List of Indian Satellites PDF Recruitment.Guru

Total Page:16

File Type:pdf, Size:1020Kb

List of Indian Satellites PDF Recruitment.Guru Indian Satellites List of Indian Satellites PDF Recommendations Sarkari Naukuri Employment News Central Government Jobs Government Jobs Recruitment.guru State Government Jobs https://www.recruitment.guru/general-knowledge-questions/ Indian Satellites List of Indian satellites | List of satellites launched by India from 1970 to 2020 Name of the Satellite Launch Date List of Satellites Launched by India in 2020 GSAT-30 17-01-2020 Satellites Launched by India in 2019 RISAT-2BR1 11-12-2019 Cartosat-3 27-11-2019 Chandrayaan2 22-07-2019 RISAT-2B 22-05-2019 EMISAT 01-04-2019 GSAT-31 06-02-2019 Microsat-R 24-01-2019 Types of Indian Satellites Launched in 2018 GSAT-7A 19-12-2018 GSAT-11 Mission 05-12-2018 HysIS 29-11-2018 GSAT-29 14-11-2018 IRNSS-1I 12-04-2018 GSAT-6A 29-03-2018 Microsat Cartosat-2 Series Satellite 12-01-2018 INS-1C List of Satellites Launched in 2017 IRNSS-1H 31-08-2017 https://www.recruitment.guru/general-knowledge-questions/ Indian Satellites GSAT-17 29-06-2017 CartoSat-2E 23-06-2017 NIUSat GSAT-19 (GSAT-19E) 05-06-2017 South Asia Satellite (GSAT-9) 05-05-2017 INS-1B (ISRO Nano-Satellite 1B) 15-02-2017 INS-1A (ISRO Nano-Satellite 1A) Important Satellites Launched in 2016 CartoSat-2D Resource Sat-2A 07 -12-2016 GSAT-18 06-10-2016 Scat Sat-1 PISat 26-09-2016 Pratham INSAT-3DR 08-09-2016 Cartosat-2C SathyabamaSat 22-06-2016 Swayam-1 IRNSS-1G 28-04-2016 IRNSS-1F 10-03-2016 IRNSS-1E 20-01-2016 List of Satellites Launched in 2015 https://www.recruitment.guru/general-knowledge-questions/ Indian Satellites GSAT-15 11-11-2015 Astrosat 28-09-2015 GSAT-6 (INSAT-4E) 27-08-2015 IRNSS-1D 28-03-2015 List of Satellites Launched in 2010 to 2014 GSAT-16 07-12-2014 IRNSS-1C 16-10-2014 IRNSS-1B 04-04-2014 GSAT-14 05-01-2014 Mars Orbiter Mission (MOM) 05-11-2013 (Mangalyaan-1) GSAT-7 (INSAT-4F) 30-08-2013 INSAT-3D 26-07-2013 IRNSS-1A 01-07-2013 SARAL 25-02-2013 GSAT-10 28 -09-2012 RISAT-1 26-04-2012 Indian Satellites and their Uses - Types of Indian Satellites Megha-Tropiques 12-10-2011 GSAT-12 (GramSat-12) 15-07-2011 GSAT-8 (GramSat-8, or INSAT-4G) 21-05-2011 Resource Sat-2 20-04-2011 GSAT-5P (INSAT-4D) 25-10-2010 CartoSat-2B 12-07-2010 https://www.recruitment.guru/general-knowledge-questions/ Indian Satellites GSAT-4 15-04-2010 Types of Satellites Launched from 2000 to 2009 Ocean Sat-2 23-09-2009 RISAT-2 20-04-2009 Chandrayaan-1 22-10-2008 Carto Sat-2A 28-04-2008 INSAT-4CR 02-09-2007 INSAT-4B 12-03-2007 CartoSat-2 (IRS-P7 or, CartoSat-2AT) 10-01-2007 INSAT-4C 10-07-2006 INSAT-4A 22-12-2005 Ham Sat 05-05-2005 CartoSat-1 GSAT-3 (Edu Sat) 20-09-2004 Resource Sat-1 (IRS-P6) 17-10-2003 INSAT-3E 28-09-2003 GSAT-2 (Gram Sat-2) 08-05-2003 INSAT-3A 10-04-2003 Kalpana-1 (Met Sat-1) 12-09-2002 INSAT-3C 24-01-2002 TES 22-10-2001 GSAT-1 (GramSat-1) 18-04-2001 INSAT-3B 22-03-2000 https://www.recruitment.guru/general-knowledge-questions/ Indian Satellites ISRO launched Satellites from 1970 to 2020 Ocean Sat-1(IRS-P4) 02-05-1999 INSAT-2E(APR-1) 02-04-1999 IRS-1D 29-09-1997 INSAT-2D 04-06-1997 IRS-P3 (IRS B3) 21-03-1996 IRS-1C 28-12-1995 INSAT-2C 7-12-1995 IRS-P2 15-10-1994 SROSS-C2 05-05-1994 IRS-1E 20-09-1993 INSAT-2B 23-07-1993 INSAT-2A 10-07-1992 SROSS-C(SROSS-3) 20-05-1992 INSAT-2DT (Formerly ARABSAT-1C) 27-02-1992 (INSAT-2R) IRS-1B 29-08-1991 INSAT-1D 12-06-1990 INSAT-1C 22-07-1988 SROSS-2 13-07-1988 List of 104 Satellites launched in India IRS-1A 17-03-1988 SROSS-1 24-03-1987 https://www.recruitment.guru/general-knowledge-questions/ Indian Satellites INSAT-1B 01-06-1983 Rohini RS-D2 (Rohini-3) 17-04-1983 INSAT-1A 10-04-1982 Bhaskara -II 20-09-1981 APPLE 19-06-1981 Rohini RS-D1 (Rohini-2) 31-07-1981 Rohini RS-1(Rohini-1B) 18-07-1980 Rohini Technology Payload 10-08-1979 Bhaskara Sega-I 07-05-1979 Aryabhatta 19-04-1975 More Static General Knowledge List of Presidents in India List of Five Years Plans in India List of Inventions in India List of Cities & Nick Names List of Power Plants in India https://www.recruitment.guru/general-knowledge-questions/ .
Recommended publications
  • Mech Connect
    MECH @ CONNECT DEPARTMENT OF MECHANICAL ENGINEERING June, June, - 2019 April EDITORIAL BOARD: Student Editor: Faculty Editors- AKSHAT KAPOOR Dr. SHAILENDRA DWIVEDI Segment Editors: ABHINAV RAJ Dr. T. RAVI KIRAN (News around the world) Dr. NEERAJ DUBEY ABHISHEK MOHAN Dr. VIPIN SHARMA (Sports news) LAKSHMI NARAIN COLLEGE DEPARTMENT OF OF TECHNOLOGY, BHOPAL MECHANICAL ENGINEERING VISION: VISION: To be a premier institute where To be recognized in academics and engineering education and research converge to produce engineers as research for producing engineers as responsible citizens. responsible citizen who are innovative, choice of employers and able to do MISSION: further studies & research. • To improve continually in the teaching-learning process by MISSION: strengthening infrastructural • To provide knowledge and skills facilities and faculty credentials. of Mechanical Engineering to the • To undertake interdisciplinary students. research and development by • To impart quality education to make engaging the faculty and students in curricular, co-curricular and industry students competent mechanical collaborated projects towards engineer and responsible citizen. problem solving. • To provide facilities and • To enhance proportion of skilled environment conducive to based courses beyond curriculum to grounding create more employable graduates. scholars for employability, higher • To inculcate human values, ethics, patriotism and responsibility in our studies and research. outgoing engineers by providing • To prepare its students for conducive environment. successful career in engineering. Program Educational Objectives (PEOs) To make the students able of applying knowledge of mathematics, science and subjects of mechanical engineering in dealing with engineering problems. To be able to identify and understand real life problems and suitably design and manufacture, feasible and sustainable mechanical devices and systems.
    [Show full text]
  • Pecora 21/ISRSE 38 Organized Special Presentation (SP) Sessions When Submitting an Abstract for a Proposed Special Session, Please Include the Session ID (E.G
    Pecora 21/ISRSE 38 Organized Special Presentation (SP) Sessions When submitting an abstract for a proposed special session, please include the session ID (e.g. SP1, SP2) as a Keyword. SP1 Open Data Cube: A new data technology for enhancing the use of satellite data to address sustainable development goals Brian Killough, NASA The Open Data Cube (ODC), created and facilitated by the Committee on Earth Observation Satellites (CEOS), is an open source software architecture that allows analysis-ready satellite data to be packaged in "cubes" to minimize data preparation complexity and take advantage of modern computing for increased value and impact of Earth observation data. This session will summarize the ODC progress, discuss the advancements of country-based implementation and present the status of several new open source ODC applications and their potential to address society and the UN Sustainable Development Goals. SP2 An overview of the current Analysis Ready Data products, tools, applications and impacts Andreia Siqueira, Geoscience Australia Public and private agencies have been committed to address the big data challenge by producing Analysis Ready Data products (ARD) for their users. The ARD products are enabling users to get first hand satellite data that are ready to use for a wide range of applications, including time-series analysis and the way forward to multi-sensor interoperability. The Analysis Ready Data session has as its main objective to present the current state of knowledge on global efforts towards producing Analysis Ready Data (ARD). It is expected that topics across the maturity of ARD products, including validation and calibration, the overall CEOS Analysis Ready Data for Land (CARD4L) framework as well as the Product Family Specifications (PFS) and the Product Alignment Assessment process (PAA) will be presented and discussed.
    [Show full text]
  • An Analytical Search for Efficient Microcontroller-On Board Computer for Veltech-Nanosat
    International Journal of Advanced Science and Technology Vol. 29, No. 6s, (2020), pp. 232-236 An Analytical Search for Efficient Microcontroller-On Board Computer for Veltech-NanoSat 1Prabhu Kumar Surarapu, 2Tumuluri Sree Sravya, 3D.Ruthra Prabha 1Assistant professor, 2,3UG student Department of ECE Veltech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Chennai Abstract On Board Computer (OBC) isthe heart of the satellites and particularly, It is the main subsystem in the Nano satellite.OBC is responsible for communication, data storage and functional control between all subsystems in the satellite. Right Choice of micro controller is very important task since complete monitoring of the subsystems depends on the OBC. The probability of the success of the satellite mission depends on the reliability of microcontroller and components. In this paper we have listed down, compared and analysed the microcontrollers that were used earlier in nanosatellites and pico satellites like PRATHAM, JUGNU, SATYABAMASAT, ICUBESAT,STUDSAT and SWAYAM. Key words--- On Board Computer (OBC), Microcontroller, VeltechNanoSat, Nano satellite I. INTRODUCTION Veltech-NanoSat, the first satellite initiative of Veltech group of institutions, Chennai, Tamilnadu,India, is in the process of development at Veltech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology under guidance of Indian Space Research Organisation (ISRO) . This project was initiated with the purpose enabling the students and faculty who are involved with design, analysis and testing. The important mission of this nano satellite is to monitor the agricultural fields, land sliding, forest fire, flow and quantity of water. Like other satellites Veltech-NanoSat has also various subsystems which include Payload, Power, Communication, Attitude control, Structure, Mechanisms, Thermal and On Board Computer (OBC).
    [Show full text]
  • Ariane-DP GB VA209 ASTRA 2F & GSAT-10.Indd
    A DUAL LAUNCH FOR DIRECT BROADCAST AND COMMUNICATIONS SERVICES Arianespace will orbit two satellites on its fifth Ariane 5 launch of the year: ASTRA 2F, which mainly provides direct-to-home (DTH) broadcast services for the Luxembourg-based operator SES, and the GSAT-10 communications satellite for the Indian Space Research Organization, ISRO. The choice of Arianespace by the world’s leading space communications operators and manufacturers is clear international recognition of the company’s excellence in launch services. Based on its proven reliability and availability, Arianespace continues to confirm its position as the world’s benchmark launch system. Ariane 5 is the only commercial satellite launcher now on the market capable of simultaneously launching two payloads and handling a complete range of missions, from launches of commercial satellites into geostationary orbit, to dedicated launches into special orbits. Arianespace and SES have developed an exceptional relationship of mutual trust over more than 20 years. ASTRA 2F will be the 36th satellite from the SES group (Euronext Paris and Luxembourg Bourse: SESG) to use an Ariane launcher. SES operates the leading direct-to-home (DTH) TV broadcast system in Europe, based on its Astra satellites, serving more than 135 million households via DTH and cable networks. Built by Astrium using a Eurostar E3000 platform, ASTRA 2F will weigh 6,000 kg at launch. Fitted with active Ku- and Ka-band transponders, ASTRA 2F will be positioned at 28.2 degrees East. It will deliver new-generation DTH TV broadcast services to Europe, the Middle East and Africa, and offers a design life of about 15 years.
    [Show full text]
  • Indian Payload Capabilities for Space Missions
    INDIAN PAYLOAD CAPABILITIES FOR 13, Bangalore - SPACE MISSIONS July 11 A.S. Kiran Kumar Director Space Applications Centre International ASTROD Symposium, Ahmedabad th 5 Application-specific EO payloads IMS-1(2008) RISAT-1 (2012) MX/ HySI-T C-band SAR CARTOSAT-2/2A/2B RESOURCESAT-2 (2011) (2007/2009/2010) LISS 3/ LISS 4/AWiFS PAN RESOURCESAT-1 (2003) LISS 3/ LISS 4 AWiFS CARTOSAT-1 (2005) (Operational) STEREOPAN Megha-Tropiques (2011) TES(2001) MADRAS/SAPHIR/ScARaB/ Step& Stare ROSA PAN OCEANSAT-2 (2009) OCM/ SCAT/ROSA YOUTHSAT(2011) LiV HySI/RaBIT INSAT-3A (2003) KALPANA-1 (2002) VHRR, CCD VHRR Application-specific EO payloads GISAT MXVNIR/SWIR/TIR/HySI RISAT-3 RESOURCESAT-3A/3B/3C L-band SAR CARTOSAT-3 RESOURCESAT-2A LISS 3/LISS 4/AWiFS PAN LISS3/LISS4/AWiFS RESOURCESAT-3 LISS 3/LISS 4/ CARTOSAT-2C/2D AWiFS (Planned) PAN RISAT-1R C-band SAR SARAL Altimeter/ARGOS OCEANSAT-3 OCM , TIR GISAT MXVNIR/SWIR/ INSAT- 3D TIR/HySI Imager/Sounder EARTH OBSERVATION (LAND AND WATER) RESOURCESAT-1 IMS-1 RESOURCESAT-2 RISAT-1 RESOURCESAT-2A RESOURCESAT-3 RESOURCESAT-3A/3B/3C RISAT-3 GISAT RISAT-1R EARTH OBSERVATION (CARTOGRAPHY) TES CARTOSAT-1 CARTOSAT-2/2A/2B RISAT-1 CARTOSAT-2C/2D CARTOSAT-3 RISAT-3 RISAT-1R EARTH OBSERVATION (ATMOSPHERE & OCEAN) KALPANA-1 INSAT- 3A OCEANSAT-1 INSAT-3D OCEANSAT-2 YOUTHSAT GISAT MEGHA–TROPIQUES OCEANSAT-3 SARAL Current observation capabilities : Optical Payload Sensors in Spatial Res. Swath/ Radiometry Spectral bands Repetivity/ operation Coverage (km) revisit CCD 1 1 Km India & 10 bits 3 (B3, B4, B5) 4 times/ day surround.
    [Show full text]
  • Space Diplomacy in Asian Orbit
    Space Diplomacy in Asian Orbit EDA INSIGHT RESEARCH & ANALYSIS OCTOBER 2018 Space Diplomacy in Asian Orbit Dr N. Janardhan Disclaimer: The views expressed in this publication are solely those of the author and do not necessarily reflect the views of the Emirates Diplomatic Academy, an autonomous federal entity, or the UAE Government. Copyright: Emirates Diplomatic Academy 2018. Cover Photo: Mohammed Bin Rashid Space Centre - http://www.khalifasat-thejourney.com Space Diplomacy in Asian Orbit Dr N. Janardhan Senior Research Fellow, Emirates Diplomatic Academy Dr N. Janardhan is Senior Research Fellow, Gulf-Asia Programme, Emirates Diplomatic Academy. His academic publications include – A New Gulf Security Architecture: Prospects and Challenges for an Asian Role (ed., 2014); India and the Gulf: What Next? (ed., 2013); and Boom amid Gloom: Spirit of Possibility in 21st Century Gulf (2011). Dr Janardhan is also Managing Assistant Editor, Journal of Arabian Studies. Executive Summary ◊ In international relations, expanding institutionalised ◊ As balance of power equations get reconfigured, channels of consultation is seen as enhancing there is evidence that international political- cooperation. Pursuing this, it is estimated that more security competition in space may supersede other than 80 countries (and many more private enterprises) considerations in the future. For now, however, there are are presently using space, either on their own or ample notable space-related developments in Asia that in partnership with others, to further individual or fall within the realm of soft power, which this Insight collective interests. explores. ◊ The West used the Cold War to further diplomatic ◊ It also suggests the following policy options for the influence and create ‘satellite’ states based on UAE to consider: geopolitical ideology.
    [Show full text]
  • Drafting Committee for the 'Asia‐Pacific
    Drafting Committee for the ‘Asia‐Pacific Plan of Action for Space Applications for Sustainable Development (2018‐2030) Dr Rajeev Jaiswal EOS Programme Office Indian Space Research Organisation (ISRO) India Bangkok, Thailand 31 May ‐ 1 June 2018 India’s Current Space Assets Communication Satellites • 15 Operational (INSAT- 4A, 4B, 4CR and GSAT- 6, 7, 8, 9 (SAS), 10, 12, 14, 15, 16, 17, 18 & 19) • >300 Transponders in C, Ext C & Ku bands Remote sensing Satellites • Three in Geostationary orbit (Kalpana-1, INSAT 3D & 3DR) • 14 in Sun-synchronous orbit (RESOURCESAT- 2 & 2A; CARTOSAT-1/ 2 Series (5); RISAT-2; OCEANSAT 2; MEGHA-TROPIQUES; SARAL, SCATSAT-1) Navigation Satellites : 7 (IRNSS 1A - IG) & GAGAN Payloads in GSAT 8, 10 & 15 Space Science: MOM & ASTROSAT 1 Space Applications Mechanism in India Promoting Space Technology Applications & Tools For Governance and Development NATIONAL MEET “There should not be any space between common man and space technology” . 160 Projects across 58 Ministries . Web & Mobile Applications : 200+ . MoUs with stakeholders : 120+ . Capacity Building : 10,000+ . Space Technology Cells : 21 17 STATE MEETS Haryana, Bihar, Uttarakhand, Mizoram, Nagaland, Rajasthan, Punjab, Jharkhand, Meghalaya, Himachal 20 58 Pradesh, Kerala, Chhattisgarh, Assam, Madhya Ministries Ministries Pradesh, Tamil Nadu, Mizoram & Uttar Pradesh Space Applications Verticals SOCIO ECONOMIC SECURITY SUSTAINABLE DEVELOPMENT Food Impact Assessment Water Bio- Resources Conservation Energy Fragile & Coastal Ecosystem Health Climate Change Induced
    [Show full text]
  • Aryabhata to Mangalyaan
    Reaching for the stars, India’s quest for the outer space: Aryabhata to Mangalyaan Pallava Bagla Science Journalist-India India has a rich tradition of using outer space as a tool for national development. The poorest of the poor have always been the beneficiaries of India’s space technologies, from farmers to fisher folk Indian satel- lites touch the lives of almost the entire 1.3 billion population. As India celebrates its seventieth birthday it has already entered the golden era of space technology, sectors like satellite television, banking, smart city development, weather forecasting, smart phones, e- governance, satellite aided navigation are all catering to India’s unend- ing appetite to deploy high technology to ease the life of the common man. India’s quest for space has been pioneered by the Indian Space Re- search Organisation (ISRO) set up in 1969 and today has an annual budget of about $ 1.4 billion. The country has a constellation of 44 satel- lites in orbit and can now on its own launch up to four tons of communi- cation satellites into orbit. This gives India end to end capabilities in space technology from making its own satellites to launching its own rockets and has even sent an Indian made satellite Mangalyaan or the Mars Orbiter Mission all the way to the Mars travelling a distance of over 200 million kilometres. The journey for ISRO began from the humble fishing village of Thumba on the coast of the Arabian Sea where the scientists used the premises of a church to set up the first rocket launch facilities and the first rockets were carried on bicycles and first satellites pulled in on bull- ock carts.
    [Show full text]
  • Indian Remote Sensing Missions
    ACKNOWLEDGEMENT This book, “Indian Remote Sensing Missions and Payloads - A Glance” is an attempt to provide in one place the information about all Indian Remote Sensing and scientific missions from Aryabhata to RISAT-1 including some of the satellites that are in the realization phase. This document is compiled by IRS Program Management Engineers from the data available at various sources viz., configuration data books, and other archives. These missions are culmination of the efforts put by all scientists, Engineers, and supporting staff across various centres of ISRO. All their works are duly acknowledged Indian Remote Sensing Missions & Payloads A Glance IRS Programme Management Office Prepared By P. Murugan P.V.Ganesh PRKV Raghavamma Reviewed By C.A.Prabhakar D.L.Shirolikar Approved By Dr.M. Annadurai Program Director, IRS & SSS ISRO Satellite Centre Indian Space Research Organisation Bangalore – 560 017 Table of Contents Sl.No Chapter Name Page No Introduction 1 1 Aryabhata 1.1 2 Bhaskara 1 , 2 2.1 3. Rohini Satellites 3.1 4 IRS 1A & 1B 4.1 5 IRS-1E 5.1 6 IRS-P2 6.1 7 IRS-P3 7.1 8 IRS 1C & 1D 8.1 9 IRS-P4 (Oceansat-1) 9.1 10 Technology Experiment Satellite (TES) 10.1 11 IRS-P6 (ResourceSat-1) 11.1 12 IRS-P5 (Cartosat-1) 12.1 13 Cartosat 2,2A,2B 13.1 14 IMS-1(TWSAT) 14.1 15 Chandrayaan-1 15.1 16 Oceansat-2 16.1 17 Resourcesat-2 17.1 18 Youthsat 18.1 19 Megha-Tropiques 19.1 20 RISAT-1 20.1 Glossary References INTRODUCTION The Indian Space Research Organisation (ISRO) planned a long term Satellite Remote Sensing programme in seventies, and started related activities like conducting field & aerial surveys, design of various types of sensors for aircraft surveys and development of number of application/utilization approaches.
    [Show full text]
  • Annual Report 2017 - 2018 Annual Report 2017 - 2018 Citizens’ Charter of Department of Space
    GSAT-17 Satellites Images icro M sat ries Satellit Se e -2 at s to r a C 0 SAT-1 4 G 9 -C V L S P III-D1 -Mk LV GS INS -1 C Asia Satell uth ite o (G S S A T - 09 9 LV-F ) GS ries Sat Se ellit t-2 e sa to 8 r -C3 a LV C PS Annual Report 2017 - 2018 Annual Report 2017 - 2018 Citizens’ Charter of Department Of Space Department Of Space (DOS) has the primary responsibility of promoting the development of space science, technology and applications towards achieving self-reliance and facilitating in all round development of the nation. With this basic objective, DOS has evolved the following programmes: • Indian National Satellite (INSAT) programme for telecommunication, television broadcasting, meteorology, developmental education, societal applications such as telemedicine, tele-education, tele-advisories and similar such services • Indian Remote Sensing (IRS) satellite programme for the management of natural resources and various developmental projects across the country using space based imagery • Indigenous capability for the design and development of satellite and associated technologies for communications, navigation, remote sensing and space sciences • Design and development of launch vehicles for access to space and orbiting INSAT / GSAT, IRS and IRNSS satellites and space science missions • Research and development in space sciences and technologies as well as application programmes for national development The Department Of Space is committed to: • Carrying out research and development in satellite and launch vehicle technology with a goal to achieve total self reliance • Provide national space infrastructure for telecommunications and broadcasting needs of the country • Provide satellite services required for weather forecasting, monitoring, etc.
    [Show full text]
  • Science & Technology
    MOST ! r e p a P EXPECTED l a u t c a QUESTIONS e h t n i r a PRELIMS '19 e p p a y e h t e r o Science & f e b m Technology e h t e v l o S 1. The European Spallation (ESS) facility is being built (c) Both 1 and 2 (d) Neither 1 nor 2 in Lund, Sweden. Consider the following statements in this context: 6.Which of the following is/are the advantage(s) of Li- 1. The European Spallation Source (ESS) is a multi- ion batteries over the acid batteries? disciplinary research facility based on the world’s 1. The use of Li-ion battery does not cause the most powerful neutron source. environmental damage like that of lead pollution 2. A neutron source and its instruments enable caused by lead acid batteries. scientists to see and understand basic atomic 2. Li-ion batteries have a constant voltage output structures and forces. ensuring longer life of equipment connected. Which of the statements given above is/are correct? 3. When compared to lead acid batteries, Li-ion (a) 1 only (b) 2 only batteries weigh just about a third and have near full (c) Both 1 and 2 (d) Neither 1 nor 2 efficiency in both charging and discharging. Select the correct answer using the code given below: 2. The Government of India has recently banned the (a) 1 only (b) 2 and 3 use of Oxytocin. In this context, consider the following (c) 1 and 3 (d) 1, 2 and 3 statements: 1.
    [Show full text]
  • Orbital Debris Quarterly News 23-3
    National Aeronautics and Space Administration Orbital Debris Quarterly News Volume 23, Issue 3 August 2019 Inside... NASA Technical Standard Process for Limiting Orbital Debris Revision Ratified 2 Testing and Modeling the Demisability of Fiber-Reinforced Plastics 3 The First International Orbital Debris Conference (IOC) is scheduled for December 9–12, An Extended Parametric 2019 at the Sugar Land Marriott Town Square in Sugar Land (greater Houston area), Texas. Study of the Effects of Visit the conference website for registration and logistics information. Large Constellations on the Future Debris https://www.hou.usra.edu/meetings/orbitaldebris2019/ Environment 5 The program and abstracts are available on this website. Register by November 10 for the best Meeting Reports 7 conference rates and by November 21 for hotel reservations at the group rate. Abstracts from the ODQN readers are referred to the conference website for the roster of keynote speakers. NASA HVIT 8 Abstracts from the NASA ODPO 10 ODQN Vol. 23, Two Breakup Events Reported Issue 1&2 Errata 12 The Indian spacecraft Microsat-R (International concomitant rapid orbital decay. A Gabbard plot of this Orbital Debris Designator 2019-006A, U.S. Strategic Command debris cloud is presented in the figure on page 2. Analyst 12 [USSTRATCOM] Space Surveillance Network [SSN] A Centaur V Single-Engine Centaur (SEC) Space Missions/Satellite catalog number 43947), launched on 24 January 2019, rocket variant (International Designator 2018-079B, Box Score 14 was intentionally destroyed in a test of a ground-based, SSN number 43652) fragmented in early April 2019. At direct-ascent Anti-Satellite (ASAT) weapon system at the time of the event the stage was in an approximately 0640 GMT on 27 March 2019.
    [Show full text]