Immunostimulating Complexes

Total Page:16

File Type:pdf, Size:1020Kb

Immunostimulating Complexes Clin Exp Immunol 1995; 102:46-52 Antigen presentation by naive macrophages, dendritic cells and B cells to primed T lymphocytes and their cytokine production following exposure to immunostimulating complexes M. VILLACRES-ERIKSSON Swedish University of Agricultural Sciences, Department of Veterinary Microbiology, Division of Virology, Uppsala, Sweden (Received 23 May 1995) SUMMARY Influenza virus envelope proteins incorporated into immunostimulating complexes (iscoms) are taken up and processed by various kinds of antigen-presenting cells (APC), encompassing peritoneal cells (PEC), unfractionated splenocytes, splenic dendritic cells (DC) or B cells. The iscom-pulsed naive APC stimulated primed T cells to proliferate and produce cytokine in vitro. In contrast, only DC and B cells pulsed with the same antigen (Ag) in the micelle form functioned as accessory cells stimulating the primed T cells to proliferate and produce cytokine. In general, iscoms were better inducers of cell proliferation than micelles. Iscoms stimulated more secretion of IL-2 and interferon-gamma (IFN--y) than the micelles, but both antigenic forms stimulated secretion of IL-4. DC and B cells pulsed with iscoms stimulated most efficiently the secretion of IL-2 and IFN--y. DC were superior to the other APC in stimulating primed T cells to secrete IFN--y. On the other hand, micelles stimulated more efficiently than iscoms splenic T cells from micelle- primed as well as iscom-primed mice to secrete IL-10. These data indicate that influenza virus envelope proteins incorporated in iscoms stimulate a broad T cell response, possibly emphasizing a Thl type of response. The same Ag in a micelle form induce a more prominent Th2 type of T cell response. The results indicate that the administration of an Ag in an adjuvant formulation can superimpose a different cytokine profile on the immune response than that induced by the protein Ag alone. Keywords iscoms APC antigen-presentation cytokines adjuvants INTRODUCTION for evolving the one or the other type of immune response are it is conceivable that the cells Several studies have revealed that protective immunity to not yet understood, taking up, to immune pathogenic microorganisms is not primarily determined by processing and presenting antigen (Ag) competent the level but rather by the type of immune response. The cells are crucial for the initiation and outcome of the response. activation of CD4+ T cell subsets For instance, dendritic cells (DC) are required as antigen- preferential helper [1] cells for the of interferon- certain determines whether a or presenting (APC) production secreting cytokines protective reactions and T even a detrimental immune will For gamma (IFN-7y) in allogenic [7] cytotoxic response develop. example, both in vivo and in vitro in human leprosy as well as in murine leishmaniasis, progres- lymphocyte (CTL) response [8,9]. sion of disease is associated with the development of the Th2 Therefore, knowledge of the mechanism of APC activation role in induction of immune is of a of T cell In HIV virus and their the response type response [2,3]. infection, healthy interest for the rational and of a of while primary design development positive individuals display Thl type response, vaccines. to be linked to a efficient progression immunodeficiency may develop- is a 40 nm Th2 Additional Immunostimulating complex (iscom) cage-like ment of a ThO [4] or cytokine response [5]. of A and in which support for this thesis has been provided by the survival of IL-4 particle made up Quil triterpenoids lipids, soluble can be deficient mice infected with MAIDS virus [6]. While the reasons amphipathic proteins incorporated by hydro- phobic interactions [10,11]. In the iscom, a multimeric form of Correspondence: Maria Villacres-Eriksson, Swedish University of the Ag is combined with a built-in adjuvant activity. Several Agricultural Sciences, Department of Veterinary Microbiology, Divi- studies have shown that iscom-borne Ag induces immune sion of Virology, Box 585, Biomedical Center, S-75 123 Uppsala, responses under MHC class I and II restriction [12-161. Sweden. These studies complemented with recent evidence [17] strongly 46 4t 1995 Blackwell Science Ag presentation and cytokine induction by iscoms 47 Table 1. The conditions and detection limit of the immunoassays for cytokines Detection limit Cytokine Coating Blocking Second Ab (pg/ml) IL-2 1 jig/ml pH 9-6 1% BSA 1:3000 50 IL-4 3 pg/ml pH 9-6 5% skimmed milk 1:1000 35 IL-10 4,jg/ml pH 8-2 1% BSA 1:1500 60 IFN-'y l2pg/ml pH 7-4 1% BSA 1:2000 750 indicate that iscom-borne Ag has access to the cytosol of APC. APC or as a source of DC or B cells. Splenocyte suspensions Iscoms as well as its matrix, i.e. the iscom structure devoid of contained 24-25% Thy 1.2+ cells, 48-50% Ig+ cells and 1% protein, stimulate the secretion of IL-1 by murine splenocytes DC as determined by immunofluorescence. For separation of and peritoneal cells [18]. Increased expression of MHC class II DC, 4 x 107 magnetic beads coated with sheep anti-rat anti- molecules, considered to be a requirement for efficient Ag bodies (Dynabeads, Oslo, Norway) were reacted with 2ml presentation, has been observed in primary stimulation of supernatant from the 33D1 hybridoma cell line (ATCC TIB peritoneal cells and also in primed splenocytes upon restimula- 227, MD), which recognize splenic DC [25]. Beads were mixed tion with iscoms, both in vivo and in vitro [19,20]. Some of these with the splenocyte suspensions (100-200 x 106 in 500 ,ul culture data indicate that macrophages have a relevant role in the medium) and incubated for 30 min at 4°C. Detachment of the enhanced immune response to iscom-borne Ag [18,19]. We and bound cells was done by incubation with 10, l Detach-a-Bead others have previously demonstrated that immunization with Ab (Dynabeads) according to the supplier's instructions. The influenza virus iscoms induces the development of T cells yield of DC was routinely 6- 10 x 105 per spleen, and contained secreting IL-2 and IFN--y [21-23]. In this study we designed >98% 33D1+ cells. experiments to compare the effect ofpresenting an Ag in iscoms For the separation of B cells, suspensions depleted of DC with that in micelles by evaluating their capacity to induce APC to stimulate primed T cells. The T cell response was evaluated by measuring Ag-driven cell proliferation and the profile of 50 15 * cytokines produced. In this case we consider the profile deter- mined by the production of IL-2 and IFN--y as a Thl type of response and the production of IL-4 and IL-IO as a Th2 profile. 25 MATERIALS AND METHODS Experimental design M 0 Unfractionated splenocyte populations, resident peritoneal 0 0 1 x 2 3 4 5 6 cells (PEC), splenic B cells and splenic DC from naive mice 40 30F(1 on A were used as APC for the experiments the induction of IL-2 .-_ rF(d) and IFN--y. Splenic cell suspensions enriched for T lymphocytes from iscom-primed mice were used as responders. 20 Mice Gnotobiotic BALB/c female mice, 10-12 weeks old, were obtained from the National Veterinary Institute, Uppsala, ' 0' 0 Sweden. 1 2 3 4 5 6 1 2 3 4 5 6 Days of incubation Immunizations Mice were primed subcutaneously with 1 pg influenza virus Fig. 1. The capacity of iscom- or micelle-pulsed APC to stimulate the envelope proteins in iscoms or as micelles, and boosted s.c. 4 proliferation of splenic T cells from iscom-primed mice. The APC used weeks later with the same dose. were: (a) unfractionated spleen cell suspension, (b) peritoneal cells, (c) dendritic cells, (d) B cells. The APC were pulsed with influenza virus Iscoms and micelles envelope Ag in iscoms (E) or as micelles (0). Wells receiving medium Iscoms and micelles containing the envelope proteins from the only (U) were used as background controls. The results are expressed as mean ct/min ± s.d. of 3H-TdR incorporation in triplicate wells, and are influenza virus A/PR/8/34 (HlNl) were prepared by the dia- representative of four separate experiments. 3H-TdR incorporation by method as described before [24]. The preparations were lysis the APC cultured in the absence of T lymphocytes was between 100 and sterile filtered and stored at -70°C. 400 ct/min for the unfractionated spleen cell suspension, and 58 and 199 ct/min for B cells and DC. For peritoneal cells cultured with Preparation ofAPC medium only the values were <200 ct/min at all time points, with Resident PEC were recovered from the peritoneal cavity ofmice micelles the values were 310, 382, 873, 2079 and 84 ct/min from day I to by washing with sterile PBS under aseptic conditions. Single cell 5, and for iscoms the values were 130, 1012, 1663, 4848 and 2488 ct/min suspensions from spleens were either used unfractionated as respectively. * P < 0-05; ** P < 0 005. 1995 Blackwell Science Ltd, Clinical and Experimental Immunology, 102:46-52 48 M. Villacres-Eriksson 1200 1200r (a) (b) 800 800 _ P---.P. 400 k 400 _ - OL IF a=-- m 4r- L T 1 2 3 4 5 6 ( 1 2 3 4 5 6 c1 1200 r (c) 800 400k - .- I L | ) |~~ _r-- 0 1 2 3 4 5 6 0 1 2 4 5 6 Days of incubation Fig. 2. The capacity of iscom- (o) or micelle-pulsed APC (0) to stimulate IL-2 secretion by iscom-primed T cells. Cultures receiving medium only (U) were used as background controls. The APC used were: (a) unfractionated spleen cell suspension, (b) peritoneal cells, (c) dendritic cells and (d) B cells.
Recommended publications
  • Preparation Of' Immunostimulating Complexes
    ACTA VET. BRNO, 61,1992: 37-41 PREPARATION OF' IMMUNOSTIMULATING COMPLEXES. (ISCOM) CONTAINING BOVINE HERPESVIRUS 1 PROTEINS J. ~z, J. HAMPL, J. StlpANEK and B. SMfD Veterinary Research Institute, 62132 Bmo Received NOfJember 28,1991 Abstract Franz J., J. Hampl, J. Steplinek, B. Smid: Preparation of ImmunostimuJ.a­ ting Complexes (ISCOM) Containing BOfJine HerpesfJirus 1 Proteins. Acta vet. Bmo, 61,1992: 37-41. A method for obtaining lSCOMs with incorporated bovine herpesvirus 1 (BHV-l) proteins from various amounts of cholesterol, phosphatidylcholine and Quil A is described. The highest virus protein incorporation rate obtained was 25 %. Morpho­ logy of ISCOMs depended on amounts of Quil A, cholesterol and phosphatidylcho­ line used. A high immunogenicity ofBHV-I-ISCOM, as compared with free virus­ proteins, was confirmed experimentally in mice. BOfJine herpesfJirusBHV-1, fJirus protein, ISCOM, antibody response One ofthe essential means for the control ofvirus diseases offarm animals are vaccines, capable ofin· ducing specific resistance against the causal agent in individual animals and animal populations. Cur­ rent technologies use suspensions of complete virus particles propagated in cell cultures or laboratory animals. In addition to the specific immunogenic antigen, such suspensions contain a number of other proteins,originsting from culture media, disintegrated cells or even microbial contaminants. Such a broad antigenic spectrum, reaching far beyond 1ihe purpose of vaccination, is unwanted and therefore alternative methods for producing quality biologicals are developed currently. Progressive trends in the control of virus diseases are focussed on the development of subunit vaccines. Protein subunits are prepared by highly effective purification procedures or by biotech­ nological methods, such as chemical synthesis of peptides or DNA recombination.
    [Show full text]
  • Matrix-M™ Adjuvation Broadens Protection Induced by Seasonal Trivalent Virosomal Influenza Vaccine
    Cox et al. Virology Journal (2015) 12:210 DOI 10.1186/s12985-015-0435-9 RESEARCH Open Access Matrix-M™ adjuvation broadens protection induced by seasonal trivalent virosomal influenza vaccine Freek Cox1, Eirikur Saeland1*, Matthijs Baart1, Martin Koldijk2, Jeroen Tolboom1, Liesbeth Dekking1, Wouter Koudstaal2, Karin Lövgren Bengtsson3, Jaap Goudsmit2 and Katarina Radošević4 Abstract Background: Influenza virus infections are responsible for significant morbidity worldwide and therefore it remains a high priority to develop more broadly protective vaccines. Adjuvation of current seasonal influenza vaccines has the potential to achieve this goal. Methods: To assess the immune potentiating properties of Matrix-M™, mice were immunized with virosomal trivalent seasonal vaccine adjuvated with Matrix-M™. Serum samples were isolated to determine the hemagglutination inhibiting (HAI) antibody titers against vaccine homologous and heterologous strains. Furthermore, we assess whether adjuvation with Matrix-M™ broadens the protective efficacy of the virosomal trivalent seasonal vaccine against vaccine homologous and heterologous influenza viruses. Results: Matrix-M™ adjuvation enhanced HAI antibody titers and protection against vaccine homologous strains. Interestingly, Matrix-M™ adjuvation also resulted in HAI antibody titers against heterologous influenza B strains, but not against the tested influenza A strains. Even though the protection against heterologous influenza A was induced by the adjuvated vaccine, in the absence of HAI titers the protection was accompanied by severe clinical scores and body weight loss. In contrast, in the presence of heterologous HAI titers full protection against the heterologous influenza B strain without any disease symptoms was obtained. Conclusion: The results of this study emphasize the promising potential of a Matrix-M™-adjuvated seasonal trivalent virosomal influenza vaccine.
    [Show full text]
  • Natural and Synthetic Saponins As Vaccine Adjuvants
    Review Natural and Synthetic Saponins as Vaccine Adjuvants Pengfei Wang Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA; [email protected] Abstract: Saponin adjuvants have been extensively studied for their use in veterinary and human vaccines. Among them, QS-21 stands out owing to its unique profile of immunostimulating activity, inducing a balanced Th1/Th2 immunity, which is valuable to a broad scope of applications in com- bating various microbial pathogens, cancers, and other diseases. It has recently been approved for use in human vaccines as a key component of combination adjuvants, e.g., AS01b in Shingrix® for herpes zoster. Despite its usefulness in research and clinic, the cellular and molecular mechanisms of QS-21 and other saponin adjuvants are poorly understood. Extensive efforts have been devoted to studies for understanding the mechanisms of QS-21 in different formulations and in different combi- nations with other adjuvants, and to medicinal chemistry studies for gaining mechanistic insights and development of practical alternatives to QS-21 that can circumvent its inherent drawbacks. In this review, we briefly summarize the current understandings of the mechanism underlying QS-21’s adjuvanticity and the encouraging results from recent structure-activity-relationship (SAR) studies. Keywords: adjuvant; saponin; mechanism; SAR; QS-21; VSA-1; VSA-2 1. Introduction Traditional vaccines are whole-organism-based, using live attenuated or inactivated Citation: Wang, P. Natural and viruses or bacteria. These vaccines are quite reactogenic due to the presence of numerous Synthetic Saponins as Vaccine pathogen-associated-molecular-patterns (PAMPs) that are responsible for activation, and Adjuvants.
    [Show full text]
  • The Iscom Structure As an Immune-Enhancing Moiety: Experience with Viral Systems
    CHARACTERISTICS AND USE OF NE W-GENERATION ADJUVANTS 531 The iscom structure as an immune-enhancing moiety: experience with viral systems I. Claassen (l)t2) and A. Osterhaus (1) (‘) Laboratory of Immunobiology, and 12)Laboratory of Control of Biological Products, National Institute of Public Health and Environmental Protection, POB 1, 3720 BA Bilthoven (The Netherlands) The iscom as an antigen-presenting structure terested in evaluating the potential of the immune- stimulating complex (iscom) as a carrier for viral Extensive studies on fundamental mechanisms of proteins. protection induced by vaccination have led to insight Iscom was first described in 1984 (Morein et al., into the components necessary for the induction of 1984). It is a cage-like structure, usually about 30 to protective immunity. This has enabled vaccine 40 nm in diameter, composed of glycosides present researchers to focus on those components which are in the adjuvant Quil-A, cholesterol, the immunizing involved in the actual induction of immune responses (protein) antigen and also, in most cases, phos- and to exclude irrelevant, immunosuppressive or pholipids. Although similar structures had been ob- potentially harmful components from vaccines. served before (Horzinek et al., 1973), it was not until The “ideal” vaccine should meet the following the work of Morein et al. that their potential as an requirements: the induction of a long-lasting anti- immune-enhancing moiety was recognized. body response of biologically active antibodies, which Quil-A is a crude extract from the bark of Quil- should be elicited even in the presence of maternal Baja saponaria Molina which has potent adjuvant ac- antibodies ; functional T-cell responses which com- tivity and is widely used as an adjuvant in veterinary prise both major histocompatibility complex (MHC) vaccines.
    [Show full text]
  • An Immune Stimulating Complex (ISCOM) Subunit Rabies Vaccine Protects Dogs and Mice Against Street Rabies Challenge
    An immune stimulating complex (ISCOM) subunit rabies vaccine protects dogs and mice against street rabies challenge M. Fekadu*ll~ J.H. Shaddock*, J. Ekstr6m*, A. Osterhaus *, D.W. Sanderlin*, B. Sundquist ,~ and B. Morein* Dogs and mice were immunized with either a rabies glycoprotein subunit vaccine incorporated into an immune stimulating complex (ISCOM) or a commercial human diploid cell vaccine ( HDCV) prepared from a Pitman Moore ( PM) rabies vaccine strain. Pre-exposure vaccination of mice with two in traperitoneal ( i.p. ) doses of 360 ng ISCOM or 0.5 ml HDCV protected 95% (38/40) and 90% (36/40) of mice, respectively, against a lethal intracerebral (i.c.) dose with challenge virus strain (CVS). One 360 ng i.p. dose of ISCOM protected 87.5% (35/40) of mice against i.c. challenge with CVS. Three groups of five dogs were vaccinated intramuscularly ( i.m.) with 730 ng of rabies ISCOM prepared from either the PM or the CVS rabies strains, and they resisted lethal street rabies challenge. Postexposure treatment of mice with three or four 120 ng i.m. doses of ISCOM protected 90% (27/30) and 94% (45/48), respectively, of mice inoculated in the footpad with street rabies virus, but three doses of HDCV conferred no protection. When .four doses of HDCV were administered postexposure, 78% (32/41) of the mice died of anaphylactic shock; 21% (11/52) of mice had already died of rabies 4 days after the third vaccine dose was administered. Keywords : Rabies ; ISCOM ; human diploid cell vaccine ; postexposure ; treatment ; anaphylactic shock INTRODUCTION animals only pre-exposure vaccination is practised.
    [Show full text]
  • Mechanisms and Performances of Adjuvants in Vaccine Immunogenicity
    Journal of Applied Biotechnology Reports Mini Review Article Mechanisms and Performances of Adjuvants in Vaccine Immunogenicity Seyed Mohammad Gheibihayat1, Azam Sadeghinia2, Shahram Nazarian3*, Zahra Adeli4 Abstract An adjuvant is a substance that is added to a vaccine to increase the body's immune 1. Young Researchers and Elite Club, Andimeshk response to the vaccine. Vaccines containing adjuvants are tested for safety in Branch, Islamic Azad University, Andimeshk, Iran clinical trials before they are licensed for use. The basic action of adjuvants is 2. Department of Cardiology, Faculty of Medicine, stimulating adaptive immune responses. Adjuvants recently licensed for human Dezful University of Medical Sciences, Dezful, utilization involve alum squalane oil or water emulsion, influenza virosomes, and Iran few cytokines as IFN-γ and IL-2. Some adjuvants are currently under investigation 3. Department of Biology, Faculty of Science, such as DNA motifs, monophosphoryl lipid A, Cholera Toxin, E. coli heat Labile Imam-Hossein University, Tehran, Iran Toxin, Saponins, Immunostimulating complexes, liposomes, Flt3 ligand as a 4. Department of Microbiology, Islamic Azad pleotropic glycoprotein, non-ionic block copolymers. This paper is an overview of University, Damghan Branch, Damghan, Iran most commonly used adjuvants, adjuvant mechanisms, adjuvant formulations and adjuvant limitations. * Corresponding Author Shahram Nazarian Department of Biology, Faculty of Science, Imam- Hossein University, Tehran, Iran E-mail: [email protected] Submission
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,352,697 B1 Cox Et Al
    USOO6352697 B1 (12) United States Patent (10) Patent No.: US 6,352,697 B1 Cox et al. (45) Date of Patent: *Mar. 5, 2002 (54) SAPONIN PREPARATIONS AND USE (58) Field of Search ........................... 424/184.1, 278.1, THEREOF IN ISCOMS 424/283.1; 514/885 (75) Inventors: John Cooper Cox, Bullengarook; Alan (56) References Cited Robert Coulter, Glen Iris, both of (AU); Bror Morein, Uppsala (SE); FOREIGN PATENT DOCUMENTS Karin Lovgren-Bengtsson, Uppsala (SE); Bo Sundquist, Uppsala (SE) WO WO 88/09336 12/1988 WO WO 90/03184 4/1990 WO WO 92/06710 * 4/1992 (73) Assignee: Iscotec A.B., Stockholm (SE) WO WO 93/05789 4/1993 (*) Notice: This patent issued on a continued pros WO WO 94/O1118 1/1994 ecution application filed under 37 CFR WO WO95/09179 4/1995 1.53(d), and is subject to the twenty year OTHER PUBLICATIONS patent term provisions of 35 U.S.C. 154(a)(2). Cox, J.C. and Coulter, A.R. (1992) “Advances in Adjuvant Technology and Application' in Animal Parasite Chapter 4, Subject to any disclaimer, the term of this pp. 68–79, W.K. Young, Ed., CRC Press. patent is extended or adjusted under 35 Kensil, C.R. et al., Separation and characterization of U.S.C. 154(b) by 0 days. saponins with adjuvant from Quillaja saponaria 1991 (146) (21) Appl. No.: 08/809,987 431–437 Journal of Immunology. (22) PCT Filed: Oct. 12, 1995 * cited by examiner (86) PCT No.: PCT/AU95/00670 Primary Examiner Patrick J. Nolan S371 Date: Feb.
    [Show full text]
  • SAPONIN from QUILLAJA BARK PURIFIED Sigma Prod. No. S4521 Storage: Room Temperature
    SAPONIN FROM QUILLAJA BARK PURIFIED Sigma Prod. No. S4521 Storage: Room Temperature CAS NUMBER: 8047-15-2 SYNONYMS: Sapogenin Glycosides1 STRUCTURE: Quillaja saponaria saponin (Quillaja saponins) is a heterogenous mixture of molecules varying both in their aglycone and sugar moieties.2 The main aglycone (sapogenin) moiety is quillaic acid, a triterpene of predominantly 30-carbon atoms (hydrophobic) of the D12-oleanane type. The aglycone is bound to various sugars (hydrophilic) including glucose, glucuronic acid, galactose, xylose, apiose, rhamnose, fucose and arabinose. Sapogenin devoid of any sugars can be isolated by acid hydrolysis of saponins.3,4,5,6,7 The structure of a component isolated from the acylated triterpenoid saponin mixture of Quillaja saponaria was reported.8 PHYSICAL DESCRIPTION: Appearance: powder3 Methods for the identification and quantitative determination of the aglycone and carbohydrate moieties of saponins have been reported.2,4,9,10,11 METHOD OF PREPARATION: Quillaja saponin is obtained from the bark of the South American soaptree, Quillaja saponaria Molina (Rosaceae family). Product S4521 is purified by ultrafiltration to reduce low molecular weight contaminants.3 A general method of preparation of the extract has been reported.2 STABILITY / STORAGE AS SUPPLIED: Quillaja saponin is hygroscopic and is expected to be stable for at least one year at room temperature when stored dry. SOLUBILITY / SOLUTION STABILITY: Quillaja saponin is soluble in water yielding micelles with an average MW of 56,000. The solubility is tested at 50 mg/ml deionized water.3 The solubility in water may be increased by additions of small amounts of alkali.12 S4521 Page 1 of 3 10/25/96 - ARO SAPONIN FROM QUILLAJA BARK PURIFIED Sigma Prod.
    [Show full text]
  • Iscoms and Immunostimulation with Viral Antigens
    Chapter 2 ISCOMs and Immunostimulation with Viral Antigens Stefan Hoglund, Kristian Dalsgaard, Karin Lovgren, Bo Sundquist, Ab Osterhaus, and Bror Morein 1. INTRODUCTION With the dissection of microorganisms followed by biochemical and immunolog­ ical characterization, antigens inducing protective immunity became recognized. Early attempts to use these isolated antigens as vaccines, i.e. subunit vaccines, showed that although immunogenic in situ as part of the microorganism, they were not immunogenic as purified antigens. Subsequent studies showed that the formation of antigen into defined multimeric forms such as protein micelles or into liposomes made them considerably more immunogenic. In a way, micelles and liposomes mimic a submicroscopic particle of a microorganism with several copies of surface antigens. By contrast, monomeric forms of antigens, e.g., envelope proteins of parainfluenza-3 virus or Semliki forest virus, not only had a low immunogenicity but had a specific suppressive effect on the immune re­ sponse as well; this was shown when the monomers were given simultaneously Stefan HOglund Institute of Biochemistry, Biomedical Center, Uppsala, Sweden. Kristian DaIsgaard State Veterinary Institute of Virus Research, Lindholm, Kalvehave, Denmark. Karin LOvgren and Bror Morein The National Veterinary Institute, Department of Virology, Biomedical Center, Uppsala, Sweden. Bo Sundquist The National Veterinary Institute, Division of Vaccine Research, Uppsala, Sweden. Ab Osterhaus National Institute of Public Health and Environmental Hygiene, Bilthoven, The Netherlands. 39 J. R. Harris (ed.), Virally Infected Cells © Springer Science+Business Media New York 1989 40 Stefan Hoglund et aI. with the same antigen in a micelle (Morein et aI., 1982, 1983; Morein and Simons, 1985; Jennings, 1987).
    [Show full text]
  • Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses Via Modulation of Immunodominance
    Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses via Modulation of Immunodominance The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Cirelli, Kimberly M. "Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses via Modulation of Immunodominance." Cell 177, 5 (May 2019): P1153-1171.e28 © 2019 Elsevier As Published http://dx.doi.org/10.1016/j.cell.2019.04.012 Publisher Elsevier BV Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/125926 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Cell. Author Manuscript Author manuscript; Manuscript Author available in PMC 2020 May 16. Published in final edited form as: Cell. 2019 May 16; 177(5): 1153–1171.e28. doi:10.1016/j.cell.2019.04.012. Slow delivery immunization enhances HIV neutralizing antibody and germinal center responses via modulation of immunodominance Kimberly M. Cirelli1,2, Diane G. Carnathan2,3,4, Bartek Nogal2,5, Jacob T. Martin2,6, Oscar L. Rodriguez7, Amit A. Upadhyay3,11, Chiamaka A. Enemuo3,4, Etse H. Gebru3,4, Yury Choe3,4, Federico Viviano3,4, Catherine Nakao1, Matthias G. Pauthner2,8, Samantha Reiss1,2, Christopher A. Cottrell2,5, Melissa L. Smith7, Raiza Bastidas2,8, William Gibson9, Amber N. Wolabaugh3, Mariane B. Melo2,6, Benjamin Cosette6, Venkatesh Kumar10, Nirav B. Patel11, Talar Tokatlian2,6, Sergey Menis2,8, Daniel W. Kulp2,8,12, Dennis R. Burton2,8,13, Ben Murrell10,14, William R.
    [Show full text]
  • Saponins from Quillaja Saponaria and Quillaja Brasiliensis: Particular Chemical Characteristics and Biological Activities
    molecules Review Saponins from Quillaja saponaria and Quillaja brasiliensis: Particular Chemical Characteristics and Biological Activities Juliane Deise Fleck 1, Andresa Heemann Betti 2, Francini Pereira da Silva 1, Eduardo Artur Troian 1, Cristina Olivaro 3, Fernando Ferreira 4 and Simone Gasparin Verza 1,* 1 Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil; julianefl[email protected] (J.D.F.); [email protected] (F.P.d.S.); [email protected] (E.A.T.) 2 Bioanalysis Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil; [email protected] 3 Science and Chemical Technology Department, University Center of Tacuarembó, Udelar, Tacuarembó 45000, Uruguay; [email protected] 4 Organic Chemistry Department, Carbohydrates and Glycoconjugates Laboratory, Udelar, Mondevideo 11600, Uruguay; [email protected] * Correspondence: [email protected]; Tel.: +55-51-3586-8800 Academic Editors: Vassilios Roussis and Efstathia Ioannou Received: 25 October 2018; Accepted: 28 December 2018; Published: 4 January 2019 Abstract: Quillaja saponaria Molina represents the main source of saponins for industrial applications. Q. saponaria triterpenoids have been studied for more than four decades and their relevance is due to their biological activities, especially as a vaccine adjuvant and immunostimulant, which have led to important research in the field of vaccine development. These saponins, alone or incorporated into immunostimulating complexes (ISCOMs), are able to modulate immunity by increasing antigen uptake, stimulating cytotoxic T lymphocyte production (Th1) and cytokines (Th2) in response to different antigens. Furthermore, antiviral, antifungal, antibacterial, antiparasitic, and antitumor activities are also reported as important biological properties of Quillaja triterpenoids.
    [Show full text]
  • Protection, Systemic IFN, and Antibody Responses Induced by an ISCOM
    Protection, systemic IFNγ, and antibody responses induced by an ISCOM-based vaccine against a recent equine influenza virus in its natural host Romain Paillot, Humphrey Grimmett, Debra Elton, Janet Daly To cite this version: Romain Paillot, Humphrey Grimmett, Debra Elton, Janet Daly. Protection, systemic IFNγ, and antibody responses induced by an ISCOM-based vaccine against a recent equine influenza virus in its natural host. Veterinary Research, BioMed Central, 2008, 39 (3), pp.1. 10.1051/vetres:2007062. hal-00902919 HAL Id: hal-00902919 https://hal.archives-ouvertes.fr/hal-00902919 Submitted on 1 Jan 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Vet. Res. (2008) 39:21 www.vetres.org DOI: 10.1051/vetres:2007062 C INRA, EDP Sciences, 2008 Original article Protection, systemic IFN, and antibody responses induced by an ISCOM-based vaccine against a recent equine influenza virus in its natural host Romain Paillot1*, Humphrey Grimmett2,DebraElton1, Janet M. Daly1,3 1 Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, Newmarket, Suffolk, CB8 7UU, UK 2 Schering Plough, Animal Health, Breakspear Rd, South Harefield, Uxbridge, Middlesex, UB9 6LS, UK 3 Present address: Viral Brain Infections Group, University of Liverpool, Daulby Street, Liverpool L69 3GA, UK (Received 31 August 2007; accepted 9 November 2007) Abstract – In the horse, conventional inactivated or subunit vaccines against equine influenza virus (EIV) induce a short-lived antibody-based immunity to infection.
    [Show full text]