By Specific Targeting of B Cells Systemic Immunity to Incorporated Antigens Vector Promotes Priming of Mucosal and the Combined

Total Page:16

File Type:pdf, Size:1020Kb

By Specific Targeting of B Cells Systemic Immunity to Incorporated Antigens Vector Promotes Priming of Mucosal and the Combined The Combined CTA1-DD/ISCOM Adjuvant Vector Promotes Priming of Mucosal and Systemic Immunity to Incorporated Antigens by Specific Targeting of B Cells This information is current as of September 28, 2021. Anja Helgeby, Neil C. Robson, Anne M. Donachie, Helen Beackock-Sharp, Karin Lövgren, Karin Schön, Allan Mowat and Nils Y. Lycke J Immunol 2006; 176:3697-3706; ; doi: 10.4049/jimmunol.176.6.3697 Downloaded from http://www.jimmunol.org/content/176/6/3697 References This article cites 57 articles, 16 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/176/6/3697.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 28, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The Combined CTA1-DD/ISCOM Adjuvant Vector Promotes Priming of Mucosal and Systemic Immunity to Incorporated Antigens by Specific Targeting of B Cells1 Anja Helgeby,* Neil C. Robson,† Anne M. Donachie,† Helen Beackock-Sharp,† Karin Lo¨vgren,‡ Karin Scho¨n,* Allan Mowat,† and Nils Y. Lycke2* The cholera toxin A1 (CTA1)-DD/QuilA-containing, immune-stimulating complex (ISCOM) vector is a rationally designed mu- cosal adjuvant that greatly potentiates humoral and cellular immune responses. It was developed to incorporate the distinctive properties of either adjuvant alone in a combination that exerted additive enhancing effects on mucosal immune responses. In this study we demonstrate that CTA1-DD and an unrelated Ag can be incorporated together into the ISCOM, resulting in greatly augmented immunogenicity of the Ag. To demonstrate its relevance for protection against infectious diseases, we tested the vector Downloaded from incorporating PR8 Ag from the influenza virus. After intranasal immunization we found that the immunogenicity of the PR8 proteins were significantly augmented by a mechanism that was enzyme dependent, because the presence of the enzymatically inactive CTA1R7K-DD mutant largely failed to enhance the response over that seen with ISCOMs alone. The combined vector was a highly effective enhancer of a broad range of immune responses, including specific serum Abs and balanced Th1 and Th2 CD4؉ T cell priming as well as a strong mucosal IgA response. Unlike unmodified ISCOMs, Ag incorporated into the combined vector could be presented by B cells in vitro and in vivo as well as by dendritic cells; it also accumulated in B cell follicles of draining http://www.jimmunol.org/ lymph nodes when given s.c. and stimulated much enhanced germinal center reactions. Strikingly, the enhanced adjuvant activity of the combined vector was absent in B cell-deficient mice, supporting the idea that B cells are important for the adjuvant effects of the combined CTA1-DD/ISCOM vector. The Journal of Immunology, 2006, 176: 3697–3706. t has proved difficult to stimulate immune responses with Ags been limited, and vaccine-induced diarrhea is an unwanted side given at mucosal sites (1, 2). The natural response to mucosal effect when these holotoxins have been used as adjuvants in oral I Ag exposure is tolerance, and effective adjuvants are required vaccines (16). Studies have also shown that the toxins may accu- to facilitate effective priming of mucosal as well as systemic im- mulate and affect the CNS after i.n. administration (17–19). An by guest on September 28, 2021 munity after oral or intranasal (i.n)3 immunization (3–5). Few ad- increased incidence of Bell’s palsy recently caused withdrawal juvants have been found to work when given mucosally, but the from the market of an influenza vaccine containing the LT adju- effects of QuilA-containing, immune-stimulating complexes vant, which was administered i.n. (20, 21). (ISCOMs) have been well documented (6–11). Perhaps the most To circumvent the toxicity problem, we have developed an al- potent mucosal adjuvants, though, are the closely related bacterial ternative CT-based adjuvant, the CTA1-DD, a gene fusion protein enteroxins, cholera toxin (CT) and Escherichia coli heat-labile that does not bind to ganglioside receptors (22). The CTA1-DD toxin (LT) (4). These holotoxins are structurally AB5 complexes adjuvant is nontoxic in mice, but retained adjuvant function, com- that bind to most mammalian cells through ganglioside receptors parable to that of CT, when given i.n. (22, 23). It consists of the via their B subunits (12). The A1 subunit is an ADP-ribosylating enzymatically active CTA1 subunit fused in-frame with a gene enzyme that has been found to host strong adjuvant function, but encoding a dimer of the D domain from the Staphylococcus aureus is also responsible for the toxicity of the molecules (13–15). Be- protein A (24, 25), allowing it to specifically target B cells via cause of their relative toxicity, the clinical use of CT or LT has binding to their Ig receptors. In contrast, ISCOMs are taken up by dendritic cells (DCs) preferentially (22, 23, 26–30) and are more *Department of Clinical Immunology, University of Goteborg, Goteborg, Sweden; potent than CTA1-DD when given orally. Therefore, we combined †Division of Immunology, Infection, and Inflammation, University of Glasgow, Glas- CTA1-DD and ISCOMs to create one of the first rationally de- ‡ gow, Scotland; and Isconova, Uppsala, Sweden signed adjuvant vectors (31). We found that the CTA1-DD/ Received for publication August 2, 2005. Accepted for publication December ISCOM vector was highly immunogenic by the i.n. as well as the 29, 2005. oral route even with nanogram doses of Ag, inducing Ag-specific The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance serum Abs, CD4 T cell priming, and IFN-␥ production (31). with 18 U.S.C. Section 1734 solely to indicate this fact. Combinations of adjuvants have several potential advantages. In 1 This work was supported by the Swedish Research Council; the Swedish Cancer addition to targeting different APCs, they offer the possibility of Foundation, the Sahlgrenska University Hospital Foundation, European Union Grants QLK2-CT-2001-01702, QLK2-CT-1999-00228, and LSHP-CT-2003-503240, and improving the stability of pharmacologically active enzymes by the Welcome Trust. incorporating in a stable vector that can deliver them linked to Ag. 2 Address correspondence and reprint requests to Dr. Nils Lycke, Department of Micro- or nanoparticles especially have been found to be the most Clinical Immunology, University of Goteborg, 413 46 Goteborg, Sweden. E-mail effective in these adjuvant combinations and, apart from ISCOMs, address: [email protected] chitosan or virus-like particles have also been successfully tested 3 Abbreviations used in this paper: i.n, intranasal; BM, bone marrow; CLN, cervical lymph node; CT, cholera toxin; DC, dendritic cell; GC, germinal center; LT, E. coli in formulations together with mutant holotoxins or muramyl heat-labile toxin; ISCOM, QuilA-containing immune-stimulating complex. dipeptide (32, 33). Although our previous work with CTA1-DD Copyright © 2006 by The American Association of Immunologists, Inc. 0022-1767/06/$02.00 3698 COMBINED CTA1-DD/ISCOM ADJUVANT ACTS THROUGH B CELLS and p323 peptides from OVA expressed as a gene fusion protein, by electron microscopy, and the various components were analyzed for CTA1-OVA-DD, supports the idea that greatly enhanced re- comigration of protein and Quillaja saponins into fractions isolated from an sponses to CTA1-DD/ISCOM-linked Ag can be achieved, it will analytical 10–50% (w/w) sucrose gradient after centrifugation (18 h at 200,000 ϫ g, 10°C). The contents of protein and saponins in the different not be possible to create fusion proteins between CTA1 and any fractions were determined as described, using ELISA and spectrophoto- given Ag or peptide (31). Therefore, the aim of the present study metric analysis (at A214 nm), respectively. The amino acid content in each was to extend the potential of CTA1-DD/ISCOMs as an effective preparation was assessed. In some experiments we labeled the ISCOMs mucosal vaccine delivery vehicle by incorporating CTA1-DD and with CFSE. Briefly, 2 ␮l of solution, freshly prepared from a stock solution (100 mM in DMSO) of CFSE (Molecular Probes) was added per milligram the influenza virus PR8 Ag into the same ISCOM particles. In of cholesterol as the ISCOMs were prepared by mixing the lipids. Endo- addition to the ability of the novel vector to stimulate local and toxin contaminations were determined in the ISCOM preparations using systemic Ag-specific immunity, we determined to what extent the the Limulus amebocyte lysate test (LAL Endochrome; Charles River En- augmenting effects were CTA1 enzyme dependent and dissected dostestafe). The endotoxin levels were Ͻ110 endotoxin units/mg protein in the mechanisms involved in the presentation and immunogenicity all ISCOM preparations, whereas CTA1-OVA-DD, CTA1R7K-OVA-DD, and CT had endotoxin levels Ͻ 50 endotoxin units/mg protein. of the vector. Quality assessment of ISCOMs Materials and Methods We routinely analyzed the protein content in all ISCOMs using specific Animals ELISA. When sucrose-derived fractions were used, we incubated 50 ␮lof BALB/c mice (H-2d) and, when indicated, C57BL/6 (H-2b) mice were each fraction in the first row of a 96-well microtiter Maxisorp plate (Nunc) obtained from B&K Universal or Harlan Olac.
Recommended publications
  • Preparation Of' Immunostimulating Complexes
    ACTA VET. BRNO, 61,1992: 37-41 PREPARATION OF' IMMUNOSTIMULATING COMPLEXES. (ISCOM) CONTAINING BOVINE HERPESVIRUS 1 PROTEINS J. ~z, J. HAMPL, J. StlpANEK and B. SMfD Veterinary Research Institute, 62132 Bmo Received NOfJember 28,1991 Abstract Franz J., J. Hampl, J. Steplinek, B. Smid: Preparation of ImmunostimuJ.a­ ting Complexes (ISCOM) Containing BOfJine HerpesfJirus 1 Proteins. Acta vet. Bmo, 61,1992: 37-41. A method for obtaining lSCOMs with incorporated bovine herpesvirus 1 (BHV-l) proteins from various amounts of cholesterol, phosphatidylcholine and Quil A is described. The highest virus protein incorporation rate obtained was 25 %. Morpho­ logy of ISCOMs depended on amounts of Quil A, cholesterol and phosphatidylcho­ line used. A high immunogenicity ofBHV-I-ISCOM, as compared with free virus­ proteins, was confirmed experimentally in mice. BOfJine herpesfJirusBHV-1, fJirus protein, ISCOM, antibody response One ofthe essential means for the control ofvirus diseases offarm animals are vaccines, capable ofin· ducing specific resistance against the causal agent in individual animals and animal populations. Cur­ rent technologies use suspensions of complete virus particles propagated in cell cultures or laboratory animals. In addition to the specific immunogenic antigen, such suspensions contain a number of other proteins,originsting from culture media, disintegrated cells or even microbial contaminants. Such a broad antigenic spectrum, reaching far beyond 1ihe purpose of vaccination, is unwanted and therefore alternative methods for producing quality biologicals are developed currently. Progressive trends in the control of virus diseases are focussed on the development of subunit vaccines. Protein subunits are prepared by highly effective purification procedures or by biotech­ nological methods, such as chemical synthesis of peptides or DNA recombination.
    [Show full text]
  • Matrix-M™ Adjuvation Broadens Protection Induced by Seasonal Trivalent Virosomal Influenza Vaccine
    Cox et al. Virology Journal (2015) 12:210 DOI 10.1186/s12985-015-0435-9 RESEARCH Open Access Matrix-M™ adjuvation broadens protection induced by seasonal trivalent virosomal influenza vaccine Freek Cox1, Eirikur Saeland1*, Matthijs Baart1, Martin Koldijk2, Jeroen Tolboom1, Liesbeth Dekking1, Wouter Koudstaal2, Karin Lövgren Bengtsson3, Jaap Goudsmit2 and Katarina Radošević4 Abstract Background: Influenza virus infections are responsible for significant morbidity worldwide and therefore it remains a high priority to develop more broadly protective vaccines. Adjuvation of current seasonal influenza vaccines has the potential to achieve this goal. Methods: To assess the immune potentiating properties of Matrix-M™, mice were immunized with virosomal trivalent seasonal vaccine adjuvated with Matrix-M™. Serum samples were isolated to determine the hemagglutination inhibiting (HAI) antibody titers against vaccine homologous and heterologous strains. Furthermore, we assess whether adjuvation with Matrix-M™ broadens the protective efficacy of the virosomal trivalent seasonal vaccine against vaccine homologous and heterologous influenza viruses. Results: Matrix-M™ adjuvation enhanced HAI antibody titers and protection against vaccine homologous strains. Interestingly, Matrix-M™ adjuvation also resulted in HAI antibody titers against heterologous influenza B strains, but not against the tested influenza A strains. Even though the protection against heterologous influenza A was induced by the adjuvated vaccine, in the absence of HAI titers the protection was accompanied by severe clinical scores and body weight loss. In contrast, in the presence of heterologous HAI titers full protection against the heterologous influenza B strain without any disease symptoms was obtained. Conclusion: The results of this study emphasize the promising potential of a Matrix-M™-adjuvated seasonal trivalent virosomal influenza vaccine.
    [Show full text]
  • Natural and Synthetic Saponins As Vaccine Adjuvants
    Review Natural and Synthetic Saponins as Vaccine Adjuvants Pengfei Wang Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA; [email protected] Abstract: Saponin adjuvants have been extensively studied for their use in veterinary and human vaccines. Among them, QS-21 stands out owing to its unique profile of immunostimulating activity, inducing a balanced Th1/Th2 immunity, which is valuable to a broad scope of applications in com- bating various microbial pathogens, cancers, and other diseases. It has recently been approved for use in human vaccines as a key component of combination adjuvants, e.g., AS01b in Shingrix® for herpes zoster. Despite its usefulness in research and clinic, the cellular and molecular mechanisms of QS-21 and other saponin adjuvants are poorly understood. Extensive efforts have been devoted to studies for understanding the mechanisms of QS-21 in different formulations and in different combi- nations with other adjuvants, and to medicinal chemistry studies for gaining mechanistic insights and development of practical alternatives to QS-21 that can circumvent its inherent drawbacks. In this review, we briefly summarize the current understandings of the mechanism underlying QS-21’s adjuvanticity and the encouraging results from recent structure-activity-relationship (SAR) studies. Keywords: adjuvant; saponin; mechanism; SAR; QS-21; VSA-1; VSA-2 1. Introduction Traditional vaccines are whole-organism-based, using live attenuated or inactivated Citation: Wang, P. Natural and viruses or bacteria. These vaccines are quite reactogenic due to the presence of numerous Synthetic Saponins as Vaccine pathogen-associated-molecular-patterns (PAMPs) that are responsible for activation, and Adjuvants.
    [Show full text]
  • The Iscom Structure As an Immune-Enhancing Moiety: Experience with Viral Systems
    CHARACTERISTICS AND USE OF NE W-GENERATION ADJUVANTS 531 The iscom structure as an immune-enhancing moiety: experience with viral systems I. Claassen (l)t2) and A. Osterhaus (1) (‘) Laboratory of Immunobiology, and 12)Laboratory of Control of Biological Products, National Institute of Public Health and Environmental Protection, POB 1, 3720 BA Bilthoven (The Netherlands) The iscom as an antigen-presenting structure terested in evaluating the potential of the immune- stimulating complex (iscom) as a carrier for viral Extensive studies on fundamental mechanisms of proteins. protection induced by vaccination have led to insight Iscom was first described in 1984 (Morein et al., into the components necessary for the induction of 1984). It is a cage-like structure, usually about 30 to protective immunity. This has enabled vaccine 40 nm in diameter, composed of glycosides present researchers to focus on those components which are in the adjuvant Quil-A, cholesterol, the immunizing involved in the actual induction of immune responses (protein) antigen and also, in most cases, phos- and to exclude irrelevant, immunosuppressive or pholipids. Although similar structures had been ob- potentially harmful components from vaccines. served before (Horzinek et al., 1973), it was not until The “ideal” vaccine should meet the following the work of Morein et al. that their potential as an requirements: the induction of a long-lasting anti- immune-enhancing moiety was recognized. body response of biologically active antibodies, which Quil-A is a crude extract from the bark of Quil- should be elicited even in the presence of maternal Baja saponaria Molina which has potent adjuvant ac- antibodies ; functional T-cell responses which com- tivity and is widely used as an adjuvant in veterinary prise both major histocompatibility complex (MHC) vaccines.
    [Show full text]
  • An Immune Stimulating Complex (ISCOM) Subunit Rabies Vaccine Protects Dogs and Mice Against Street Rabies Challenge
    An immune stimulating complex (ISCOM) subunit rabies vaccine protects dogs and mice against street rabies challenge M. Fekadu*ll~ J.H. Shaddock*, J. Ekstr6m*, A. Osterhaus *, D.W. Sanderlin*, B. Sundquist ,~ and B. Morein* Dogs and mice were immunized with either a rabies glycoprotein subunit vaccine incorporated into an immune stimulating complex (ISCOM) or a commercial human diploid cell vaccine ( HDCV) prepared from a Pitman Moore ( PM) rabies vaccine strain. Pre-exposure vaccination of mice with two in traperitoneal ( i.p. ) doses of 360 ng ISCOM or 0.5 ml HDCV protected 95% (38/40) and 90% (36/40) of mice, respectively, against a lethal intracerebral (i.c.) dose with challenge virus strain (CVS). One 360 ng i.p. dose of ISCOM protected 87.5% (35/40) of mice against i.c. challenge with CVS. Three groups of five dogs were vaccinated intramuscularly ( i.m.) with 730 ng of rabies ISCOM prepared from either the PM or the CVS rabies strains, and they resisted lethal street rabies challenge. Postexposure treatment of mice with three or four 120 ng i.m. doses of ISCOM protected 90% (27/30) and 94% (45/48), respectively, of mice inoculated in the footpad with street rabies virus, but three doses of HDCV conferred no protection. When .four doses of HDCV were administered postexposure, 78% (32/41) of the mice died of anaphylactic shock; 21% (11/52) of mice had already died of rabies 4 days after the third vaccine dose was administered. Keywords : Rabies ; ISCOM ; human diploid cell vaccine ; postexposure ; treatment ; anaphylactic shock INTRODUCTION animals only pre-exposure vaccination is practised.
    [Show full text]
  • Mechanisms and Performances of Adjuvants in Vaccine Immunogenicity
    Journal of Applied Biotechnology Reports Mini Review Article Mechanisms and Performances of Adjuvants in Vaccine Immunogenicity Seyed Mohammad Gheibihayat1, Azam Sadeghinia2, Shahram Nazarian3*, Zahra Adeli4 Abstract An adjuvant is a substance that is added to a vaccine to increase the body's immune 1. Young Researchers and Elite Club, Andimeshk response to the vaccine. Vaccines containing adjuvants are tested for safety in Branch, Islamic Azad University, Andimeshk, Iran clinical trials before they are licensed for use. The basic action of adjuvants is 2. Department of Cardiology, Faculty of Medicine, stimulating adaptive immune responses. Adjuvants recently licensed for human Dezful University of Medical Sciences, Dezful, utilization involve alum squalane oil or water emulsion, influenza virosomes, and Iran few cytokines as IFN-γ and IL-2. Some adjuvants are currently under investigation 3. Department of Biology, Faculty of Science, such as DNA motifs, monophosphoryl lipid A, Cholera Toxin, E. coli heat Labile Imam-Hossein University, Tehran, Iran Toxin, Saponins, Immunostimulating complexes, liposomes, Flt3 ligand as a 4. Department of Microbiology, Islamic Azad pleotropic glycoprotein, non-ionic block copolymers. This paper is an overview of University, Damghan Branch, Damghan, Iran most commonly used adjuvants, adjuvant mechanisms, adjuvant formulations and adjuvant limitations. * Corresponding Author Shahram Nazarian Department of Biology, Faculty of Science, Imam- Hossein University, Tehran, Iran E-mail: [email protected] Submission
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,352,697 B1 Cox Et Al
    USOO6352697 B1 (12) United States Patent (10) Patent No.: US 6,352,697 B1 Cox et al. (45) Date of Patent: *Mar. 5, 2002 (54) SAPONIN PREPARATIONS AND USE (58) Field of Search ........................... 424/184.1, 278.1, THEREOF IN ISCOMS 424/283.1; 514/885 (75) Inventors: John Cooper Cox, Bullengarook; Alan (56) References Cited Robert Coulter, Glen Iris, both of (AU); Bror Morein, Uppsala (SE); FOREIGN PATENT DOCUMENTS Karin Lovgren-Bengtsson, Uppsala (SE); Bo Sundquist, Uppsala (SE) WO WO 88/09336 12/1988 WO WO 90/03184 4/1990 WO WO 92/06710 * 4/1992 (73) Assignee: Iscotec A.B., Stockholm (SE) WO WO 93/05789 4/1993 (*) Notice: This patent issued on a continued pros WO WO 94/O1118 1/1994 ecution application filed under 37 CFR WO WO95/09179 4/1995 1.53(d), and is subject to the twenty year OTHER PUBLICATIONS patent term provisions of 35 U.S.C. 154(a)(2). Cox, J.C. and Coulter, A.R. (1992) “Advances in Adjuvant Technology and Application' in Animal Parasite Chapter 4, Subject to any disclaimer, the term of this pp. 68–79, W.K. Young, Ed., CRC Press. patent is extended or adjusted under 35 Kensil, C.R. et al., Separation and characterization of U.S.C. 154(b) by 0 days. saponins with adjuvant from Quillaja saponaria 1991 (146) (21) Appl. No.: 08/809,987 431–437 Journal of Immunology. (22) PCT Filed: Oct. 12, 1995 * cited by examiner (86) PCT No.: PCT/AU95/00670 Primary Examiner Patrick J. Nolan S371 Date: Feb.
    [Show full text]
  • SAPONIN from QUILLAJA BARK PURIFIED Sigma Prod. No. S4521 Storage: Room Temperature
    SAPONIN FROM QUILLAJA BARK PURIFIED Sigma Prod. No. S4521 Storage: Room Temperature CAS NUMBER: 8047-15-2 SYNONYMS: Sapogenin Glycosides1 STRUCTURE: Quillaja saponaria saponin (Quillaja saponins) is a heterogenous mixture of molecules varying both in their aglycone and sugar moieties.2 The main aglycone (sapogenin) moiety is quillaic acid, a triterpene of predominantly 30-carbon atoms (hydrophobic) of the D12-oleanane type. The aglycone is bound to various sugars (hydrophilic) including glucose, glucuronic acid, galactose, xylose, apiose, rhamnose, fucose and arabinose. Sapogenin devoid of any sugars can be isolated by acid hydrolysis of saponins.3,4,5,6,7 The structure of a component isolated from the acylated triterpenoid saponin mixture of Quillaja saponaria was reported.8 PHYSICAL DESCRIPTION: Appearance: powder3 Methods for the identification and quantitative determination of the aglycone and carbohydrate moieties of saponins have been reported.2,4,9,10,11 METHOD OF PREPARATION: Quillaja saponin is obtained from the bark of the South American soaptree, Quillaja saponaria Molina (Rosaceae family). Product S4521 is purified by ultrafiltration to reduce low molecular weight contaminants.3 A general method of preparation of the extract has been reported.2 STABILITY / STORAGE AS SUPPLIED: Quillaja saponin is hygroscopic and is expected to be stable for at least one year at room temperature when stored dry. SOLUBILITY / SOLUTION STABILITY: Quillaja saponin is soluble in water yielding micelles with an average MW of 56,000. The solubility is tested at 50 mg/ml deionized water.3 The solubility in water may be increased by additions of small amounts of alkali.12 S4521 Page 1 of 3 10/25/96 - ARO SAPONIN FROM QUILLAJA BARK PURIFIED Sigma Prod.
    [Show full text]
  • Iscoms and Immunostimulation with Viral Antigens
    Chapter 2 ISCOMs and Immunostimulation with Viral Antigens Stefan Hoglund, Kristian Dalsgaard, Karin Lovgren, Bo Sundquist, Ab Osterhaus, and Bror Morein 1. INTRODUCTION With the dissection of microorganisms followed by biochemical and immunolog­ ical characterization, antigens inducing protective immunity became recognized. Early attempts to use these isolated antigens as vaccines, i.e. subunit vaccines, showed that although immunogenic in situ as part of the microorganism, they were not immunogenic as purified antigens. Subsequent studies showed that the formation of antigen into defined multimeric forms such as protein micelles or into liposomes made them considerably more immunogenic. In a way, micelles and liposomes mimic a submicroscopic particle of a microorganism with several copies of surface antigens. By contrast, monomeric forms of antigens, e.g., envelope proteins of parainfluenza-3 virus or Semliki forest virus, not only had a low immunogenicity but had a specific suppressive effect on the immune re­ sponse as well; this was shown when the monomers were given simultaneously Stefan HOglund Institute of Biochemistry, Biomedical Center, Uppsala, Sweden. Kristian DaIsgaard State Veterinary Institute of Virus Research, Lindholm, Kalvehave, Denmark. Karin LOvgren and Bror Morein The National Veterinary Institute, Department of Virology, Biomedical Center, Uppsala, Sweden. Bo Sundquist The National Veterinary Institute, Division of Vaccine Research, Uppsala, Sweden. Ab Osterhaus National Institute of Public Health and Environmental Hygiene, Bilthoven, The Netherlands. 39 J. R. Harris (ed.), Virally Infected Cells © Springer Science+Business Media New York 1989 40 Stefan Hoglund et aI. with the same antigen in a micelle (Morein et aI., 1982, 1983; Morein and Simons, 1985; Jennings, 1987).
    [Show full text]
  • Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses Via Modulation of Immunodominance
    Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses via Modulation of Immunodominance The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Cirelli, Kimberly M. "Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses via Modulation of Immunodominance." Cell 177, 5 (May 2019): P1153-1171.e28 © 2019 Elsevier As Published http://dx.doi.org/10.1016/j.cell.2019.04.012 Publisher Elsevier BV Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/125926 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Cell. Author Manuscript Author manuscript; Manuscript Author available in PMC 2020 May 16. Published in final edited form as: Cell. 2019 May 16; 177(5): 1153–1171.e28. doi:10.1016/j.cell.2019.04.012. Slow delivery immunization enhances HIV neutralizing antibody and germinal center responses via modulation of immunodominance Kimberly M. Cirelli1,2, Diane G. Carnathan2,3,4, Bartek Nogal2,5, Jacob T. Martin2,6, Oscar L. Rodriguez7, Amit A. Upadhyay3,11, Chiamaka A. Enemuo3,4, Etse H. Gebru3,4, Yury Choe3,4, Federico Viviano3,4, Catherine Nakao1, Matthias G. Pauthner2,8, Samantha Reiss1,2, Christopher A. Cottrell2,5, Melissa L. Smith7, Raiza Bastidas2,8, William Gibson9, Amber N. Wolabaugh3, Mariane B. Melo2,6, Benjamin Cosette6, Venkatesh Kumar10, Nirav B. Patel11, Talar Tokatlian2,6, Sergey Menis2,8, Daniel W. Kulp2,8,12, Dennis R. Burton2,8,13, Ben Murrell10,14, William R.
    [Show full text]
  • Saponins from Quillaja Saponaria and Quillaja Brasiliensis: Particular Chemical Characteristics and Biological Activities
    molecules Review Saponins from Quillaja saponaria and Quillaja brasiliensis: Particular Chemical Characteristics and Biological Activities Juliane Deise Fleck 1, Andresa Heemann Betti 2, Francini Pereira da Silva 1, Eduardo Artur Troian 1, Cristina Olivaro 3, Fernando Ferreira 4 and Simone Gasparin Verza 1,* 1 Molecular Microbiology Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil; julianefl[email protected] (J.D.F.); [email protected] (F.P.d.S.); [email protected] (E.A.T.) 2 Bioanalysis Laboratory, Institute of Health Sciences, Feevale University, Novo Hamburgo 93525-075, RS, Brazil; [email protected] 3 Science and Chemical Technology Department, University Center of Tacuarembó, Udelar, Tacuarembó 45000, Uruguay; [email protected] 4 Organic Chemistry Department, Carbohydrates and Glycoconjugates Laboratory, Udelar, Mondevideo 11600, Uruguay; [email protected] * Correspondence: [email protected]; Tel.: +55-51-3586-8800 Academic Editors: Vassilios Roussis and Efstathia Ioannou Received: 25 October 2018; Accepted: 28 December 2018; Published: 4 January 2019 Abstract: Quillaja saponaria Molina represents the main source of saponins for industrial applications. Q. saponaria triterpenoids have been studied for more than four decades and their relevance is due to their biological activities, especially as a vaccine adjuvant and immunostimulant, which have led to important research in the field of vaccine development. These saponins, alone or incorporated into immunostimulating complexes (ISCOMs), are able to modulate immunity by increasing antigen uptake, stimulating cytotoxic T lymphocyte production (Th1) and cytokines (Th2) in response to different antigens. Furthermore, antiviral, antifungal, antibacterial, antiparasitic, and antitumor activities are also reported as important biological properties of Quillaja triterpenoids.
    [Show full text]
  • Protection, Systemic IFN, and Antibody Responses Induced by an ISCOM
    Protection, systemic IFNγ, and antibody responses induced by an ISCOM-based vaccine against a recent equine influenza virus in its natural host Romain Paillot, Humphrey Grimmett, Debra Elton, Janet Daly To cite this version: Romain Paillot, Humphrey Grimmett, Debra Elton, Janet Daly. Protection, systemic IFNγ, and antibody responses induced by an ISCOM-based vaccine against a recent equine influenza virus in its natural host. Veterinary Research, BioMed Central, 2008, 39 (3), pp.1. 10.1051/vetres:2007062. hal-00902919 HAL Id: hal-00902919 https://hal.archives-ouvertes.fr/hal-00902919 Submitted on 1 Jan 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Vet. Res. (2008) 39:21 www.vetres.org DOI: 10.1051/vetres:2007062 C INRA, EDP Sciences, 2008 Original article Protection, systemic IFN, and antibody responses induced by an ISCOM-based vaccine against a recent equine influenza virus in its natural host Romain Paillot1*, Humphrey Grimmett2,DebraElton1, Janet M. Daly1,3 1 Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, Newmarket, Suffolk, CB8 7UU, UK 2 Schering Plough, Animal Health, Breakspear Rd, South Harefield, Uxbridge, Middlesex, UB9 6LS, UK 3 Present address: Viral Brain Infections Group, University of Liverpool, Daulby Street, Liverpool L69 3GA, UK (Received 31 August 2007; accepted 9 November 2007) Abstract – In the horse, conventional inactivated or subunit vaccines against equine influenza virus (EIV) induce a short-lived antibody-based immunity to infection.
    [Show full text]