Anatomia Dos Lenhos De Ephedra Tweediana, Gnetum Gnemon E Welwitschia Mirabilis (Gnetidae) 1

Total Page:16

File Type:pdf, Size:1020Kb

Anatomia Dos Lenhos De Ephedra Tweediana, Gnetum Gnemon E Welwitschia Mirabilis (Gnetidae) 1 BALDUINIA, n. 61, p.23-30, 15-IV-2018 http://dx.doi.org/10.5902/2358198032387 ANATOMIA DOS LENHOS DE EPHEDRA TWEEDIANA, GNETUM GNEMON E WELWITSCHIA MIRABILIS (GNETIDAE) 1 ANELISE MARTA SIEGLOCH2 JOSÉ NEWTON CARDOSO MARCHIORI 3 RESUMO O lenho das espécies em estudo apresenta estruturas muito distintas. Ephedra tweediana tem anéis de cres- cimento descontínuos, vasos numerosos e de lúmens estreitos, e placas de perfuração foraminadas, com 6-20 perfurações. Gnetum gnemon identifica-se pela ausência de anéis de crescimento, pelos vasos de grandes lúmens e placas de perfuração simples, por vezes foraminadas (até 8 perfurações). Welwistchia mirabilis, por sua vez, distingue-se pelas células espiculares com cristais de oxalato de cálcio. Palavras-chave: anatomia da madeira, Ephedra, Gimnospermas, Gnetidae, Gnetum, Welwitschia. ABSTRACT [Wood anatomy of Ephedra tweediana, Gnetum gnemon and Welwitschia mirabilis (Gnetidae)]. The three studied wood species present a large variation in its wood anatomical features. Ephedra tweediana shows discontinuous growth rings, numerous vessels with narrow lumens and only foraminate perforation plates (6-20 perforations). Gnetum gnemon distinguishes itself by the absence of growth rings and vessels with large lumens, with simple perforation plates, sometimes foraminate up to 8 perforations. The wood of Welwistchia mirabilis, in turn, shows spicular cells with calcium oxalate crystals. Key words: Ephedra, Gnetidae, Gnetum, Gymnosperms, Welwitschia, wood anatomy. INTRODUÇÃO As Gnetidae têm particular importância no Na natureza, encontram-se cinco linhagens contexto da evolução das plantas por reunirem principais de plantas vivas com sementes: caracteres tanto de Gimnospermas (sementes Cycadidae, Ginkgoidae, Gnetidae, Pinidae e envolvidas em um ovário), como de Angios- plantas com flores (Angiospermas). As quatro permas, caso de elementos de vaso no lenho, primeiras compõem as Gimnospermas, por te- estruturas reprodutivas com aspecto de flores e rem sementes nuas, em oposição às dupla fertilização (Judd, 2009). Angiospermas, cujas sementes estão protegidas A subclasse Gnetidae compreende as ordens no interior de um carpelo (Judd et al., 2009). Ephedrales, Gnetales e Welwistchiales, com As Gimnospermas, com exceção das uma única família e gênero em cada ordem, as Gnetales, apresentam traqueoides no xilema; já quais são muito distintas entre si sob o ponto de as Angiospermas e Gnetales apresentam elemen- vista morfológico (Christenhusz et al., 2011; tos de vaso, que são mais eficientes do que Judd et al., 2009). traqueoides para o transporte de água em algu- A família Ephedraceae reúne ervas e arbus- mas circunstâncias (Judd, 2009). tos eretos ou volúveis (raramente arvoretas), ge- ralmente dioicos, com ramos verticilados geral- mente verdes e fotossintetizantes, e folhas sim- 1 Recebido para publicação em 20/11/2017 e aceito para ples, opostas ou verticiladas, escamiformes e de publicação em 16/02/2018. 2 Engenheira Florestal. Doutoranda do Programa de Pós- margem inteira (Souza & Lorenzi, 2012). Graduação em Engenheira Florestal. Bolsista – CAPES. O gênero Ephedra, com cerca de 60 espéci- Universidade Federal de Santa Maria. Santa Maria, RS, es, distribui-se nas regiões temperadas do mun- Brasil. [email protected] 3 Professor Titular do Departamento de Ciências Flores- do, com exceção da Austrália. Adaptadas a re- tais, Universidade Federal de Santa Maria. Santa Maria, giões extremamente áridas e ensolaradas, as RS, Brasil. [email protected] espécies habitam estepes e desertos, em altitu- 23 des de até 4000 m nos Andes e Himalaia (Judd to, maciço, com duas folhas opostas e em for- et al., 2009). No Brasil, registra-se uma única ma de fita, as quais, a partir da base, crescem ao espécie, Ephedra tweediana, nativa no Rio longo de toda a vida da planta (Gifford; Foster, Grande do Sul (Souza & Lorenzi, 2012). 1988). Trata-se do dito “polvo-do-deserto”, na- Conhecida popularmente por “efedra” ou tivo na região do Cabo Negro, no sudoeste da “trepadeira-macarrão”, Ephedra tweediana é África, em área de clima extremamente árido nativa na Argentina, Uruguai e sul do Brasil, (Rodin, 1953). De sua morfologia, destacam- chegando a ser frequente na Serra do Sudeste se, ainda, os estômatos em ambas as faces da do Rio Grande do Sul e nos arredores de Porto folha e os cones femininos vermelhos, com uma Alegre (Marchiori, 2005). Trata-se de arbusto única semente alada, que se dispersa pelo vento dióico, escandente e de até 6m de altura, provi- (Gifford; Foster, 1988). do de folhas caducas de 5mm de comprimento. Além da descrição anatômica do lenho de Os estróbilos masculinos, globosos (cerca de Ephedra tweediana, Gnetum gnemon e 6mm), reúnem 3-7 pares de brácteas decussadas. Welwistchia mirabilis, o presente estudo visa a Os femininos, pedunculados, vermelhos, reconhecer caracteres anatômicos de valor carnosos e com 8-10mm de comprimento, apre- taxonômico para os táxons envolvidos. sentam, geralmente, duas sementes (Marchiori, 2005). MATERIAL E MÉTODOS A família Gnetaceae reúne lianas lenhosas, As amostras de lenho de Gnetum gnemon e arbustos e árvores, as quais são, geralmente, Welwitschia mirabilis foram recebidas median- dioicas, de folhas simples, opostas, largas, te permuta com o New York Botanical Garden. comumente elípticas, e sementes envolvidas em A de Ephedra tweediana foi coletada no Rio sarcotesta carnosa (Judd et al., 2009; Souza; Grande do Sul e sua exsicata encontra-se depo- Lorenzi, 2012). sitada no Herbário do Departamento de Ciênci- O gênero Gnetum compreende umas trinta as Florestais da Universidade Federal de Santa espécies (principalmente lianas) de distribuição Maria (HDCF) sob o número 3215. pantropical disjunta. No Brasil, encontram-se Das amostras disponíveis, foram preparados seis espécies na Amazônia: Gnetum leyboldii, três corpos-de-prova, orientados para a obten- G. nodiflorum, G. paniculatum, G. schwa- ção de cortes anatômicos nos planos transver- ckeanum, G. urens e G. venosum (Souza; sal, longitudinal radial e longitudinal tangencial; Lorenzi, 2012). de outro fragmento foram obtidos palitinhos, Gnetum gnemon L., conhecido por “melinjo” usados no preparo de lâminas de macerado. ou “belinjo”, é planta nativa no Sudeste da Ásia Os corpos-de-prova foram fervidos em água, e ilhas do Pacífico Ocidental, incluindo Fiji, até a expulsão completa das partículas gasosas Indonésia, Malásia, Papua Nova Guiné, Filipi- existentes no interior da madeira. nas e Vanuatu. Árvore pequena (8-15 m) e de A microtomia foi realizada no Laboratório folhas verdes, opostas, inteiras e oblongas (de de Anatomia da Madeira da Universidade Fe- 10-20×4-7 cm), apresenta estróbilos masculinos deral do Paraná, utilizando-se micrótomo de pequenos, em longos pedúnculos, e estróbilos deslizamento modelo Spencer (American femininos carnosos, vermelho-alaranjados, de Optical n. 860), regulado para obtenção de cor- 6-10cm, com uma única semente (Harley; tes anatômicos com espessura nominal de 16 a Craing, 2006). 20 µm. A família Welwitschiaceae, compreende uma Mantidos em Placa de Petri, com água, os única espécie viva, Welwitschia mirabilis Hook. cortes sofreram coloração com solução aquosa f., nativa no Sudoeste da África (Namíbia). Ca- de “Safra-Blau”, ou seja, uma mistura, em par- racteriza-se, morfologicamente, pelo caule cur- tes iguais, de Safranina 1% e Azul-de-Astra 1%. 24 Após esta etapa, os cortes foram lavados em contínuos, interrompidos por raios largos (Fi- água destilada, para a extração do excesso de gura 1A,B). corante, desidratados em série alcoólica ascen- Vasos: de seção poligonal (27,5-38,5-57,5 dente (álcool etílico 25%, 50%, 75%, 90%, 95%, (s=6,9) µm), com abundância de 235/mm² com duas passagens em álcool absoluto P.A.) e (s=21,4) e paredes relativamente finas (1,3-3,6- diafanizados em xilol. Na montagem de lâmi- 6,3 (s=1,3) µm). Porosidade difusa, uniforme. nas permanentes, usou-se “Entellan”. Vasos solitários ou em contato parcial com ou- No preparo das lâminas de macerado, os tros, compondo 27% do volume da madeira (Fi- palitinhos, obtidos manualmente com formão, gura 1A,B). Elementos vasculares de 650-1032- passaram por dois banhos em solução de Jeffrey 1340 (s=174) µm de comprimento, com placas (Freund, 1970), com duração de 24 horas cada. de perfuração foraminadas, verticais, providas O material dissociado foi recolhido em papel de 6-20 perfurações arredondadas, alternas (Fi- filtro (funil), colorido com Safranina 1%, desi- gura 1D). Apêndices, espessamentos espi- dratado em álcool etílico conforme anteriormen- ralados, estriações, tilos e depósitos, ausentes. te descrito, e conservado em Xilol até a monta- Pontoações intervasculares escassas, arredon- gem de 6 lâminas permanentes por amostra. dadas (10-14-15 (s=1,7) µm) e em arranjo A descrição baseou-se nas recomendações unisseriado, por vezes bi ou trisseriado-alterno, do IAWA Committee (Wheeler et al., 1989). No com abertura circular-inclusa. (Figura 1D) caso da percentagem dos tecidos, foram reali- Parênquima axial: apotraqueal difuso-em- zadas 600 determinações ao acaso, com auxílio agregados, por vezes paratraqueal, representan- de contador de laboratório, conforme proposto do 12% do volume da madeira. Séries por Marchiori (1980). A abundância de poros parenquimáticas axiais de 195-350-500 (s=96) foi obtida a partir de um quadrado de área co- µm de altura, geralmente com 2 ou 3 células. nhecida, superposto a fotomicrografias de se- Raios: com abundância de 3-6-9/mm (s=1,3), ções transversais da madeira. ocupando 22% do volume
Recommended publications
  • Readingsample
    Systematische Botanik Bearbeitet von Matthias Baltisberger, Reto Nyffeler, Alex W. Widmer überarbeitet 2013. Taschenbuch. XIV, 378 S. Paperback ISBN 978 3 7281 3525 4 Format (B x L): 17 x 24 cm Gewicht: 816 g Weitere Fachgebiete > Chemie, Biowissenschaften, Agrarwissenschaften > Biowissenschaften allgemein > Taxonomie und Systematik schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Matthias Baltisberger Reto Nyffeler Alex Widmer SyStematiSche Botanik 4. Auflage einheimische Farn- und Samenpflanzen VII Inhaltsverzeichnis Vorwort zur 4. Auflage . XIII Einführung. 1 Grundlagen . 3 Erdgeschichte und Evolution. 3 Generationswechsel . 4 Systematik. .5 Vielfalt ordnen und verstehen . 5 Klassifikationssystem . 6 Phylogenetik. .8 Methoden der systematischen Botanik . 12 Morphologie. 12 Anatomie. 13 Embryologie . 13 Pollen – Palynologie. 14 Blütenbiologie . 15 Zytologie . ....................................................16 Chemotaxonomie . 17 Molekulare Systematik. 18 Genetik. 20 Vegetationsgeschichte . 21 Pflanzengeographie . 21 Ökologie . 22 Pflanzensoziologie . 22 Biodiversität . ....................................................23 Allgemeine Informationen . 25 Informationen zu
    [Show full text]
  • Chromosome Numbers in Gymnosperms - an Update
    Rastogi and Ohri . Silvae Genetica (2020) 69, 13 - 19 13 Chromosome Numbers in Gymnosperms - An Update Shubhi Rastogi and Deepak Ohri Amity Institute of Biotechnology, Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Malhaur (Near Railway Station), P.O. Chinhat, Luc know-226028 (U.P.) * Corresponding author: Deepak Ohri, E mail: [email protected], [email protected] Abstract still some controversy with regard to a monophyletic or para- phyletic origin of the gymnosperms (Hill 2005). Recently they The present report is based on a cytological data base on 614 have been classified into four subclasses Cycadidae, Ginkgoi- (56.0 %) of the total 1104 recognized species and 82 (90.0 %) of dae, Gnetidae and Pinidae under the class Equisetopsida the 88 recognized genera of gymnosperms. Family Cycada- (Chase and Reveal 2009) comprising 12 families and 83 genera ceae and many genera of Zamiaceae show intrageneric unifor- (Christenhusz et al. 2011) and 88 genera with 1104 recognized mity of somatic numbers, the genus Zamia is represented by a species according to the Plant List (www.theplantlist.org). The range of number from 2n=16-28. Ginkgo, Welwitschia and Gen- validity of accepted name of each taxa and the total number of tum show 2n=24, 2n=42, and 2n=44 respectively. Ephedra species in each genus has been checked from the Plant List shows a range of polyploidy from 2x-8x based on n=7. The (www.theplantlist.org). The chromosome numbers of 688 taxa family Pinaceae as a whole shows 2n=24except for Pseudolarix arranged according to the recent classification (Christenhusz and Pseudotsuga with 2n=44 and 2n=26 respectively.
    [Show full text]
  • Cycad Leaf Physiology Research Needed 1 August 2017
    Cycad leaf physiology research needed 1 August 2017 they contain close to 400 described species. Guiding principles are needed to improve the representation and relevance of these plants in contemporary research agendas. According to Marler, the addition of more descriptive research targeting cycad species is welcomed regardless of the approach. But the adherence to protocols that ensure species relevance would improve the outcomes. Since forest canopy traits define sunfleck qualities, the experimental protocols for studying sunfleck use by newly studied species should be defined from the natural habitats of each species. Moreover, the behavior of cultivated plants often differs from that Healthy juvenile plants of the endangered Cycas of plants in natural settings, and moving from the micronesica thrive in a deep understory habitat where current level of minimal knowledge to a level of they effectively utilize infrequent sunflecks. Credit: adequate knowledge may be reached most rapidly Thomas Marler by studying these plants within their native range rather than in botanic gardens. A phenomenon called context dependency is also pertinent to the needed expansion of cycad research. Do The living cycad species are among the world's environmental factors such as drought influence most threatened plant groups, but are also among how a cycad plant capitalizes on the ephemeral the world's least studied plant groups. The need for access to sunflecks? a greater understanding of basic physiology of cycads has been discussed for decades, yet to Attempts to link phylogenetic subsets of plants date the needed research is lacking. more closely to the broader global research agenda need to be accurate.
    [Show full text]
  • Appendix 1. Systematic Arrangement of the Native Vascular Plants of Mexico
    570 J.L. Villase˜nor / Revista Mexicana de Biodiversidad 87 (2016) 559–902 Appendix 1. Systematic arrangement of the native vascular plants of Mexico. The number of the families corresponds to the linear arrangement proposed by APG III (2009), Chase and Reveal (2009), Christenhusz, Chun, et al. (2011), Christenhusz, Reveal, et al. (2011), Haston et al. (2009) and Wearn et al. (2013). In parentheses, the first number indicates the number of genera and the second the number of species recorded for the family in Mexico Ferns and Lycophytes Order Cyatheales 12. Taxaceae (1/1) 17. Culcitaceae (1/1) Angiosperms Lycophytes 18. Plagiogyriaceae (1/1) 19. Cibotiaceae (1/2) Superorder Nymphaeanae Subclass Lycopodiidae 20. Cyatheaceae (3/14) 21. Dicksoniaceae (2/2) Orden Nymphaeales Order Lycopodiales 22. Metaxyaceae (1/1) 3. Cabombaceae (2/2) 1. Lycopodiaceae (4/21) 4. Nymphaeaceae (2/12) Order Polypodiales Order Isoetales 23. Lonchitidaceae (1/1) Superorder Austrobaileyanae 2. Isoetaceae (1/7) 24. Saccolomataceae (1/2) 26. Lindsaeaceae (3/8) Order Selaginellalles Orden Austrobaileyales 27. Dennstaedtiaceae (4/23) 3. Selaginellaceae (1/79) 7. Schisandraceae (2/2) 28. Pteridaceae (33/214) 29. Cystopteridaceae (1/4) Pteridophytes Superorder Chloranthanae 30. Aspleniaceae (4/89) 31. Diplaziopsidaceae (1/1) Subclass Equisetidae Orden Chloranthales 32. Thelypteridaceae (1/70) 8. Chloranthaceae (1/1) 33. Woodsiaceae (1/8) Order Equisetales 35. Onocleaceae (1/1) 1. Equisetaceae (1/6) Superorder Magnolianae 36. Blechnaceae (2/20) 37. Athyriaceae (2/31) Subclass Ophioglossidae Orden Canellales 38. Hypodematiaceae (1/1) 9. Canellaceae (1/1) Order Ophioglossales 39. Dryopteridaceae 10. Winteraceae (1/1) 2. Ophioglossaceae (2/16) (14/159) 40.
    [Show full text]
  • Zusammenfassung Systematische Biologie: Pflanzen
    Zusammenfassung Systematische Biologie: Pflanzen - FS18 v0.2 Gleb Ebert 6. M¨arz 2018 Vorwort Diese Zusammenfassung soll den gesamten Stoff der Vorlesung Systematische Biologie: Pflanzen (Stand Fruhjahrssemester¨ 2018) in kompakter Form zusammenfassen. Ich kann leider weder Vollst¨andigkeit noch die Abwesenheit von Fehlern garan- tieren. Fur¨ Fragen, Anregungen oder Verbesserungsvorschl¨agen kann ich unter [email protected] erreicht werden. Die neuste Version dieser Zusammenfassung kann stets unter https://n.ethz.ch/˜glebert/ gefunden werden. 1 1 Landpflanzen 1.2 Stammbaum 2.4 Systematik (nur vervorgehobene Taxa prufungsrelevant)¨ 1.1 Entwicklung • Klasse: Marchantiopsida (Lebermoose) – Bebl¨atterte Lebermoose – Thallose Lebermoose • Klasse: Antheceropsida (Hornmoose) • Klasse: Bryopsida (Laubmoose) – Sphaginidae (Torfmoose) → Deckel ohne Peristom – Andreaeidae (Klaffmoose) → Spalten + Kolumella – Bryidae (Echte Laubmoose) 2 Bryophyta (Moose) → Deckel mit Peristom – Einteilung nach Wuchsform 2.1 Allgemeine Merkmale ∗ Akrokarpe Moose (Gipfelmoose) ∗ Pleuokarpe Moose (Astmoose) • ¨alteste Landpflanzen • Verbreitung durch Sporen (Kryptogamen) • Generationswechsel mit dominantem Gametophyt 2.5 Wuchsformen • Vielzellige Gametangien, Embryobildung • Organisationsstufe: – keine Leitgef¨asse – St¨ammchen, Bl¨attchen – Rhizoiden 2.2 Vorkommen / Eigenschaften • Artenzahl: 25’000 • an Orten mit hoher Luftfeuchtigkeit 1.1.1 Charophyceen vs. Landpflanzen • Lichtbedarf (0.1%) • Trockenheitstoleranz Gemeinsamkeiten neu in Landpflanzen • Temperatur (-30
    [Show full text]
  • Curitiba, Southern Brazil
    data Data Descriptor Herbarium of the Pontifical Catholic University of Paraná (HUCP), Curitiba, Southern Brazil Rodrigo A. Kersten 1,*, João A. M. Salesbram 2 and Luiz A. Acra 3 1 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil 2 REFLORA Project, Curitiba, Brazil; [email protected] 3 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-41-3721-2392 Academic Editor: Martin M. Gossner Received: 22 November 2016; Accepted: 5 February 2017; Published: 10 February 2017 Abstract: The main objective of this paper is to present the herbarium of the Pontifical Catholic University of Parana’s and its collection. The history of the HUCP had its beginning in the middle of the 1970s with the foundation of the Biology Museum that gathered both botanical and zoological specimens. In April 1979 collections were separated and the HUCP was founded with preserved specimens of algae (green, red, and brown), fungi, and embryophytes. As of October 2016, the collection encompasses nearly 25,000 specimens from 4934 species, 1609 genera, and 297 families. Most of the specimens comes from the state of Paraná but there were also specimens from many Brazilian states and other countries, mainly from South America (Chile, Argentina, Uruguay, Paraguay, and Colombia) but also from other parts of the world (Cuba, USA, Spain, Germany, China, and Australia). Our collection includes 42 fungi, 258 gymnosperms, 299 bryophytes, 2809 pteridophytes, 3158 algae, 17,832 angiosperms, and only one type of Mimosa (Mimosa tucumensis Barneby ex Ribas, M.
    [Show full text]
  • Pteridofitas Y Gimnospermas”
    UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE BIOLOGÍA MANUAL DE PRÁCTICAS DE LABORATORIO “Helechos y Gimnospermas” CICLO 2019 “PTERIDOFITAS Y GIMNOSPERMAS” Pinus ayacahuite var. brachyptera Shaw. PROFESORES DEL CURSO 2019: Biol. Leticia Díaz López Dra. Gabriela Domínguez Vázquez Biol. Rosa Isabel Fuentes Chávez Biol. Federico Hernández Valencia Dr. Juan Carlos Montero Castro Dr. Juan Manuel Ortega Rodríguez Polypodium madrense Mickel Biól. Norma Patricia Reyes Martínez M.C. Patricia Silva Sáenz PRESENTACIÓN. En el plan de estudios de la carrera de biología de la Universidad Michoacana de San Nicolás de Hidalgo, la materia de Botánica II (pteridofitas y gimnospermas), contempla dentro de sus contenidos el estudio tanto de la morfología, ciclos de vida, las relaciones evolutivas como la taxonomía de estos grupos de vegetales, que representan una gran importancia evolutiva pues corresponden tanto a las primeras plantas vasculares como a las primeras plantas productoras de semillas, por lo que el presente manual constituye una herramienta didáctica útil para el estudiante. En el presente manual se incluyen los aspectos antes mencionados, por lo que las diferentes prácticas intentan que el alumno relacione la morfología con la evolución que han tenido estos grupos de vegetales. Las prácticas incluidas, con excepción de la denominada “Evolución de las plantas vasculares” y la titulada “Herbario”, fueron implementadas originalmente como parte de la materia de Botánica III del plan de estudios de 1976 por el Prof. Biol. José L. Magaña Mendoza; y a partir del semestre marzo – agosto de 1998 y a iniciativa de los profesores Biol. Martha Santoyo Román y M.C. María del Rosario Ortega Murillo se formalizaron y estructuraron en el presente manual, aumentando una primera práctica de evolución de las plantas vasculares y una última práctica de Herbario.
    [Show full text]
  • Gravitropisms and Reaction Woods of Forest Trees – Evolution, Functions and Mechanisms
    Review Tansley review Gravitropisms and reaction woods of forest trees – evolution, functions and mechanisms 1,2 Author for correspondence: Andrew Groover Andrew Groover 1 2 Tel: +1 530 759 1738 Pacific Southwest Research Station, US Forest Service, Davis, CA 95618, USA; Department of Plant Biology, University of California Email: [email protected] Davis, Davis, CA 95616, USA Received: 29 December 2015 Accepted: 15 March 2016 Contents Summary 790 V. Mechanisms regulating developmental changes in reaction woods 798 I. Introduction 790 VI. Research questions and new research approaches 800 II. General features and evolution of reaction woods of angiosperms and gymnosperms 792 VII. Conclusions 800 III. Adaptive significance of reaction woods, including Acknowledgements 800 relationship to form 795 References 800 IV. Perception and primary responses to gravity and physical stimuli in woody stems 797 Summary New Phytologist (2016) 211: 790–802 The woody stems of trees perceive gravity to determine their orientation, and can produce doi: 10.1111/nph.13968 reaction woods to reinforce or change their position. Together, graviperception and reaction woods play fundamental roles in tree architecture, posture control, and reorientation of stems Key words: compression wood, genomics, displaced by wind or other environmental forces. Angiosperms and gymnosperms have evolved poplar, tension wood, wood development. strikingly different types of reaction wood. Tension wood of angiosperms creates strong tensile force to pull stems upward, while compression wood of gymnosperms creates compressive force to push stems upward. In this review, the general features and evolution of tension wood and compression wood are presented, along with descriptions of how gravitropisms and reaction woods contribute to the survival and morphology of trees.
    [Show full text]
  • Diversity of the Mountain Flora of Central Asia with Emphasis on Alkaloid-Producing Plants
    diversity Review Diversity of the Mountain Flora of Central Asia with Emphasis on Alkaloid-Producing Plants Karimjan Tayjanov 1, Nilufar Z. Mamadalieva 1,* and Michael Wink 2 1 Institute of the Chemistry of Plant Substances, Academy of Sciences, Mirzo Ulugbek str. 77, 100170 Tashkent, Uzbekistan; [email protected] 2 Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +9-987-126-25913 Academic Editor: Ipek Kurtboke Received: 22 November 2016; Accepted: 13 February 2017; Published: 17 February 2017 Abstract: The mountains of Central Asia with 70 large and small mountain ranges represent species-rich plant biodiversity hotspots. Major mountains include Saur, Tarbagatai, Dzungarian Alatau, Tien Shan, Pamir-Alai and Kopet Dag. Because a range of altitudinal belts exists, the region is characterized by high biological diversity at ecosystem, species and population levels. In addition, the contact between Asian and Mediterranean flora in Central Asia has created unique plant communities. More than 8100 plant species have been recorded for the territory of Central Asia; about 5000–6000 of them grow in the mountains. The aim of this review is to summarize all the available data from 1930 to date on alkaloid-containing plants of the Central Asian mountains. In Saur 301 of a total of 661 species, in Tarbagatai 487 out of 1195, in Dzungarian Alatau 699 out of 1080, in Tien Shan 1177 out of 3251, in Pamir-Alai 1165 out of 3422 and in Kopet Dag 438 out of 1942 species produce alkaloids. The review also tabulates the individual alkaloids which were detected in the plants from the Central Asian mountains.
    [Show full text]
  • 1 Universidad Michoacana De San Nicolás De Hidalgo
    PROGRAMA DE LA MATERIA: Pteridofitas y Gimnospermas CICLO ESCOLAR 2021 UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE BIOLOGÍA PROGRAMA DE LA MATERIAPTERIDOFITAS Y GIMNOSPERMAS Semestre: 4ºSemestre. Área Académica: Botánica Nombre delaJefa de materia: Juan Carlos Montero Castro Número de horas teoría: 3 horas/semana Número de horas de práctica: 3 horas/semana de laboratorio y 1 horas/semana de prácticas de campo. Número de créditos: 10 Profesores que elaboraron el programa (en orden alfabético):Biol. Leticia Díaz López, Dra. Gabriela Domínguez Vázquez, Biol. Rosa Isabel Fuentes Chávez, Biol. Federico Hernández Valencia, Dr. Juan Carlos Montero Castro, Dr. Juan Manuel Ortega Rodríguez, M.C. Gerardo Rodríguez Lozano, M.C. Patricia Silva Sáenz. Fecha de elaboración del programa: 27 /junio /2016 Perfil profesional del profesor: Grado de licenciatura, con experiencia y conocimiento de las plantas vasculares en aspectos de taxonomía, morfología, evolución, ecología, en manejo de plantas vasculares, o en su caso, maestría o doctorado en la especialidad de botánica relacionada con plantas vasculares. Profesores que impartieron el programa en 2019(en orden alfabético): Biol. Leticia Díaz López, Dra. Gabriela Domínguez Vázquez, Biol. Rosa Isabel Fuentes Chávez, Biol. Federico Hernández Valencia, Dr. Juan Carlos Montero Castro, Dr. Juan Manuel Ortega Rodríguez, Biól. Norma Patricia Reyes Martínez, M.C. Patricia Silva Sáenz. Fecha de actualización:15 /04 /2021 Profesores que participaron en la actualización del programa (en orden alfabético):Biol. Leticia Díaz López, Dra. Gabriela Domínguez Vázquez, Biol. Rosa Isabel Fuentes Chávez, Biol. Federico Hernández Valencia, Dr. Juan Carlos Montero Castro, Dr. Juan Manuel Ortega Rodríguez, M.C. Gerardo Rodríguez Lozano, M.C.
    [Show full text]
  • System Garden Masterplan, Melbourne University 2018
    SYstem GARDEN LANDSCAPE MASTERPLAN STAGE 4 - MASTERPLAN FINAL REPORT 8th MARCH 2018 landscape architecture and GLAS urban design CONTENTS EXECUTIVE SUMMARY 1 INTRODUCTION 3 HistorY OF THE SYstem GARDEN 4 THE GARDEN TODAY 5 KEY ISSUES FACING THE SYstem GARDEN 6 Masterplan VISION 7 K EY VALUES 8 THE SYstem GARDEN AND OC21 9 VISION: A BOTANIC GARDEN FOR THE CAMPUS 10 MASTERPLAN PRINCIPLES 11 THE SYstem GARDEN MASTERPLAN 13 strategic INITIATIVES 15 BotanicAL DivERSiTy - SuB-cLASS PLANTiNG GuiDELiNES 16 INTERPRETATION StrateGY 17 UNIVERSITY HISTORY 18 INDIGENOUS ConnecTION 19 SUSTAINABILITY 20 MATERIALS PALETTE 21 MATERiALS PALETTE - LiGHTiNG AND PoWER 22 MATERiALS PALETTE - coNSoLiDATiNG SERvicES 23 FURNITURE 24 Access 25 ART AND EVENTS IN THE GARDEN 26 Masterplan ELEMENTS 27 master PLAN ELEMENTS 28 PERIMETER PATH AND EDGE SPACES 29 SYstem GARDEN GATEs 30 ENTRy AvENuES - BiZARRE SENTRiES 31 THE FORMAL GARDEN 32 WETLAND cANAL 37 THE INFORMAL GARDEN 38 COURTYARD GARDENS 43 rainforest GARDEN 44 FERN AND LICHEN COURTYARD 45 APOTHECARY GARDEN 47 RESEARCH GARDENS 48 implementation STAGING 50 APPENDIX 1: costing 55 APPENDIX 2: CONSULTANT REPORTS 57 EXecUTIVE SUMMARY IntroDUction The System Garden is a special space. Originally laid out in 1856 by Professor Frederick McCoy and The Core values, are key to the current and future operation of the Parkville campus, they have a • indigenous connection: the System Garden provides indigenous interpretation through Edward LaTrobe Bateman, it is a botanic garden configured specifically for learning. It provides a direct link to the University’s OC21 strategy (Our Campus in the 21st Century) and will drive the the Billibellary’s walk and stop within the System Garden.
    [Show full text]
  • Post-Triassic Spermatophyta Timetree Adding the Quaternary Radiated Asarum Wild Gingers
    Post-Triassic Spermatophyta Timetree Adding the Quaternary Radiated Asarum Wild Gingers Soichi Osozawa ( [email protected] ) KawaOso Molecular Bio-Geology Institute https://orcid.org/0000-0001-5554-1320 Cunio Nackejima Japanese Society of Plant Systematics John Wakabayashi California State University, Fresno Research article Keywords: BEAST v.1.X, combined gene analysis, fossil and geological event calibrations, APG system, increased base substitution rate toward the Recent, Cretaceous peak, radiation, C4 plants, Quaternary glacier- inter glacier cycle Posted Date: November 3rd, 2020 DOI: https://doi.org/10.21203/rs.3.rs-99466/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract Background Angiospermae radiation was known as the mid-Cretaceous event, but adaptive radiation of Asarum is also expected in the Quaternary. In order to know such the Angiospermae evolutionary history through the time, we constructed a whole Spermatophyta timetree employing BEAST v1. X associated with robust fossil calibration function. Results We successfully and precisely dated the Spermatophyta phylogeny, and the Angiospermae topology was concordant to the APG system. Using another function of BEAST, we discovered the exponential increase in base substitution rate in recent geologic time, and another rise of rate at the mid-Cretaceous time. These increasing events correspond to the Quaternary and mid-Cretaceous Angiospermae radiations. Conclusions A probable cause of the recently increasing rate and the consequent radiation was ultimately generation of C4 grasses, reduction of atomospheric CO2, and the start of the Quaternary glacial period. Mid- Cretaceous event was explained by co-radiation with insect beetles as the food plant.
    [Show full text]