. Before we can embark on this discussion, however, I will need to provide some background on the developments leading to the condemnation and the condemnation itself. BACKGROUND The rediscovery of the corpus of Aristotle's writings was a major upheaval in mediaeval intellectual culture.
    [Show full text]
  • Ernst Mach and Pierre Duhem on Physical Theory
    ERNST MACH AND PIERRE DUHEM ON PHYSICAL THEORY This BOOK examines two variations on positivism formulated by two turn-of-the-twentieth-century physicists, Ernst Mach and Pierre Duhem. And it previews the story of positivism’s rejection by the physicists who made the two great scientific revolutions in twentieth-century physics, Einstein and Heisenberg. Mach’s Phenomenalism Ernst Mach (1838-1916) is a representative figure of the early positivist philosophy of science in physics at the turn of the twentieth century. He earned a doctorate in physics from the University of Vienna in 1860, taught experimental physics for most of his career at the University of Prague (1867-1895), and then held the chair of Inductive Philosophy at the University of Vienna (1895-1901). He was several times nominated for the Nobel Prize. He set himself the philosophical task of implementing the phenomenalist philosophy of David Hume in physics while Newtonian mechanics still prevailed in physics. Prior to contemporary pragmatism philosophers based their philosophies of science on one or another metaphysical viewpoint. Though positivists philosophers including Mach were explicitly “antimetaphysical” (Mach even denied that he was a philosopher), they were actually advocating their own metaphysics while labeling the views they opposed as “metaphysical”, and used the term pejoratively. Positivism is a philosophy that evolved in reaction against the various romantic philosophies, and what the positivists meant by “metaphysics” was the metaphysics of the romantics. Just as the views of the romantics evolved from the philosophical tradition of the rationalists, similarly those of the positivists evolved from the tradition of the empiricists.
    [Show full text]
  • The Duhem-Quine Thesis and the Dark Matter Problem
    The Duhem-Quine thesis and the dark matter problem M. A. Reynolds∗ Department of Physical Sciences, Embry-Riddle Aeronautical University, Daytona Beach, Florida, 32114 (Dated: November 5, 2018) Abstract There are few opportunities in introductory physics for a genuine discussion of the philosophy of science, especially in cases where the physical principles are straightforward and the mathematics is simple. Terrestrial classical mechanics satisfies these requirements, but students new to physics usually carry too many incorrect or misleading preconceptions about the subject for it to be analyzed epistemologically. The problem of dark matter, and especially the physics of spiral galaxy velocity rotation curves, is a straightforward application of Newton’s laws of motion and gravitation, and is just enough removed from everyday experience to be analyzed from a fresh perspective. It is proposed to teach students about important issues in the philosophy of physics, including Bacon’s induction, Popper’s falsifiability, and the Duhem-Quine thesis, all in light of the dark matter problem. These issues can be discussed in an advanced classical mechanics course, or, with limited simplification, at the end of a first course in introductory mechanics. The goal is for students to understand at a deeper level how the physics community has arrived at the current state of knowledge. Submitted to the American Journal of Physics arXiv:1507.06282v1 [physics.ed-ph] 22 Jul 2015 1 Epistemology without contact with science becomes an empty scheme. Science without epistemology is—in so far as it is thinkable at all—primitive and mud- dled. – Albert Einstein1 I. INTRODUCTION One feature of physics education today (and science education in general) is the lack of serious discussion of epistemological issues, especially in the intermediate courses that cover the “modern” physics topics of relativity and quantum mechanics.
    [Show full text]
  • Pierre Duhem and Scientific Truth: Contextual, Partial and Real
    Pierre Duhem and scientific truth: contextual, partial and real 4(2)/2016 ISSN 2300-7648 (print) / ISSN 2353-5636 (online) Received: June 3, 2016. Accepted: August 8, 2016 DOI: http://dx.doi.org/10.12775/SetF.2016.032 FRANCISCO JAVIER LÓPEZ RUIZ, GEOFFREY WOOLLARD Pierre Duhem and scientific truth: contextual, partial and real FRANCISCO JAVIER LÓPEZ RUIZ TDP Institute of Montreal [email protected] GEOFFREY WOOLLARD TDP Institute of Montreal [email protected] Abstract. Mariano Artigas understood scientific truth as real, but at the same time contextual and partial. Artigas shared some research interests and a general outlook with Pierre Duhem. We summarize the evaluation of Duhem’s thought by relevant authors and demonstrate how the way Artigas understood scientific truth in actual scientific research offers a suitable framework for capturing the realism towards which Duhem tended. This reading of Duhem runs counter to tendencies of the philosophy of science in Duhem’s time which employed expressions that sometimes framed him as a conventionalist. Keywords: Mariano Artigas; conventionalism; natural classification. Introduction Mariano Artigas dedicated his efforts to showing that scientific knowledge and knowledge through faith are not contradictory, but that there exists a fundamental harmony between them. He always stressed the relevance of philosophy as a form of human knowledge that is oriented towards 4(2)/2016, 319–341 319 FRANCISCO JAVIER LÓPEZ RUIZ, GEOFFREY WOOLLARD issues that lie beyond physics and experimental science. Artigas stressed that experimental science has limits that make it incapable of proving or disproving the existence of God, although it does provide data for philo- sophical reflection that facilitates certain rational conclusions consistent with those proposed by faith.
    [Show full text]