Module # 1 - Reptilia (The Reptiles)

Total Page:16

File Type:pdf, Size:1020Kb

Module # 1 - Reptilia (The Reptiles) 1 – WildlifeCampus Snakes and Reptiles of the Lowveld Course Snakes & Reptiles of the Lowveld This course was written by renowned expert and snake handler in this field, Ian Dewsbury. It covers the identification, classification, characterisation, reproduction, description and distribution of 89 species of reptiles and snake’s endemic to the Highveld and Lowveld regions of South Africa. It has been designed for those wishing to obtain a good overview of the subject. Introduction to Reptiles © Copyright This course material is the copyrighted intellectual property of WildlifeCampus. It may not be copied, distributed or reproduced in any format whatsoever without the express written permission of WildlifeCampus 2 – WildlifeCampus Snakes and Reptiles of the Lowveld Course Module # 1 - Reptilia (The Reptiles) Component # 1 - Introduction Reptiles Module # 2 - Chelonia (Shield reptiles) Component # 1 - Introduction to Chelonia Component # 2 - Tortoise Species Component # 3 - Terrapin Species Module # 3 - Crocodiles, Monitor Lizards & Chameleons Component # 1 - Crocodiles, Monitors & Chameleons Module # 4 - Serpentes (The Snakes) Component # 1 - Introduction to Snakes Component # 2 - Blind and Thread snakes Component # 3 - Pythons Component # 4 - Burrowing snakes Component # 5 - Typical Snakes Part # 1 Component # 6 - Typical Snakes Part # 2 Component # 7 - Typical Snakes Part # 3 Component # 8 - Cobras and Mambas Component # 9 - Vipers and Adders Component # 10 - Un-resolved species Module # 5 - First Aid for Snakebite Component # 1 - First Aid for Snakebite Introduction to Reptiles © Copyright This course material is the copyrighted intellectual property of WildlifeCampus. It may not be copied, distributed or reproduced in any format whatsoever without the express written permission of WildlifeCampus 3 – WildlifeCampus Snakes and Reptiles of the Lowveld Course Module # 1 - Component # 1 Introduction to Reptiles Myths and superstitions Despite the snake being symbolized by the medical profession in the form of the caduceus or magic wand of the Greek god Hermes, there is a huge amount of fear and misunderstanding of reptiles. Most times a snake is encountered, the person discovering the snake becomes panicked and frightened, screams or runs away. Frequently, the snake is unnecessarily killed. Most often (statistically) the snake is totally harmless to humans and is, in fact being useful by controlling rodents in the area, particularly around human habitation. Introduction to Reptiles © Copyright This course material is the copyrighted intellectual property of WildlifeCampus. It may not be copied, distributed or reproduced in any format whatsoever without the express written permission of WildlifeCampus 4 – WildlifeCampus Snakes and Reptiles of the Lowveld Course Certainly, they may (although seldom) inflict bites and they may be potentially life- threatening, but far fewer people die from snakebites than from bee stings, there are more people killed by lightning in a year than by venomous snakes. Many species of snakes are unfortunately restricted to the ground and cannot stay out of our way. There is a surprising similarity between a Brown House Snake (Boaedon capensis) and a Black Shouldered Kite, excluding physical appearance of course. They both hunt rodents and cannot inflict any great harm on us. The bird, however, is mostly seen in areas that we do not use, such as trees, in the air or perched on telephone lines. Brown House Snake What exacerbates an irrational fear of reptiles, and particularly snakes, is the wealth of commonly held beliefs, misconceptions, superstition, myths, embellished anecdotes, urban legends and blatant fabrications that surround them. Here are a few of the commonly heard examples, followed by a rational perspective. Introduction to Reptiles © Copyright This course material is the copyrighted intellectual property of WildlifeCampus. It may not be copied, distributed or reproduced in any format whatsoever without the express written permission of WildlifeCampus 5 – WildlifeCampus Snakes and Reptiles of the Lowveld Course Are tortoises used by Sangoma's (traditional witch doctors)? Yes. There is a belief that because the shell protects the tortoise this protection will be passed across to them. Tortoises’ feet are often used for digging, and thus some believe they solve a problem quicker by using these feet in tribal ritual. Are all snakes venomous? No. Of the ±140 endemic species to Southern Africa, only about 10% are venomous enough to be considered medically important from a human perspective. Do snakes move in pairs? No. Snakes and most reptiles are solitary animals. They will only seek out other specimens during breeding season. They do not travel together. Once mating is complete, they move off in separate directions. Do snakes seek out revenge when you have killed one of a pair? No. The pairing myth may stem from the phenomenon of certain species of female leaving scent trails for males to find and following as part of their reproductive activity. Those encountering the female and soon after the following male may incorrectly conclude pairing. Are chameleons venomous? No. They are harmless and cannot impose any real damage to anyone. The origin of this belief is not conclusively documented. Why are some people scared of Chameleons? One traditional belief is that when a person dies, their spirit goes to the nearest animal to go to the spirit world. If this is a chameleon, the spirit will never get there. Another is because the eyes of the chameleon can rotate independently from one another, an animal that can see into the future and the past at the same time is not to be trusted. Do snakes crush their prey, particularly pythons? No. Constrictors do not crush their prey at all. It would be risky during swallowing to have broken bones in the prey. They could penetrate the snake's internal organs while swallowing. All constrictors do, is to wrap their bodies around their chosen prey, and tighten their coils every time the animal exhales. This action inhibits the ability to inhale so that it cannot get in air and eventually suffocates. Does the Puff Adder (Bitis arietans arietans) strike backwards? No. They do not strike backwards, but rather, extremely rapidly forwards. Having one of the fastest strikes in the world. The forward strike is so rapid that it is often not seen when prey/victims are bitten. Introduction to Reptiles © Copyright This course material is the copyrighted intellectual property of WildlifeCampus. It may not be copied, distributed or reproduced in any format whatsoever without the express written permission of WildlifeCampus 6 – WildlifeCampus Snakes and Reptiles of the Lowveld Course Does the Black Mamba run faster than a horse? No. The size and speed of snakes are frequently over-exaggerated, probably as a result of the fright and panic situation resulting from a random encounter. Most people can outrun a snake easily, especially as reptiles can only go at full speed in short bursts. Do snakes only die at sunset? No. Most certainly not, they die naturally at any time or when they get killed. Are snakes slimy? No. They do have a shiny appearance, but unless they have just come out of water, they are dry and feel dry. Some describe the texture as being very similar to glass. Do snakes sting with their tongue? No. The tongue is used for olfactory (smell) functions. The tongue flickers more frequently when the animal is in a new environment, when people are around or when in search of prey. The forked tongue "catches" air particles and takes them into the mouth where a specialised organ called the Jacobson's Organ is situated. This is in the top of the mouth, which then translates the scents into smells it comprehends. Do snakes lick their prey before swallowing it? No. This belief probably originates from the way a snake will sometimes flick its tongue over the entire body of the prey before swallowing. This action allows the snake to accurately discern the animal body shape. This is done to ensure that swallowing of the victim headfirst, which usually guarantees that limbs and hair will fold down when swallowed. Are all venomous snakes immune to other snake venom? No. Some snakes seem to have an immunity to venom like the King Snake in America or the King Cobra of India. Our Cape File Snake can eat Black Mambas (our most venomous species). The same species can, to some degree, be immune to their own venom, but this is not always the situation and deaths may still occur. Venom is a protein and if ingested (swallowed) by a snake, the venom simply gets digested. It is when the venom is introduced into the bloodstream that envenomation takes place. How this results in humans (swallowing venom) is not something that should be independently tested, but the fact that snakes have fangs cannot be ignored. Balance this against the fact that when venom is introduced to eyes (spitting cobras) the envenomation effect is very serious. Inhaling snake venom is also potentially dangerous and should be avoided at all costs. After a snake has envenomated prey or has been milked is it harmless? No. This is most definitely not the situation. Snake venom comes from modified saliva glands and venom is often quickly replenished. Introduction to Reptiles © Copyright This course material is the copyrighted intellectual property of WildlifeCampus. It may not be copied, distributed or reproduced in any format whatsoever without the express written permission of WildlifeCampus 7 – WildlifeCampus Snakes and Reptiles of the Lowveld Course Is there a difference between venom and poison? Yes. The distinction comes from the mode of delivery into an organism. Snakes are venomous, not poisonous. Venom ingested as opposed to injected is not as problematic. Poison dart frogs (Dendrobatidae) (previously known as Poison – arrow frogs) are poisonous, not venomous. You may be poisoned by contact or ingesting the animal. Venom can be consumed or placed on the skin with little to no effect.
Recommended publications
  • ECOLOGICAL HABITAT ASSESSMENT for the PROPOSED 26Km 132Kv KINGBIRD LINE from the GUMENI SUBSTATION to the BOSLOOP SUBSTATIO
    ECOLOGICAL HABITAT ASSESSMENT FOR THE PROPOSED 26km 132kV KINGBIRD LINE FROM THE GUMENI SUBSTATION TO THE BOSLOOP SUBSTATION, ESKOM DISTRIBUTION DIVISION, NORTHERN REGION; MPUMALANGA PROVINCE Compiled for: SSI ENGINEERS & ENVIRONMENTAL CONSULTANTS BY: Mr C.L.COOK (MSc. Zool. U.P) Pr.Sci.Nat. 400084/08 Zoological Consultant: Specialist Herpetological Consultant Cell No. 082 688 9585 [email protected] SUBMITTED: 24th OCTOBER 2011 Ecological Survey for Gumeni to Bosloop132kV Kingbird Line 1 1. BACKGROUND INFORMATION Eskom Transmission is responsible for providing a high quality supply of electricity to meet the ever increasing needs of its end users. As a result, its infrastructure of power lines and substations are continuingly being established and expanded upon to support annual load growth. Eskom is planning to build a new 132kV Kingbird distribution line from the recently constructed Gumeni Substation to the south of Machadadorp to the existing Bosloop Substation. The study area is located in the Northern Mpumalanga Lowveld region. The powerline being considered for the project falls within rural areas, largely characterised by intensive commercial agricultural and pastoral land uses. The area is situated close to the small mining town of Machadadorp approximately 17km to the north, with Nelspruit situated approximately 75km to the northwest. There are two main roads that allow general access to the study area and these are R541 and the R36. The need for ESKOM’s proposed development has been identified by the low voltage service experienced in the 132kV ring supplied from Witkloof substation due to the loss of either the Witkloof-Holnek 132kV line or Witkloof-Wintershoek 132kV line voltages during the transmission and distribution.
    [Show full text]
  • MCS Herpetofauna Checklist
    MATOBO CONSERVATION SOCIETY CHECKLIST FOR THE HERPETOFAUNA OF THE MATOBO HILLS APPRECIATION This material was prepared by the MATOBO CONSERVATION SOCIETY from chapter 12 of the book “THE NATURAL HISTORY OF THE MATOBO HILLS” ISBN 978-0-7974-9815-0 with the approval of the NATURAL HISTORY MUSEUM OF ZIMBABWE The Matobo Conservation Society, a registered Welfare organisation, is committed to the conservation, appreciation and sustainable use of the natural and cultural resources within the Matobo Hills region. For more information (a) on this checklist and (b) the book “THE NATURAL HISTORY OF THE MATOBO HILLS”, write to: The Matobo Conservation Society, PO Box FM 648, Famona, Bulawayo or email [email protected] INTRODUCTION Compiled by Dr Don Broadley Sketches were done by Jenny Whalley The reptiles and amphibians together comprise the herpetofauna of the Matobo hills. It has a fairly rich species richness, consisting of 70 reptile and 28 amphibian species. Not only do these comprise a diverse assemblage, but they occur at very high densities compared to mammals. The herpetofauna of woodland and savanna areas of the Matobo includes many savanna species which are widely distributed across similar habitats of south-central Africa. With a few exceptions, most amphibians are seasonally dependant on surface water and the aquatic habitats in which it is localised. The permanent water bodies have a few characteristic reptile inhabitants. The serrated hinged terrapin is found in such dams and permanent streams, and is replaced in temporary pans by the helmeted terrapin. The water monitor is most plentiful around permanent water bodies, where it feeds largely on crabs and mussels.
    [Show full text]
  • The Herpetofauna of the Cubango, Cuito, and Lower Cuando River Catchments of South-Eastern Angola
    Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 10(2) [Special Section]: 6–36 (e126). The herpetofauna of the Cubango, Cuito, and lower Cuando river catchments of south-eastern Angola 1,2,*Werner Conradie, 2Roger Bills, and 1,3William R. Branch 1Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood 6013, SOUTH AFRICA 2South African Institute for Aquatic Bio- diversity, P/Bag 1015, Grahamstown 6140, SOUTH AFRICA 3Research Associate, Department of Zoology, P O Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031, SOUTH AFRICA Abstract.—Angola’s herpetofauna has been neglected for many years, but recent surveys have revealed unknown diversity and a consequent increase in the number of species recorded for the country. Most historical Angola surveys focused on the north-eastern and south-western parts of the country, with the south-east, now comprising the Kuando-Kubango Province, neglected. To address this gap a series of rapid biodiversity surveys of the upper Cubango-Okavango basin were conducted from 2012‒2015. This report presents the results of these surveys, together with a herpetological checklist of current and historical records for the Angolan drainage of the Cubango, Cuito, and Cuando Rivers. In summary 111 species are known from the region, comprising 38 snakes, 32 lizards, five chelonians, a single crocodile and 34 amphibians. The Cubango is the most western catchment and has the greatest herpetofaunal diversity (54 species). This is a reflection of both its easier access, and thus greatest number of historical records, and also the greater habitat and topographical diversity associated with the rocky headwaters.
    [Show full text]
  • Nyika and Vwaza Reptiles & Amphibians Checklist
    LIST OF REPTILES AND AMPHIBIANS OF NYIKA NATIONAL PARK AND VWAZA MARSH WILDLIFE RESERVE This checklist of all reptile and amphibian species recorded from the Nyika National Park and immediate surrounds (both in Malawi and Zambia) and from the Vwaza Marsh Wildlife Reserve was compiled by Dr Donald Broadley of the Natural History Museum of Zimbabwe in Bulawayo, Zimbabwe, in November 2013. It is arranged in zoological order by scientific name; common names are given in brackets. The notes indicate where are the records are from. Endemic species (that is species only known from this area) are indicated by an E before the scientific name. Further details of names and the sources of the records are available on request from the Nyika Vwaza Trust Secretariat. REPTILES TORTOISES & TERRAPINS Family Pelomedusidae Pelusios rhodesianus (Variable Hinged Terrapin) Vwaza LIZARDS Family Agamidae Acanthocercus branchi (Branch's Tree Agama) Nyika Agama kirkii kirkii (Kirk's Rock Agama) Vwaza Agama armata (Eastern Spiny Agama) Nyika Family Chamaeleonidae Rhampholeon nchisiensis (Nchisi Pygmy Chameleon) Nyika Chamaeleo dilepis (Common Flap-necked Chameleon) Nyika(Nchenachena), Vwaza Trioceros goetzei nyikae (Nyika Whistling Chameleon) Nyika(Nchenachena) Trioceros incornutus (Ukinga Hornless Chameleon) Nyika Family Gekkonidae Lygodactylus angularis (Angle-throated Dwarf Gecko) Nyika Lygodactylus capensis (Cape Dwarf Gecko) Nyika(Nchenachena), Vwaza Hemidactylus mabouia (Tropical House Gecko) Nyika Family Scincidae Trachylepis varia (Variable Skink) Nyika,
    [Show full text]
  • Molecular Evolution of Three-Finger Toxins in the Long-Glanded Coral Snake Species Calliophis Bivirgatus
    toxins Article Electric Blue: Molecular Evolution of Three-Finger Toxins in the Long-Glanded Coral Snake Species Calliophis bivirgatus Daniel Dashevsky 1,2 , Darin Rokyta 3 , Nathaniel Frank 4, Amanda Nouwens 5 and Bryan G. Fry 1,* 1 Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; [email protected] 2 Australian National Insect Collection, Commonwealth Science and Industry Research Organization, Canberra, ACT 2601, Australia 3 Department of Biological Sciences, Florida State University, Tallahassee, FL 24105, USA; [email protected] 4 MToxins Venom Lab, 717 Oregon Street, Oshkosh, WI 54902, USA; [email protected] 5 School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia; [email protected] * Correspondence: [email protected], Tel.: +61-7-336-58515 Abstract: The genus Calliophis is the most basal branch of the family Elapidae and several species in it have developed highly elongated venom glands. Recent research has shown that C. bivirgatus has evolved a seemingly unique toxin (calliotoxin) that produces spastic paralysis in their prey by acting on the voltage-gated sodium (NaV) channels. We assembled a transcriptome from C. bivirgatus to investigate the molecular characteristics of these toxins and the venom as a whole. We find strong confirmation that this genus produces the classic elapid eight-cysteine three-finger toxins, that δ-elapitoxins (toxins that resemble calliotoxin) are responsible for a substantial portion of the venom composition, and that these toxins form a distinct clade within a larger, more diverse clade of C. bivirgatus three-finger toxins. This broader clade of C.
    [Show full text]
  • Terrestrial Fauna Impact Assessment
    July 2014 ENVIRONMENTAL IMPACT ASSESSMENT FOR SASOL PSA AND LPG PROJECT TERRESTRIAL FAUNA IMPACT ASSESSMENT Specialist Report 10 OOD OF MARK WOOD CONSULTANTS SSOCIADOS MOZAMBIQUE LDA PREPARED BY Author: AR Deacon Submitted to: EIA CONDUCTED BY GOLDER A WITH EIA LEADERSHIP BY MARK W SASOL Petroleum Mozambique Limitada & Sasol Petroleum Temane Limitada Report Number: 1302793 - 10712 - 20 (Eng) TERRESTRIAL FAUNA NON TECHNICAL SUMMARY Introduction Sasol Petroleum Mozambique (SPM) and Sasol Petroleum Temane (SPT) are proposing to develop the PSA Development and Liquefied Petroleum Gas (LPG) Project, situated near Inhassoro in the Inhambane Province of Mozambique. The project is an expansion of the existing Sasol Natural Gas Project in this area. Proposed new infrastructure includes 19 wells (oil and gas), associated flowlines and a new Manifold Station (8.8 ha), from which the oil flowlines will be combined into a single pipeline routed to the new Integrated PSA Liquids and LPG Plant (9.5 ha), constructed adjacent to the Central Processing Facility (CPF). This Study This study presents the findings of an assessment of the impact of the project on Terrestrial Fauna. It is one of a series of studies prepared for the Environmental Impact Assessment for the project. The study takes into account Mozambique laws and regulations, regional conventions and protocols and importantly, the Performance Standards of the International Finance Corporation, in particular Performance Standard 6, Biodiversity Conservation and Sustainable Management of Living Natural Resources, as the underpinning of the assessment and the recommendations made in the report. Methodology The survey made use of habitat availability in the different vegetation types, while the presence of observed species was used as an indicator of habitat integrity.
    [Show full text]
  • Linksfield Project on 14Th of May 2014
    !"#$%&'(')023456| } !78#%)"'9)0@A BCDEF#8GF%H&')0%)8H&F)"#$'$@ A I6PC56~ 34Q58#%)"'9)0@A BC2 @R P I STTUC6P 3BVW2 A4WX6PW2 5 4 AA 2BYT 5 `ababac@efghipq@rstuvwwxyPttuvy @ GF'"")$G9%&GF'$RB23I2B4A BBB 3 2 B@BB CB 2I I2SI2 @WISTTC56B2 2 B IB2343 @H%G"7deH%G"7STTfC56 BA234 B BBA234BB7 62 42S342@FGgPQhC A BBA2 2 4BB4 B 2343 B24 4 4562 24B 4@eH%G"7STTfC5GF'"")$G9%&GF'$ 34I BB I2 A35 B56 2B @CI2 B@2i 4CI 4 @4i4CI24 7G9%&GF'$ 25j2I24B 343 2 2 IA BI 2B5 6BB 3 4 4B A I 44B 52I2i2 AB 2 456 B 2 A 23B2@hISTTC5GF'"")$G9%&GF'$A B 24 B II I5 63A 33 425622 A B AA @k22 H%G"5ISTTSC5 62 3 B 3 2W @4 eIYdVBH%G"7STTTC5X@TC 7G9%&GF'$2BA 3 4 l 4 mIBASTTnYT 5 `ababab@owpyvqvxrPspxwvxr@rtugvwxyz @ P B3 2 A3 2 A2@RC56A B @P6C2 AARB 23A BI!"#$%&'(')08#%)"'9)0@P6{C5P62IPIhI{B 2A BA BI2Q3 3B A B @ H%G"7STSC56BBB B A BB2 I 5W BA BAA B A2 ! "# $ %&'(&)(%0 &1)0'' 2345$78$9@4$A$BC@84D7E7FG$8HIP7I8Q$RS7PS$78$S@R$4S78$DIAE83 % T!U! $ %&'(&)(%0 &1)0V' ) ! "# $ %&'(&)(%0 &1))% WSI$9A4FDAC$SA574A4$@X$B3$5@4FC79FG$78$8@7C3$Y@4FC78G$78$4`H7PACC`$PAF8IE$5`$4SI$4@a79$79$X@@EQ$DA4SID$4SA9$4SI$@DbA978G$748ICX3$Y@4FC78G$DIACC`$789c4$DICIdA94$4@$4S78$79dI847bA47@9 ' T!U! $ %&'(&)(%0 &1)1& V T!U! $ %&'(&)(%0 &1)&%) e ! "# $ %&'(&)(%0 &1)f% g7hRI 1 T!U! $ %&'(&)(%0 &1)f& ! " # !$%&')012344567809@'ABCBDEF9'D0BGDEH I " !P7Q"" " ! R " S" 81F9'D0BGDE"" # $TU"IVWWX67 Y`a`a`Y>cdefgheipqrstKisgpqesvfwrw> x"y ! $yxU6 ! H ! ""P!#" !! "7x" "yxU 1'DF&AD09@B@I"# " $ "&')012VWW67
    [Show full text]
  • THE HUSBANDRY and CAPTIVE PROPAGATION of the SOUTHERN ROCK PYTHON, PYTHON SEBAE NATALENSIS GERALD V HAAGNER Port Elizabeth Snake Park, P.O
    BIMCI) I lerpciolopt.)1 Sotici.1 Both:NIL No. 42. 1992/93. THE HUSBANDRY AND CAPTIVE PROPAGATION OF THE SOUTHERN ROCK PYTHON, PYTHON SEBAE NATALENSIS GERALD V HAAGNER Port Elizabeth Snake Park, P.O. Box 13147 Hum wood, 6013. South Africa INTRODUCTION The African Rock Python, Python sebae (Fig. I) is distributed throughout much of sub-Saharan Africa, extending along the Nile valley into Egypt. In southern Africa it is restricted to northern Namibia and Botswana, extending through the northern and eastern Tansvaal, to Natal and the Transkei (Map 1). Pythons were previously found in the eastern Cape Province as far south as Bathurst where it became extinct in 1927 (Broadley, 1983). Branch (1988a) reported on an apparent successful reintroduction of the species into the eastern Cape. Broadley (1984) recently recognised the southern race (Python sebac natalensis) of the African Rock Python as distinct from the typical race from west and central Africa. The recently described Lesser Rock Python (P. saxuloides) from Kenya (Miller & Smith 1979), is treated as a junior synonym of the southern race (Broadley 1983). The African Rock Python is a thick-bodied snake with distinctive markings and size. As with most "giant" snakes. the size is easily over-exaggerated and most recorded lengths have been of the nominate race. Python sebae sebae has been reported to attain a length of 9.8m in the Ivory Coast (Doucet 1963), but full details for this specimen are lacking and cannot now be verified. Arthur Loveridge, whilst collecting in East Africa in 1927, measured a fresh skin of 9.1 metres and even allowing for extensive stretching, it must have been over seven metres long.
    [Show full text]
  • Annotated Checklist and Provisional Conservation Status of Namibian Reptiles
    Annotated Checklist - Reptiles Page 1 ANNOTATED CHECKLIST AND PROVISIONAL CONSERVATION STATUS OF NAMIBIAN REPTILES MICHAEL GRIFFIN BIODIVERSITY INVENTORY MINISTRY OF ENVIRONMENT AND TOURISM PRIVATE BAG 13306 WINDHOEK NAMIBIA Annotated Checklist - Reptiles Page 2 Annotated Checklist - Reptiles Page 3 CONTENTS PAGE ABSTRACT 5 INTRODUCTION 5 METHODS AND DEFINITIONS 6 SPECIES ACCOUNTS Genus Crocodylus Nile Crocodile 11 Pelomedusa Helmeted Terrapin 11 Pelusios Hinged Terrapins 12 Geochelone Leopard Tortoise 13 Chersina Bowsprit Tortoise 14 Homopus Nama Padloper 14 Psammobates Tent Tortoises 15 Kinixys Hinged Tortoises 16 Chelonia GreenTurtle 16 Lepidochelys Olive Ridley Turtle 17 Dermochelys Leatherback Turtle 17 Trionyx African Soft-shelled Turtle 18 Afroedura Flat Geckos 19 Goggia Dwarf Leaf-toed Geckos 20 Afrogecko Marbled Leaf-toed Gecko 21 Phelsuma Namaqua Day Gecko 22 Lygodactylus Dwarf Geckos 23 Rhoptropus Namib Day Geckos 25 Chondrodactylus Giant Ground Gecko 27 Colopus Kalahari Ground Gecko 28 Palmatogecko Web-footed Geckos 28 Pachydactylus Thick-toed Geckos 29 Ptenopus Barking Geckos 39 Narudasia Festive Gecko 41 Hemidactylus Tropical House Geckos 41 Agama Ground Agamas 42 Acanthocercus Tree Agama 45 Bradypodion Dwarf Chameleons 46 Chamaeleo Chameleons 47 Acontias Legless Skinks 48 Typhlosaurus Blind Legless Skinks 48 Sepsina Burrowing Skinks 50 Scelotes Namibian Dwarf Burrowing Skink 51 Typhlacontias Western Burrowing Skinks 51 Lygosoma Sundevall’s Writhing Skink 53 Mabuya Typical Skinks 53 Panaspis Snake-eyed Skinks 60 Annotated
    [Show full text]
  • Substrate Thermal Properties Influence Ventral Brightness Evolution In
    ARTICLE https://doi.org/10.1038/s42003-020-01524-w OPEN Substrate thermal properties influence ventral brightness evolution in ectotherms ✉ Jonathan Goldenberg 1 , Liliana D’Alba 1, Karen Bisschop 2,3, Bram Vanthournout1 & Matthew D. Shawkey 1 1234567890():,; The thermal environment can affect the evolution of morpho-behavioral adaptations of ectotherms. Heat is transferred from substrates to organisms by conduction and reflected radiation. Because brightness influences the degree of heat absorption, substrates could affect the evolution of integumentary optical properties. Here, we show that vipers (Squa- mata:Viperidae) inhabiting hot, highly radiative and superficially conductive substrates have evolved bright ventra for efficient heat transfer. We analyzed the brightness of 4161 publicly available images from 126 species, and we found that substrate type, alongside latitude and body mass, strongly influences ventral brightness. Substrate type also significantly affects dorsal brightness, but this is associated with different selective forces: activity-pattern and altitude. Ancestral estimation analysis suggests that the ancestral ventral condition was likely moderately bright and, following divergence events, some species convergently increased their brightness. Vipers diversified during the Miocene and the enhancement of ventral brightness may have facilitated the exploitation of arid grounds. We provide evidence that integument brightness can impact the behavioral ecology of ectotherms. 1 Evolution and Optics of Nanostructures group, Department
    [Show full text]
  • Venomous Snakes of the Horn of Africa
    VENOMOUS SNAKES OF THE HORN OF AFRICA Venomous Snake Identification Burrowing Asps Boomslang, Vine and Tree Snakes Snakebite Prevention Behavior: Venomous snakes are found throughout the Horn of Africa. Assume that any snake you encounter is venomous. Leave Long, Flattened Head, Round Fixed Front Smooth Long, Cylindrical Behavior: Burrowing asps spend the majority of time underground in burrows under stones, concrete slabs, logs, snakes alone. Many people are bitten because they try to kill a snake or get a closer look at it. Slightly Distinct from Neck Pupils Fangs Scales Body, Thin Tail They are active during both the daytime and nighttime. or wooden planks. 5-8 feet in length They live in trees and feed on bats, birds, and lizards. They are active on the surface only during the nighttime hours or after heavy rains flood their burrows. They are not aggressive: will quickly flee to nearest tree or bush if surprised on ground. Snakebites occur most often: MAMBAS They feed on small reptiles and rodents found in holes or underground. They do not climb. When molested, they inflate their bodies or necks as threat posture before biting. After rainstorms that follow long, dry spells or after rains in desert areas. Dendroaspis spp. SAVANNA VINE They are not aggressive: bites usually occur at night when snakes are stepped on accidentally. SNAKE During the half-hour before total darkness and the first two hours after dark. Habitats: Trees next to caves, coastal bush and reeds, tropical forests, open savannas, Thelotornis Habitats: Burrows in sand or soft soil, semi-desert areas, woodlands, and savannas.
    [Show full text]
  • Project Name
    SYRAH RESOURCES GRAPHITE PROJECT, CABO DELGADO, MOZAMBIQUE TERRESTRIAL FAUNAL IMPACT ASSESSMENT Prepared by: Prepared for: Syrah Resources Limited Coastal and Environmental Services Mozambique, Limitada 356 Collins Street Rua da Frente de Libertação de Melbourne Moçambique, Nº 324 3000 Maputo- Moçambique Australia Tel: (+258) 21 243500 • Fax: (+258) 21 243550 Website: www.cesnet.co.za December 2013 Syrah Final Faunal Impact Assessment – December 2013 AUTHOR Bill Branch, Terrestrial Vertebrate Faunal Consultant Bill Branch obtained B.Sc. and Ph.D. degrees at Southampton University, UK. He was employed for 31 years as the herpetologist at the Port Elizabeth Museum, and now retired holds the honorary post of Curator Emeritus. He has published over 260 scientific articles, as well as numerous popular articles and books. The latter include the Red Data Book for endangered South African reptiles and amphibians (1988), and co-editing its most recent upgrade – the Atlas and Red Data Book of the Reptiles of South Africa, Lesotho and Swaziland (2013). He has also published guides to the reptiles of both Southern and Eastern Africa. He has chaired the IUCN SSC African Reptile Group. He has served as an Honorary Research Professor at the University of Witwatersrand (Johannesburg), and has recently been appointed as a Research Associate at the Nelson Mandela Metropolitan University, Port Elizabeth. His research concentrates on the taxonomy, biogeography and conservation of African reptiles, and he has described over 30 new species and many other higher taxa. He has extensive field work experience, having worked in over 16 African countries, including Gabon, Ivory Coast, DRC, Zambia, Mozambique, Malawi, Madagascar, Namibia, Angola and Tanzania.
    [Show full text]