Sputum Biomarkers and Regulatory Innovation for MDR-TB Regimens

Total Page:16

File Type:pdf, Size:1020Kb

Sputum Biomarkers and Regulatory Innovation for MDR-TB Regimens Sputum biomarkers and regulatory innovation for MDR-TB regimens RS Wallis, MD, FIDSA, FRCPE Chief Science Officer, Aurum Institute, Johannesburg [email protected] EMA TB workshop 26 Nov 2016, London 1 M2 culture as a predictor of treatment success • A 2015 analysis of 2 cohorts of 1.0 1712 MDR-TB patients found conversion to negative at 2 months 0.8 using solid culture medium was strongly associated with success 0.6 Kurbatova, vs failure or death (OR=3.6 overall, Lancet RM 0.4 4.1 in HIV-negative patients). 2015 • The PPV of M2 conversion for cure Failure or death 0.2 Success in the study dataset was 92%. Premaining culture pos • New regimens with superior 0.0 conversion at M2 therefore are highly likely to show superior 0 6 12 18 24 success rates. Months to initial conversion 2 M2 culture and duration as predictors of relapse 0 • A 2013 analysis of 24 trials pub- 40% 4 mo lished from 1973 to 1997 of 58 -1 6 mo regimens studied in 7793 patients 20% identified positive month 2 culture -2 10% status using solid medium (M2C) Wallis, and treatment duration as -3 5% PLoS One independent predictors of relapse. 2013 2% • Predictions took the form: -4 logit(relapse) = a+bx+cy, where 1% shading indicates 80% PI x=logit(M2C) and y=log(duration) -5 Predictedrecurrence rate (logit) 1% 2% 5% 10% 20% 40% -5 -4 -3 -2 -1 0 M2C positive (logit) 3 M2 culture and duration as predictors of relapse • The model was subsequently vali- -1 4 mo 20% 6 mo dated using independent data from 12 mo -2 6 studies of 12 regimens involving 10% 3907 patients. Predicted and ob- served relapses correlated at 0.94. -3 5% Wallis, • The model was robust and general- PLoS One -4 2% Ph2 FQ izable, as FQ trials were predicted OFLOTUB 2015 without prior FQ data, the TBRU 1% REMox -5 Rifaquin treatment shortening trial was .5% TBRU predicted without prior host data, Bangladesh and the Bangladesh regimen trials Predictedrecurrence rate (logit) -6 .5% 1% 2% 5% 10% 20% were predicted without prior MDR -6 -5 -4 -3 -2 -1 or clofazimine data. Observed recurrence rate (logit) 4 M2 culture and duration as predictors of relapse • TBRU treatment shortening trial: -1 4 mo 20% 6 mo 390 HIV-negative patients with non- 12 mo -2 cavitary disease at baseline and 10% negative cultures at M2 were ran- domly assigned to 4 or 6 months -3 5% total treatment. The study succeed- Wallis, PLoS One ed in showing low relapse rates -4 2% Ph2 FQ OFLOTUB 2015 overall (7.0% and 1.6%, respective- 1% REMox ly), but failed by finding that dura- -5 Rifaquin .5% TBRU tion was a predictor of relapse even Bangladesh in this low risk population. Predictedrecurrence rate (logit) -6 .5% 1% 2% 5% 10% 20% -6 -5 -4 -3 -2 -1 Observed recurrence rate (logit) 5 M2 culture and duration as predictors of relapse • Bangladesh regimen studies: -1 4 mo 20% 6 mo MDR-TB patients were enrolled into 12 mo -2 2 open label single arm cohort 10% studies of a 12-month clofazimine- containing regimen in Niger and -3 5% Cameroon. 149 cured patients were Wallis, PLoS One followed for >1 year post cure. M2C -4 2% Ph2 FQ OFLOTUB 2015 positive proportions were 6% and 1% REMox 13%. No relapses were detected. -5 Rifaquin .5% TBRU Bangladesh Predictedrecurrence rate (logit) -6 .5% 1% 2% 5% 10% 20% -6 -5 -4 -3 -2 -1 Observed recurrence rate (logit) 6 M2 culture and duration as predictors of relapse • We also found that the weighted -1 4 mo 20% 6 mo mean results of all four 4-month FQ 12 mo -2 arms in OFLOTUB, REMox and 10% Rifaquin could be predicted based on phase 2 data from 5 trials of 6 -3 5% FQ regimens involving 443 patients. Wallis, PLoS One -4 2% Ph2 FQ • Database now includes 30 studies, OFLOTUB 2015 70 regimens, and 11700 patients. 1% REMox -5 Rifaquin .5% TBRU • M2C is the sole TB treatment Bangladesh biomarker meeting the criteria of Predictedrecurrence rate (logit) -6 .5% 1% 2% 5% 10% 20% Chau et al for “known valid”. Clin Cancer Res 2008 -6 -5 -4 -3 -2 -1 Observed recurrence rate (logit) 7 Innovation to combat drug-resistant infections • 25 years ago, the creation of new regulatory approval mechanisms (conditional authorization and accelerated approval) relieved ethically unacceptable bottlenecks in HIV ARV drug development. • They permitted the substitution of a biomarker for a clinical endpoint, thus expediting new treatments for serious or life-threatening diseases based on phase 2 data, but did not eliminate the requirement to conduct phase 3 trials. • We now face a similar crisis for drug-resistant bacterial infections. • 2 innovative mechanisms (Adaptive Pathways and Special Medical Use) promise expedited approvals restricted to patients with high unmet need and few treat- ment alternatives, based on limited clinical data. Approvals are tied to a require- ment to report outcomes, but not to phase 3 trials. Approvals may expand to additional populations as additional safety and efficacy data are gathered. 8 Innovation to combat drug-resistant infections Approved by FDA in 2015 for complicated intra-abdominal and urinary infections based on 2 ph2 trials, each with 100 Avycaz-treated patients. “As only limited clinical safety and efficacy data are available, reserve Avycaz for use in patients who have limited or no alternative treatment options” Approved by FDA in 2015 for mucormycosis based on 1 single arm open label trial with 37 patients and only historical controls. (Marty, LID 2016) Provisionally recommended by WHO in 2016 as a part of short-course regimens for selected MDR-TB patients despite the complete lack of randomized controlled phase 3 trial data, the absence of regulatory approvals of clofazimine for TB, and some uncertainty as to how patients are to be determined eligible. 9 Sutezolid as a test case for adaptive pathways • A linezolid analog with superior anti-TB activity in preclinical studies and superior safety in phases 1-2, acquired by Sequella from Pfizer in 2013. • Sutezolid is a potentially important component of new “pan-TB” regimens comprised entirely of new agents without pre-existing resistance • Consistent with the recently published WHO target profile for such regimens, and with the designation as a high priority area for TB research by funders • Aurum Institute is exploring ways to support development of sutezolid as a part of a new pan-TB regimen with delamanid and bedaquiline (SDB) 10 Sutezolid as a test case for adaptive pathways License 1 Study 3 License 2 Study 4 License 3 Adaptive Open label Adaptive Open label Full Study 1 Study 2 pathway cohort pathway cohort approval 14d study 2mo study licensing study of licensing study of of SDB of PK, QT, of efficacy of SDB for SDB in of SDB for SDB in for pan- safety, & and safety, MDR-TB MDR-TB pan-TB pan-TB TB EBA of in MDR-TB, multiple of SDB, BR+ 2-3 drug sutezolid, License 1 Study 3 License 2 Duration combos and BR+ Conditional Phase 3 trial FullDuration approval of placebo authorizainformed- of sutezolid sutezolid+BRinformed tionby study of 2 vs placebo forby studyMDR- 3TB sutezolidand tested in MDR-TB and tested +BRin study for 3 patients in study 4 MDR-TB receiving BR 11 MDR-TB as a test case for adaptive pathways • Major global unmet medical needs would be addressed • Creating a new, shorter, more effective TB regimen not requiring DST • Shortening by 2-3 years patient access to this regimen • An existing global infrastructure can be harnessed • Dedicated hospitals, trained physicians, mandated prescribing policies • Globally accepted mechanisms for outcome reporting • Normative roles of multiple international and national bodies • Precedented engagement of TB control programs to test new regimens under “real-life” conditions • Fully qualified biomarker • Success in MDR-TB can be readily adapted/expanded to DS-TB 12 Questions for discussion • Superior culture conversion formed the basis of the conditional/accelerated authorizations of bedaquiline and delamanid. Is M2C sufficiently validated to advance a novel pan-TB regimen via the adaptive pathway? • It is generally required that combination treatments justify each component by showing its contribution to the desired outcome. Is the sutezolid+BR arm of study 2 necessary and sufficient for this purpose? • In adaptive licensing, the benefit-risk balance informs the selection of patient populations and the size of required safety and efficacy databases. Is the progression from MDR-TB to pan-TB appropriate for the adaptive development of an entirely novel regimen? If so, how many subjects need be included in study 2 to proceed with the first adaptive pathway licensing for MDR-TB? 13 [email protected] 14 .
Recommended publications
  • Oxazolidinones for TB
    Oxazolidinones for TB: Current Status and Future Prospects 12th International Workshop on Clinical Pharmacology of Tuberculosis Drugs London, UK 10 September 2019 Lawrence Geiter, PhD Disclosures • Currently contract consultant with LegoChem Biosciences, Inc., Daejeon, Korea (LCB01-0371/delpazolid) • Previously employed with Otsuka Pharmaceutical Development and Commercialization, Inc. (delamanid, OPC-167832, LAM assay) What are Oxazolidinones • A family of antimicrobials mostly targeting an early step in protein synthesis • Cycloserine technically oxazolidinone but 2-oxazolidinone different MOA and chemical properties • New generation oxazolidinones bind to both 50S subunit and 30S subunit • Linezolid (Zyvox) and Tedizolid (Sivestro) approved for drug resistant skin infections and community acquired pneumonia Cycloserine • Activity against TB demonstrated in non- clinical and clinical studies • Mitochondrial toxicity >21 days limits use in TB treatment Linezolid Developing Oxazolidinones for TB Compound Generic Brand Sponsor Development Status TB Code- Activity/Trials PNU-100766 Linezolid Zyvox Pfizer Multiple regimen Yes/Yes TR-201 Tedizolid Sivextro Merck Pre-clinical efficacy Yes/No PNU-100480 Sutezolid Pfizer Multiple regimen studies Sequella Yes/Yes (PanACEA) TB Alliance LCB01-0371 Delpazolid LegoChem Bio EBA trial recruitment completed Yes/Yes TBI-223 - Global Alliance SAD trial launched Yes/Yes AZD5847 Posizolid AstraZenica Completed EBA Yes/No RX-1741 Radezolid Melinta IND for vaginal infections ?/No RBX-7644 Ranbezolid Rabbaxy None found ?/No MRX-4/MRX-1 Contezolid MicuRx Skin infections Yes/No U-100592 Eperezolid ? No clinical trials ?/No PK of Oxazolidinones in Development for TB Steady State PK Parameters Parameter Linezolid 600 Delpazolid 800 mg QD2 mg QD3 Cmax (mg/L) 17.8 8.9 Cmin (mg/L) 2.43 0.1 Tmax (h) 0.87 0.5 T1/2 (h) 3.54 1.7 AUC0-24 (µg*h/mL) 84.5 20.1 1 MIC90 (µg/mL) 0.25 0.5 References 1.
    [Show full text]
  • Tuberculosis Report
    global TUBERCULOSIS REPORT 2018 GLOBAL TUBERCULOSIS REPORT 2018 Global Tuberculosis Report 2018 ISBN 978-92-4-156564-6 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY- NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. Global tuberculosis report 2018. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris. Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. To submit requests for commercial use and queries on rights and licensing, see http://www.who.int/about/licensing.
    [Show full text]
  • Antibiotic Use and Abuse: a Threat to Mitochondria and Chloroplasts with Impact on Research, Health, and Environment
    Insights & Perspectives Think again Antibiotic use and abuse: A threat to mitochondria and chloroplasts with impact on research, health, and environment Xu Wang1)†, Dongryeol Ryu1)†, Riekelt H. Houtkooper2)* and Johan Auwerx1)* Recently, several studies have demonstrated that tetracyclines, the antibiotics Introduction most intensively used in livestock and that are also widely applied in biomedical research, interrupt mitochondrial proteostasis and physiology in animals Mitochondria and chloroplasts are ranging from round worms, fruit flies, and mice to human cell lines. Importantly, unique and subcellular organelles that a plant chloroplasts, like their mitochondria, are also under certain conditions have evolved from endosymbiotic - proteobacteria and cyanobacteria-like vulnerable to these and other antibiotics that are leached into our environment. prokaryotes, respectively (Fig. 1A) [1, 2]. Together these endosymbiotic organelles are not only essential for cellular and This endosymbiotic origin also makes organismal homeostasis stricto sensu, but also have an important role to play in theseorganellesvulnerabletoantibiotics. the sustainability of our ecosystem as they maintain the delicate balance Mitochondria and chloroplasts retained between autotrophs and heterotrophs, which fix and utilize energy, respec- multiple copies of their own circular DNA (mtDNA and cpDNA), a vestige of the tively. Therefore, stricter policies on antibiotic usage are absolutely required as bacterial DNA, which encodes for only a their use in research confounds experimental outcomes, and their uncontrolled few polypeptides, tRNAs and rRNAs [1, 3, applications in medicine and agriculture pose a significant threat to a balanced 4]. Furthermore, both mitochondria and ecosystem and the well-being of these endosymbionts that are essential to chloroplasts have bacterial-type ribo- sustain health.
    [Show full text]
  • Identification and Characterization of Putative Nucleomodulins in Mycobacterium Tuberculosis
    IDENTIFICATION AND CHARACTERIZATION OF PUTATIVE NUCLEOMODULINS IN MYCOBACTERIUM TUBERCULOSIS Abstract The nuclear targeting of bacterial proteins that modify host cell gene expression, the so- called nucleomodulins, has emerged as a novel mechanism contributing to virulence of several intracellular pathogens. The goal of this study was to identify nucleomodulins produced by Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), and to investigate their role upon infection of the host. We first performed a screening of Mtb genome in search of genes encoding proteins with putative eukaryotic-like nuclear localization signals (NLS). We identified two genes of Mtb, Rv0229c and Rv3876, encoding proteins that are secreted in the medium by Mtb and are localized into the nucleus when expressed in epithelial cells or in human or murine macrophages. The NLSs of these two proteins were identified and found to be essential for their nuclear localization. The gene Rv0229c, a putative RNase, is present only in pathogen species of the Mtb complex and seems to have been recently acquired by horizontal gene transfer (HGT). Rv3876 appears more widely distributed in mycobacteria, and belongs to a chromosomal region encoding proteins of the type VII secretion system ESX1, essential for virulence. Ongoing studies are currently investigating the dynamics of these proteins upon infection of host cells, and their putative role in the modulation of host cell gene expression and Mtb virulence. ii IDENTIFICATION ET CARACTERISATION DE NUCLEOMODULINES PUTATIVES CHEZ LA BACTERIE MYCOBACTERIUM TUBERCULOSIS Résumé Les nucléomodulines sont des protéines produites par des bactéries parasites intracellulaires et qui sont importées dans le noyau des cellules infectées pour y moduler l’expression génique et contribuer ainsi à la virulence de la bactéries.
    [Show full text]
  • EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use
    Ref. Ares(2019)6843167 - 05/11/2019 31 October 2019 EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use Advice on implementing measures under Article 37(4) of Regulation (EU) 2019/6 on veterinary medicinal products – Criteria for the designation of antimicrobials to be reserved for treatment of certain infections in humans Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2019. Reproduction is authorised provided the source is acknowledged. Introduction On 6 February 2019, the European Commission sent a request to the European Medicines Agency (EMA) for a report on the criteria for the designation of antimicrobials to be reserved for the treatment of certain infections in humans in order to preserve the efficacy of those antimicrobials. The Agency was requested to provide a report by 31 October 2019 containing recommendations to the Commission as to which criteria should be used to determine those antimicrobials to be reserved for treatment of certain infections in humans (this is also referred to as ‘criteria for designating antimicrobials for human use’, ‘restricting antimicrobials to human use’, or ‘reserved for human use only’). The Committee for Medicinal Products for Veterinary Use (CVMP) formed an expert group to prepare the scientific report. The group was composed of seven experts selected from the European network of experts, on the basis of recommendations from the national competent authorities, one expert nominated from European Food Safety Authority (EFSA), one expert nominated by European Centre for Disease Prevention and Control (ECDC), one expert with expertise on human infectious diseases, and two Agency staff members with expertise on development of antimicrobial resistance .
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]
  • Of TB Drug Development: What's on the Horizon (For Patients with Or Without
    The ‘third wave’ of TB drug development: What’s on the horizon (for patients with or without HIV) Kelly Dooley, MD, PhD 20th International Workshop on Clinical Pharmacology of HIV, Hepatitis, Other Antivirals Noordwijk, The Netherlands 15 May 2019 D I V I S I O N O F CLINICAL PHARMACOLOGY 1 Objectives • To give you an idea of the drug development pathway for TB drugs, the history, and the pipeline • To convince you to come work in the TB field, if you are not already The Problem State-of-the-state: Global burden of TB disease: 2017 In 2014, TB surpassed HIV as the #1 infectious disease killer worldwide In 2017, 10.0M cases TB is estimated to have killed 1 in 7 of humans who have ever lived WHO Global Tuberculosis Report 2018: http://www.who.int/tb/publications/global_report/en/ Latent TB infection (LTBI) About 1 in 4 persons Chaisson and Golub, Lancet Global Health, 2017 MDR- and XDR-TB: Global Health Emergencies Multidrug-resistant TB: Mycobacterium tuberculosis resistant to isoniazid Extensively drug-resistant TB: and rifampin: 558,000 incident cases in 2017 M. tuberculosis resistant to isoniazid, rifampin, fluoroquinolones, and injectable agents Reported in 123 WHO member state countries 6 HIV and Tuberculosis Epidemiology Global Burden of Tuberculosis, 2017 Total Population HIV-Infected Persons Incidence 10.0 million 900,000 (9%) Deaths 1.3 million 300,000 (23%) WHO Report 2018 Global Tuberculosis Control7 TB Treatment: Global Scientific Agenda Area Goals Drug-sensitive TB Treatment shortening to < 3 months More options for patients
    [Show full text]
  • Looking for the New Preparations for Antibacterial Therapy V
    PRZEGL EPIDEMIOL 2017;71(2): 207-219 Problems of infections / Problemy zakażeń Izabela Karpiuk1, Stefan Tyski1,2 LOOKING FOR THE NEW PREPARATIONS FOR ANTIBACTERIAL THERAPY V. NEW ANTIMICROBIAL AGENTS FROM THE OXAZOLIDINONES GROUP IN CLINICAL TRIALS POSZUKIWANIE NOWYCH PREPARATÓW DO TERAPII PRZECIWBAKTERYJNEJ V. NOWE ZWIĄZKI PRZECIWBAKTERYJNE Z GRUPY OKSAZOLIDYNONÓW W BADANIACH KLINICZNYCH 1National Medicines Institute, Department of Antibiotics and Microbiology, Warsaw 2Medical University of Warsaw, Department of Pharmaceutical Microbiology, Warsaw 1Zakład Antybiotyków i Mikrobiologii, Narodowy Instytut Leków, Warszawa 2Warszawski Uniwersytet Medyczny, Zakład Mikrobiologii Farmaceutycznej, Warszawa ABSTRACT This paper is the fifth part of the series concerning the search for new preparations for antibacterial therapy and discussing new compounds belonging to the oxazolidinone class of antibacterial chemotherapeutics. This arti- cle presents five new substances that are currently at the stage of clinical trials (radezolid, sutezolid, posizolid, LCB01-0371 and MRX-I). The intensive search for new antibiotics and antibacterial chemotherapeutics with effective antibacterial activity is aimed at overcoming the existing resistance mechanisms in order to effectively fight against multidrug-resistant bacteria, which pose a real threat to public health. The crisis of antibiotic resis- tance can be overcome by the proper use of these drugs, based on bacteriological and pharmacological knowl- edge. Oxazolidinones, with their unique mechanism of action and favorable pharmacokinetic and pharmacody- namic parameters, represent an alternative way to effectively treat serious infections caused by Gram-positive microorganisms. Key words: novel antibiotics, oxazolidinone, Gram-positive bacteria, radezolid, sutezolid STRESZCZENIE Niniejsza praca stanowi V część cyklu dotyczącego poszukiwania nowych preparatów do terapii przeciwbak- teryjnej i omawia nowe związki należące do kolejnej klasy chemioterapeutyków przeciwbakteryjnych: oksazo- lidynonów.
    [Show full text]
  • Oxazolidinone Antibiotics: Chemical, Biological and Analytical Aspects
    molecules Review Oxazolidinone Antibiotics: Chemical, Biological and Analytical Aspects Claudia Foti , Anna Piperno , Angela Scala and Ottavia Giuffrè * Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; [email protected] (C.F.); [email protected] (A.P.); [email protected] (A.S.) * Correspondence: [email protected] Abstract: This review covers the main aspects concerning the chemistry, the biological activity and the analytical determination of oxazolidinones, the only new class of synthetic antibiotics advanced in clinical use over the past 50 years. They are characterized by a chemical structure including the oxazolidone ring with the S configuration of substituent at C5, the acylaminomethyl group linked to C5 and the N-aryl substituent. The synthesis of oxazolidinones has gained increasing interest due to their unique mechanism of action that assures high antibiotic efficiency and low susceptibility to resistance mechanisms. Here, the main features of oxazolidinone antibiotics licensed or under development, such as Linezolid, Sutezolid, Eperezolid, Radezolid, Contezolid, Posizolid, Tedizolid, Delpazolid and TBI-223, are discussed. As they are protein synthesis inhibitors active against a wide spectrum of multidrug-resistant Gram-positive bacteria, their biological activity is carefully analyzed, together with the drug delivery systems recently developed to overcome the poor oxazolidinone water solubility. Finally, the most employed analytical techniques for oxazolidinone determination in different matrices, such as biological fluids, tissues, drugs and natural waters, are reviewed. Most are based on HPLC (High Performance Liquid Chromatography) coupled with UV-Vis or mass Citation: Foti, C.; Piperno, A.; spectrometer detectors, but, to a lesser extent are also based on spectrofluorimetry or voltammetry.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Newer Antibiotics: Need for More Studies in Neonates and Children Jeeson C Unni
    ANTIMICROBIALS Newer Antibiotics: Need for More Studies in Neonates and Children Jeeson C Unni ABSTRACT This article reviews few trials assessing the use of newer antibiotics in the neonates and children. Published data show that more studies are conducted in the adult population (50 times) when compared to children with respect to the testing of newer antibiotics. The figures are approximately 177 and 580 times more as compared to neonatal and preterm babies, respectively. Although there is paucity of data in the pediatric domain, carbavance (meropenem + vaborbactam) and solithromycin deserve special mention, as they are currently being used in pediatric clinical trials. Keywords: New antibiotics, Pediatric population, Resistance. Pediatric Infectious Disease (2019): 10.5005/jp-journals-10081-1212 INTRODUCTION IAP Drug Formulary, Aster Medcity, Kochi, Kerala, India Ninety-one years after the invention of penicillin, a silent epidemic Corresponding Author: Jeeson C Unni, IAP Drug Formulary, Aster of antibiotic resistance is emerging. There is a dearth of new Medcity, Kochi, Kerala, India, Phone: +91 9847245207, e-mail: antibiotics to fall back upon. Newly approved antibiotics tend to [email protected] be reserved as a last line of defense against multidrug-resistant How to cite this article: Unni JC. Newer Antibiotics: Need for More (MDR) infections, thus minimizing its sales value. Drugs on which Studies in Neonates and Children. Pediatr Inf Dis 2019;1(4):164–168. millions are spent on research and development (R&D) sometimes, Source of support: Nil therefore, do not see the light of day. This is a major deterrent for Conflict of interest: None investment in R&D by pharmaceuticals, which has resulted in a bleak future for development of new antibiotic molecules.
    [Show full text]
  • 6-Veterinary-Medicinal-Products-Criteria-Designation-Antimicrobials-Be-Reserved-Treatment
    31 October 2019 EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use Advice on implementing measures under Article 37(4) of Regulation (EU) 2019/6 on veterinary medicinal products – Criteria for the designation of antimicrobials to be reserved for treatment of certain infections in humans Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2019. Reproduction is authorised provided the source is acknowledged. Introduction On 6 February 2019, the European Commission sent a request to the European Medicines Agency (EMA) for a report on the criteria for the designation of antimicrobials to be reserved for the treatment of certain infections in humans in order to preserve the efficacy of those antimicrobials. The Agency was requested to provide a report by 31 October 2019 containing recommendations to the Commission as to which criteria should be used to determine those antimicrobials to be reserved for treatment of certain infections in humans (this is also referred to as ‘criteria for designating antimicrobials for human use’, ‘restricting antimicrobials to human use’, or ‘reserved for human use only’). The Committee for Medicinal Products for Veterinary Use (CVMP) formed an expert group to prepare the scientific report. The group was composed of seven experts selected from the European network of experts, on the basis of recommendations from the national competent authorities, one expert nominated from European Food Safety Authority (EFSA), one expert nominated by European Centre for Disease Prevention and Control (ECDC), one expert with expertise on human infectious diseases, and two Agency staff members with expertise on development of antimicrobial resistance .
    [Show full text]