The Stilbene Profile in Edible Berries

Total Page:16

File Type:pdf, Size:1020Kb

The Stilbene Profile in Edible Berries Phytochem Rev https://doi.org/10.1007/s11101-018-9580-2 The stilbene profile in edible berries Alfred Błaszczyk . Sylwia Sady . Maria Sielicka Received: 6 November 2017 / Accepted: 7 June 2018 Ó The Author(s) 2018 Abstract Edible berries are becoming increasingly Introduction popular to consume in fresh, dried, frozen or processed forms due to their high content and wide diversity of In recent years, edible berries have attracted much bioactive compounds with considerable health bene- interest due to their high content and wide diversity of fits. Among the wide variety of phytochemicals found bioactive compounds with potential health benefits in berries are stilbenes, which demonstrate a broad (Zhao 2007; Seeram 2012; Jimenez-Garcia et al. 2013; range of biological and pharmacological activities. Nile and Park 2014). Berry fruits are widely consumed Their content depends on many factors, including the in fresh, dried, frozen forms or as processed products, cultivar, ripening stage, climatic conditions, agro- including canned fruits, beverages, jams and yogurts. nomic management, storage conditions and posthar- The most consumed berries are red raspberries (Rubus vest management. However, the application of various idaeus), strawberries (Fragaria x ananassa), black- abiotic and biotic external stimuli could be a strategy berries (Rubus spp.), blueberries (Vaccinium corym- for increasing the production of stilbenes in edible bosum), black currants (Ribes nigrum), red currants berries. To date, several different elicitors, as inducers (Ribes rubrum), chokeberries (Aronia melanocarpa), of plant secondary metabolite stilbenes, have been cranberries (Vaccinium macrocarpon), grapevines applied in different studies. This review focuses on the (Vitis vinifera L. and other Vitis species), bilberries isolation and identification of stilbenes from edible (Vaccinium myrtillus L.), deerberries (Vaccinium berries and presents the influence of different external stamineum L.), cowberries (Vaccinium vitis-idaea stimuli on their profile in grapes. L.), passion fruits (Passiflora edulis) and tomatoes (Lycopersicon esculentum Mill.). Keywords Stilbenes Á Edible berries Á External Among the wide variety of phytochemicals found stimuli in berries are stilbenes. These molecules occur within a limited group of plant families, which have the gene encoding the enzyme stilbene synthase (STS,EC 2.3.1.95). Biosynthesis occurs via the phenylalanine pathway, where phenylalanine ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H), coumaroyl-CoA A. Błaszczyk (&) Á S. Sady Á M. Sielicka ligase (4CL) and STS play a core role in the synthesis. ´ Faculty of Commodity Science, Poznan University of (Fig. 1) A transcriptional factor, Myb14, has been Economics and Business, al. Niepodległos´ci 10, 61-875 Poznan´, Poland found to regulate the expression of STS (Holl et al. e-mail: [email protected] 123 Phytochem Rev Fig. 1 Early stages of stilbene biosynthesis. PAL phenylalanine ammonia lyase, C4H cinnamate-4- hydroxylase, 4CL coumaroyl-CoA ligase, CHS chalcone synthase, STS stilbene synthase 2013). Chalcone isomerase (CHI) is responsible for This review focuses on stilbenes as a specific class the conversion of chalcone to flavanones. On the other of non-flavonoid phenolic compounds present in hand, resveratrol O-methyltransferase (ROMT)is edible berries. The aim of this review is to summarize involved in the methylation of resveratrol. Stilbenes the isolation and identification methods applied for are biosynthesized and accumulate into lipid vesicles stilbenes present in edible berries as well as the in the cytoplasm. Their content can be determined by influence of external stimuli on the quantitative and many factors, including the cultivar, ripening stage, qualitative composition of stilbenes in edible berries. climatic conditions, soil type, agronomic manage- ment, storage conditions and postharvest management (Dixon and Paiva 1995; Castrejon et al. 2008). Due to Molecular structures of stilbenes found in berry the potential health benefits, stilbenes in edible fruits fruits are of high interest. These compounds have demon- strated a wide range of biological and pharmacological The stilbene structure is characterized by two aromatic activities, including anti-tumoural (Bai et al. 2010; rings linked by a double bond, of which the E isomer is Tsai et al. 2017), anti-viral (Nguyen et al. 2011), anti- the most common configuration. They can be found in inflammatory (Zhang et al. 2010), anti-atherogenic berry fruits as monomers, dimers and more complex (Ramprasath and Jones 2010), anti-aging (Kasiotis oligomers (Figs. 2, 3, 4, 5, 6, 7). According to a current et al. 2013) and neuroprotective (Lin and Yao 2006) paper, the most widely found monomeric stilbenes in effects. berry fruits are E-resveratrol (1) and E-piceid (3) 123 Phytochem Rev apoplasm and protection from peroxidative degrada- tion (Morales et al. 1998). The oligomeric stilbenes are formed due to the oxidative coupling of E-resveratrol (1) or other monomeric stilbenes catalysed by perox- idase isoenzymes localized in the vacuole, cell wall and apoplast of grapevine cells (Ros Barcelo et al. 2003). Isolation and identification of stilbenes in edible berries The isolation and identification of stilbenes in edible berry extracts constitutes a complex procedure due to Fig. 2 Molecular structures of E-stilbene monomers isolated from edible berries: 1: E-resveratrol (3,40,5-trihydroxy-E- complex composition of the matrices in which their stilbene), 2: 3,5-O-dimethyl-E-resveratrol (E-pterostilbene), 3: occur, their low concentration and structural com- E-resveratrol-3-O-b-D-glucopyranoside (E-piceid), 4: 3,30,4,5- plexity. Several strategies have been applied for the tetrahydroxy-E-stilbene (E-piceatannol), 5: E-piceatannol-3-O- isolation and identification of stilbenes in edible b-D-glucopyranoside (E-astringin), 6: isorhapontin berries. An overview of the preparation conditions, analytical methods and stilbene concentrations in accordance with the research objectives are presented in Table 1. In general, the extraction techniques applied in stilbene extraction are classified into two categories: conventional and green techniques. The conventional techniques involve soaking in solvent, which relies on the solubility of stilbenes from edible berries in the solvent at room or elevated temperature. These techniques consume a large volume of solvents and are usually time consuming. In contrast, the green extraction technique applies minimal volumes of solvent and requires a shorter time. It has been used as preparation procedure by Ehala et al. (2005)to isolate E-resveratrol from bilberry via microwave- Fig. 3 Molecular structures of Z-stilbene monomers isolated assisted extraction. In conventional extraction tech- from edible berries: 7: Z-resveratrol, 8: Z-resveratrol-3-O-b-D- glucopyranoside (Z-piceid), 9: Z-piceatannol-3-O-b-D-glu- niques of stilbenes from edible berries solid–liquid copyranoside (Z-astringin) extraction of lyophilized, air-dried, frozen or fresh samples with different solvents is applied (see (Fig. 2). Their Z- and E-isomers mainly accumulate in Table 1). Unfortunately, there are no studies in which the berry skin during all stages of development the influence of matrices (lyophilized, air-dried, (Jeandet et al. 1991). E-isomer plant stilbenes may frozen, fresh) on the presence of stilbenes was undergo several types of modifications, such as examined. From a quantitative point of view, the isomerisation, glycosylation, methoxylation, and results obtained by different extraction solvents can- oligomerization (Chong et al. 2009). Due to these not be compared because solvents of different natures modifications, different derivatives of stilbenes are have different extractabilities. Basing on the analysed formed in edible berries from dimers to hexamers works (Table 1), the most often used solvent for the (Figs. 2, 3, 4, 5, 6, 7). In plants, these metabolites extraction process is methanol or the mixtures of generally accumulate in both free and glycosylated methanol with other solvents. In the research con- forms. Glycosylation of stilbenes could be involved in ducted by Sun et al. (2006) and Romero et al. (2001) their storage, transport from the cytoplasm to the the influence of extraction solvents on the amount of 123 Phytochem Rev Fig. 4 Molecular structures of stilbene dimers isolated from 15: pallidol, 16: pallidol-3-O-glucoside, 17: ampelopsin D, 18: edible berries: 10: E- and Z-e-viniferin, 11: E- and Z-d-viniferin, caraphenol B, 19: ampelopsin B 12: E- and Z-x-viniferin, 13: scirpusin B, 14: parthenocissin A, extracted stilbenes was examined. Based on Sun et al. Therefore, the preparation procedure of stilbenes work (Table 1, entry no. 15), methanol acidified with isolation should be carried out in the dark due to the 0.1% HCl was the best solvent to extract specific light sensitivity of double bond in stilbenes. stilbenes from grape skins and seeds. In the research Few studies have dealt with the influence of conducted by Romero et al. (2001) the influence of ultrasound on the resveratrol extraction efficiency temperature and time of extraction on stilbenes from grapes (Burin et al. 2014; Babazadeh et al. 2017). content was examined. The highest extraction of E- The ultrasonication-assisted extraction of resveratrol resveratrol and piceid isomers was observed at 60 °C showed more efficiency than the conventional solvent for 30 min with 80% ethanol. Z-Resveratrol was not extraction with 80% ethanol
Recommended publications
  • Stilbenes: Chemistry and Pharmacological Properties
    1 Journal of Applied Pharmaceutical Research 2015, 3(4): 01-07 JOURNAL OF APPLIED PHARMACEUTICAL RESEARCH ISSN No. 2348 – 0335 www.japtronline.com STILBENES: CHEMISTRY AND PHARMACOLOGICAL PROPERTIES Chetana Roat*, Meenu Saraf Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India Article Information ABSTRACT: Medicinal plants are the most important source of life saving drugs for the Received: 21st September 2015 majority of the Worlds’ population. The compounds which synthesized in the plant from the Revised: 15th October 2015 secondary metabolisms are called secondary metabolites; exhibit a wide array of biological and Accepted: 29th October 2015 pharmacological properties. Stilbenes a small class of polyphenols, have recently gained the focus of a number of studies in medicine, chemistry as well as have emerged as promising Keywords molecules that potentially affect human health. Stilbenes are relatively simple compounds Stilbene; Chemistry; synthesized by plants and deriving from the phenyalanine/ polymalonate route, the last and key Structures; Biosynthesis pathway; enzyme of this pathway being stilbene synthase. Here, we review the biological significance of Pharmacological properties stilbenes in plants together with their biosynthesis pathway, its chemistry and its pharmacological significances. INTRODUCTION quantities are present in white and rosé wines, i.e. about a tenth Plants are source of several drugs of natural origin and hence of those of red wines. Among these phenolic compounds, are termed as the medicinal plants. These drugs are various trans-resveratrol, belonging to the stilbene family, is a major types of secondary metabolites produced by plants; several of active ingredient which can prevent or slow the progression of them are very important drugs.
    [Show full text]
  • Chapter 4. Synthesis of Natural Oligomeric
    CHAPTER 4. SYNTHESIS OF NATURAL OLIGOMERIC STILBENOIDS AND ANALOGUES As mentioned above, stilbene oxidation was carried out with two different techniques: electrochemical oxidation reported in Chapter 3 and via various chemical oxidants in different solvents. The objectives of using these two approaches are to be able to compare their respective merits and develop a biomimetic approach that would mimic what nature does as closely as possible. A comprehensive literature review will summaries published biomimetic oligostilbenoids syntheses based on the author’s approaches as well as non-biomimetic syntheses. This is followed by the results obtained in this study and discussions on establishing the mechanisms involved in the oxidative formation of oligostilbenoids. A comparison will be made with results obtained in the preceding chapter. The structures of prepared oligostilbenoids are confirmed by spectroscopic measurements and/or by comparing with reported spectroscopic data in the literature. Finally, this chapter is completed with an overall conclusion and experimental procedures for oligostilbenoids preparation. 4.1. Oligostilbenoid biomimetic syntheses The work presented below was initiated by the various chemists for different purposes. In some cases the objective was to obtain chemical correlations in order to support proposed structures for newly isolated oligostilbenes. In other instances, metabolic biotransformation of (oligo)stilbenoid alexins by pathogens and/or oxidases was the focus of the investigations. Finally, some groups attempted the biomimetic 76 synthesis of oligostilbenoids as an obvious preparative method. Notwithstanding their objectives, biomimetic syntheses will be presented below by the type of condensing agent, i.e. biological agents (cells or enzymes) or chemical reagents, including one electron oxidants and acid catalysts.
    [Show full text]
  • Promising Neuroprotective Effects of Oligostilbenes
    Nutrition and Aging 3 (2015) 49–54 49 DOI 10.3233/NUA-150050 IOS Press Promising neuroprotective effects of oligostilbenes Hamza Temsamani, Stephanie´ Krisa, Jean-Michel Merillon´ and Tristan Richard∗ Universit´e de Bordeaux, ISVV, EA 3675 GESVAB, 33140 Villenave d’Ornon, France Abstract. Stilbenes (resveratrol derivatives) are a polyphenol class encountered in a large number of specimens in the vegetal realm. They adopt a variety of structures based on their building block: resveratrol. As the most widely studied stilbene to date, resveratrol has shown multiple beneficial effects on multiple diseases and on neurodegenerative diseases. Except for resveratrol, however, the biological activities of stilbenes have received far less attention, even though some of them have shown promising effects on neurodegenerative disease. This review covers the chemistry of stilbenes and offers a wide insight into their neuroprotective effects. Keywords: Resveratrol, stilbene, oligostilbene, neuroprotection 1. Introduction concerning the derivatives of resveratrol and their pro- tective effects on neurodegenerative diseases. Even if “French paradox” [1] is not universally accepted [2], evidences of beneficial effects of wine consumption on health were validated [3–5] and since 2. Polyphenols and stilbenes then has led to a growing interest in polyphenols. Many of these natural secondary metabolites have been Stilbenes constitute a class of phenolic compounds investigated owing to their beneficial effects on human [16, 17]. Polyphenols are mainly synthesized trough health. Indeed, studies have demonstrated a correlation the shikimate pathway and are characterized by at least between moderate wine consumption and a decrease in one hydroxyl group linked to an aromatic cycle. They the risk of cancer, cardiovascular diseases and neurode- can be divided into two groups: flavonoid and non- generative diseases [6].
    [Show full text]
  • List of Compounds 2018 年12 月
    List of Compounds 2018 年12 月 長良サイエンス株式会社 Nagara Science Co., Ltd. 〒501-1121 岐阜市古市場 840 840 Furuichiba, Gifu 501-1121, JAPAN Phone : +81-58-234-4257、Fax : +81-58-234-4724 E-mail : [email protected] 、http : //www.nsgifu.jp Storage Product Name・Purity・Molecular Formula=Molecular Weight・〔 CAS Quantity Source Code No. C o n di t i o n s Registry Number 〕 ・Price ( JPY ) NH020102 2-10 ℃ (-)-Epicatechin [ (-)-EC ] ≧99% (HPLC) 10mg 8,000 NH020103 C15H14O6 = 290.27 〔490-46-0〕 100mg 44,000 NH020202 2-10 ℃ (-)-Epigallocatechin [ (-)-EGC ] ≧99% (HPLC) 10mg 12,000 NH020203 C15H14O7 = 306.27 〔970-74-1〕 100mg 66,000 NH020302 2-10 ℃ (-)-Epicatechin gallate [ (-)-ECg ] ≧99% (HPLC) 10mg 12,000 NH020303 C22H18O10 = 442.37 〔1257-08-5〕 100mg 52,000 NH020403 2-10 ℃ (-)-Epigallocatechin gallate [ (-)-EGCg ] ≧98% (HPLC) 100mg 12,000 〔 〕 C22H18O11 = 458.37 989-51-5 NH020602 2-10 ℃ (-)-Epigallocatechin gallate [ (-)-EGCg ] ≧99% (HPLC) 20mg 12,000 NH020603 C22H18O11 = 458.37 〔989-51-5〕 100mg 30,000 NH020502 2-10 ℃ (+)-Catechin hydrate [ (+)-C ] ≧99% (HPLC) 10mg 5,000 NH020503 C15H14O6 ・H2O = 308.28 〔88191-48-4〕 100mg 32,000 NH021102 2-10 ℃ (-)-Catechin [ (-)-C ] ≧98% (HPLC) 10mg 23,000 C15H14O6 = 290.27 〔18829-70-4〕 NH021202 2-10 ℃ (-)-Gallocatechin [ (-)-GC ] ≧98% (HPLC) 10mg 34,000 〔 〕 C15H14O7 = 306.27 3371-27-5 NH021302 - ℃ ≧ 10mg 34,000 2 10 (-)-Catechin gallate [ (-)-Cg ] 98% (HPLC) C22H18O10 = 442.37 〔130405-40-2〕 NH021402 2-10 ℃ (-)-Gallocatechin gallate [ (-)-GCg ] ≧98% (HPLC) 10mg 23,000 C22H18O11 = 458.37 〔4233-96-9〕 NH021502 2-10 ℃ (+)-Epicatechin [ (+)-EC
    [Show full text]
  • Vitis Vinifera Canes, a Source of Stilbenoids Against Downy Mildew Tristan Richard, Assia Abdelli-Belhad, Xavier Vitrac, Pierre Waffo-Téguo, Jean-Michel Merillon
    Vitis vinifera canes, a source of stilbenoids against downy mildew Tristan Richard, Assia Abdelli-Belhad, Xavier Vitrac, Pierre Waffo-Téguo, Jean-Michel Merillon To cite this version: Tristan Richard, Assia Abdelli-Belhad, Xavier Vitrac, Pierre Waffo-Téguo, Jean-Michel Merillon. Vitis vinifera canes, a source of stilbenoids against downy mildew. OENO One, Institut des Sciences de la Vi- gne et du Vin (Université de Bordeaux), 2016, 50 (3), pp.137-143. 10.20870/oeno-one.2016.50.3.1178. hal-01602243 HAL Id: hal-01602243 https://hal.archives-ouvertes.fr/hal-01602243 Submitted on 27 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License 01-mérillon_05b-tomazic 13/10/16 13:31 Page137 VITIS VINIFERA CANES, A SOURCE OF STILBENOIDS AGAINST DOWNY MILDEW Tristan RICHARD 1, Assia ABDELLI-BELHADJ 2, Xavier VITRAC 2, Pierre WAFFO TEGUO 1, Jean-Michel MÉRILLON 1, 2* 1: Université de Bordeaux, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, INP Equipe Molécules d’Intérêt Biologique (Gesvab) - Institut des Sciences de la Vigne et du Vin - CS 50008 210, chemin de Leysotte 33882 Villenave d’Ornon Cedex, France 2: Polyphénols Biotech, Institut des Sciences de la Vigne et du Vin - CS 50008 210, chemin de Leysotte 33882 Villenave d’Ornon Cedex, France Abstract Aim: To investigate the antifungal efficacy of grape cane extracts enriched in stilbenes against Plasmopara viticola by in vivo experiments on grape plants.
    [Show full text]
  • Metabolites-10-00232-V3.Pdf
    H OH metabolites OH Article Wood Metabolomic Responses of Wild and Cultivated Grapevine to Infection with Neofusicoccum parvum, a Trunk Disease Pathogen Clément Labois 1,2 , Kim Wilhelm 2,Hélène Laloue 1,Céline Tarnus 1, Christophe Bertsch 1, Mary-Lorène Goddard 1,2,* and Julie Chong 1,* 1 Laboratoire Vigne, Biotechnologies et Environnement (LVBE, EA3991), Université de Haute Alsace, 68000 Colmar, France; [email protected] (C.L.); [email protected] (H.L.); [email protected] (C.T.); [email protected] (C.B.) 2 Laboratoire d’Innovation Moléculaire et Applications, Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68093 Mulhouse cedex, France; [email protected] * Correspondence: [email protected] (M.-L.G.); [email protected] (J.C.); Tel.: +33-3-89-33-67-69 (M.-L.G.); +33-3-89-20-31-39 (J.C.) Received: 28 April 2020; Accepted: 30 May 2020; Published: 4 June 2020 Abstract: Grapevine trunk diseases (GTDs), which are associated with complex of xylem-inhabiting fungi, represent one of the major threats to vineyard sustainability currently. Botryosphaeria dieback, one of the major GTDs, is associated with wood colonization by Botryosphaeriaceae fungi, especially Neofusicoccum parvum. We used GC-MS and HPLC-MS to compare the wood metabolomic responses of the susceptible Vitis vinifera subsp. vinifera (V. v. subsp. vinifera) and the tolerant Vitis vinifera subsp. sylvestris (V. v. subsp. sylvestris) after artificial inoculation with Neofusicoccum parvum (N. parvum). N. parvum inoculation triggered major changes in both primary and specialized metabolites in the wood. In both subspecies, infection resulted in a strong decrease in sugars (fructose, glucose, sucrose), whereas sugar alcohol content (mannitol and arabitol) was enhanced.
    [Show full text]
  • Acuminatol and Other Antioxidative Resveratrol Oligomers from the Stem Bark of Shorea Acuminata
    Molecules 2012, 17, 9043-9055; doi:10.3390/molecules17089043 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Acuminatol and Other Antioxidative Resveratrol Oligomers from the Stem Bark of Shorea acuminata Norhayati Muhammad 1, Laily B. Din 1, Idin Sahidin 2, Siti Farah Hashim 3, Nazlina Ibrahim 3, Zuriati Zakaria 4 and Wan A. Yaacob 1,* 1 School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor D.E., Malaysia; E-Mails: [email protected] (N.M.); [email protected] (L.B.D.) 2 Faculty of Mathematics and Natural Sciences, Haluoleo University, Kendari 93232, Sulawesi Tenggara, Indonesia; E-Mail: [email protected] 3 School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor D.E., Malaysia; E-Mails: [email protected] (S.F.H.); [email protected] (N.I.) 4 Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Jalan Semarak, Kuala Lumpur 54100, Malaysia; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +603-8921-5424; Fax: +603-8921-5410. Received: 1 June 2012; in revised form: 10 July 2012 / Accepted: 18 July 2012 / Published: 30 July 2012 Abstract: A new resveratrol dimer, acuminatol (1), was isolated along with five known compounds from the acetone extract of the stem bark of Shorea acuminata. Their structures and stereochemistry were determined by spectroscopic methods, which included the extensive use of 2D NMR techniques. All isolated compounds were evaluated for their antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (RSA) and the β-carotene-linoleic acid (BCLA) assays, and compared with those of the standards of ascorbic acid (AscA) and butylated hydroxytoluene (BHT).
    [Show full text]
  • WO 2011/123236 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 6 October 2011 (06.10.2011) WO 2011/123236 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A01N 43/04 (2006.01) A61K 31/70 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) Number: International Application CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US201 1/028305 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 14 March 201 1 (14.03.201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/320,1 36 1 April 2010 (01 .04.2010) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): BIO- GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, SPHERICS, INC. [US/US]; 6430 Rockledge Drive, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, #503, Westmoreland Building, Bethesda, Maryland TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 2081 7 (US).
    [Show full text]
  • Various Extraction Methods for Obtaining Stilbenes from Grape Cane of Vitis Vinifera L
    Molecules 2015, 20, 6093-6112; doi:10.3390/molecules20046093 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Various Extraction Methods for Obtaining Stilbenes from Grape Cane of Vitis vinifera L. Ivo Soural 1,*, Naděžda Vrchotová 2, Jan Tříska 2, Josef Balík 1, Štěpán Horník 3, Petra Cuřínová 3 and Jan Sýkora 3 1 Department of Post-Harvest Technology of Horticultural Products, Faculty of Horticulture, Mendel University in Brno, Valtická 337, Lednice 69144, Czech Republic; E-Mail: [email protected] 2 Global Change Research Centre, Academy of Sciences of the Czech Republic, v. v. i., Branišovská 31, České Budějovice 37005, Czech Republic; E-Mails: [email protected] (N.V.); [email protected] (J.T.) 3 Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, v.v.i., Rozvojová 2/135, 16502 Prague 6, Czech Republic; E-Mails: [email protected] (Š.H.); [email protected] (P.C.); [email protected] (J.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +420-519-367-266; Fax: +420-519-367-222. Academic Editor: Derek J. McPhee Received: 16 February 2015 / Accepted: 2 April 2015 / Published: 8 April 2015 Abstract: Grape cane, leaves and grape marc are waste products from viticulture, which can be used to obtain secondary stilbene derivatives with high antioxidant value. The presented work compares several extraction methods: maceration at laboratory temperature, extraction at elevated temperature, fluidized-bed extraction, Soxhlet extraction, microwave-assisted extraction, and accelerated solvent extraction. To obtain trans-resveratrol, trans-ε-viniferin and r2-viniferin from grape cane of the V.
    [Show full text]
  • Literature Review Zero Alcohol Red Wine
    A 1876 LI A A U R S T T S R U A L A I A FLAVOURS, FRAGRANCES AND INGREDIENTS 6 1 7 8 7 8 1 6 A I B A L U A S R T B Essential Oils, Botanical Extracts, Cold Pressed Oils, BOTANICAL Infused Oils, Powders, Flours, Fermentations INNOVATIONS LITERATURE REVIEW HEALTH BENEFITS RED WINE ZERO ALCOHOL RED WINE RED WINE EXTRACT POWDER www.botanicalinnovations.com.au EXECUTIVE SUMMARY The term FRENCH PARADOX is used to describe the relatively low incidence of cardiovascular disease in the French population despite the high consumption of red wine. Over the past 27 years numerous clinical studies have found a linkages with the ANTIOXIDANTS in particular, the POLYPHENOLS, RESVERATROL, CATECHINS, QUERCERTIN and ANTHOCYANDINS in red wine and reduced incidences of cardiovascular disease. However, the alcohol in wine limits the benefits of wine. Studies have shown that zero alcohol red wine and red wine extract which contain the same ANTIOXIDANTS including POLYPHENOLS, RESVERATROL, CATECHINS, QUERCERTIN and ANTHOCYANDINS has the same is not more positive health benefits. The following literature review details some of the most recent positive health benefits derived from the ANTIOXIDANTS found in red wine POLYPHENOLS: RESVERATROL, CATECHINS, QUERCERTIN and ANTHOCYANDINS. The positive polyphenolic antioxidant effects of the polyphenols in red wine include: • Cardio Vascular Health Benefits • Increase antioxidants in the cardiovascular system • Assisting blood glucose control • Skin health • Bone Health • Memory • Liking blood and brain health • Benefits
    [Show full text]
  • (5)September 2019
    SPECIAL ISSUE VOLUME 12 NUMBER- (5) SEPTEMBER 2019 Print ISSN: 0974-6455 BBRC Online ISSN: 2321-4007 Bioscience Biotechnology CODEN BBRCBA www.bbrc.in Research Communications University Grants Commission (UGC) New Delhi, India Approved Journal Biosc Biotech Res Comm Special Issue Vol 12 (5)September 2019 An International Peer Reviewed Open Access Journal for Rapid Publication Published By: Society For Science and Nature Bhopal, Post Box 78, GPO, 462001 India Indexed by Thomson Reuters, Now Clarivate Analytics USA ISI ESCI SJIF 2019=4.186 Online Content Available: Every 3 Months at www.bbrc.in Registered with the Registrar of Newspapers for India under Reg. No. 498/2007 Bioscience Biotechnology Research Communications SPECIAL ISSUE VOL 12 NO (5) SEP 2019 Food Consumption and It’s Economic Availability in Rural Population 01-06 O.I. Khairullina The Application of Mineral Additives in Different Formulations for Feeding Animals 07-14 L.V. Alekseeva, A.A. Lukianov, P.I. Migulev State Food Security Indicator of Agriculture 15-21 Tatyana M. Yarkova Cassava Peel-specimen Lye-digestion Process Optimization 22-32 G.R. Tsekwi and P.O. Ngoddy The Effectiveness of Concomitant Use of Hmg-Coa Reductase Inhibitors and 33-36 Endothelial Protectors Tatyana A. Denisyuk Innovated Product from Cassava (Manihot Esculenta) and Squid (Loligod Uvauceli) with Different Drying 37-54 Methods and Packaging Materials Aler L. Pagente, MTT E and Sofia C. Naelga, Mahe Ecological Mapping of the Territory on the Basis of Integrated Monitoring 55-66 Nurpeisova M., Bekbassarov
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0209617 A1 Lobisser Et Al
    US 20130209.617A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0209617 A1 Lobisser et al. (43) Pub. Date: Aug. 15, 2013 (54) COMPOSITIONS AND METHODS FOR USE Publication Classification IN PROMOTING PRODUCE HEALTH (51) Int. Cl. (75) Inventors: George Lobisser, Bainbridge Island, A23B 7/16 (2006.01) WA (US); Jason Alexander, Yakima, (52) U.S. Cl. WA (US); Matt Weaver, Selah, WA CPC ........................................ A23B 7/16 (2013.01) (US) USPC ........... 426/102: 426/654; 426/573; 426/601; 426/321 (73) Assignee: PACE INTERNATIONAL, LLC, Seattle, WA (US) (57) ABSTRACT (21) Appl. No.: 13/571,513 Provided herein are compositions comprising one or more of (22) Filed: Aug. 10, 2012 a stilbenoid, stilbenoid derivative, stilbene, or stilbene deriva tive and a produce coating. The resulting compositions are Related U.S. Application Data coatings which promote the health of fruit, vegetables, and/or (60) Provisional application No. 61/522,061, filed on Aug. other plant parts, and/or mitigate decay of post-harvest fruit, 10, 2011. Vegetables, and/or other plant parts. Patent Application Publication Aug. 15, 2013 Sheet 1 of 10 US 2013/0209.617 A1 | s N i has() 3 S s c e (9) SSouffley Patent Application Publication Aug. 15, 2013 Sheet 2 of 10 US 2013/0209.617 A1 so in a N s H N S N N. sr N re C c g o c (saulu) dae. Patent Application Publication Aug. 15, 2013 Sheet 3 of 10 US 2013/0209.617 A1 N Y & | N Y m N 8 Š 8 S.
    [Show full text]