Pond Life Cards
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The Native Stream Fishes of Hawaii
Summer 2014 American Currents 2 THE NATIVE STREAM FISHES OF HAWAII Konrad Schmidt St. Paul, MN [email protected] Several years ago at the University of Minnesota a poster The “uniqueness” of these species is due not only to the about Hawaii’s native freshwater fishes caught my eye. I high degree of endemism, but also includes their habitat, life was astonished to learn that for a tropical zone the indige- cycle, and evolutionary adaptations. Hawaii’s watersheds nous freshwater ichthyofauna (traditionally and collectively are typically short and small. The healthiest fish populations known as ‘o’opu) is incredibly rich in uniqueness, but very generally inhabit perennial streams located on the windward poor in species diversity, comprising only four gobies and (northeast) side of islands which are drenched with 100-300 one sleeper. Four of the five are endemic to Hawaii. How- inches of rainfall annually. Frequent and turbid flash floods, ever, recent research suggests the ‘o’opu nākea of Hawaii is called freshets, occur on a regular basis; between events, a distinct species from the Pacific River Goby, and is, there- however, stream visibility can exceed 30 feet. On the lee- fore, also endemic. In addition to these fishes, there are only ward, drier sides, populations do persist in some intermit- two native euryhaline species that venture from the ocean tent streams at higher elevations even though lower reaches into the lower and slower reaches of streams not far above may be dry for months or years. These dynamic streams are their mouths: Hawaiian Flagtail (Kuhlia sandvicensis) and continually and naturally in a state of recovery. -
Availability and Distribution of Low Flow in Anahola Stream, Kaua I
Prepared in cooperation with the State of Hawaiÿi Department of Hawaiian Home Lands Availability and Distribution of Low Flow in Anahola Stream, Kauaÿi, Hawaiÿi Scientific Investigations Report 2012–5264 U.S. Department of the Interior U.S. Geological Survey Cover: Kalalea Mountains in northeast Kauaÿi, Hawaiÿi. Photographed by Chui Ling Cheng. Availability and Distribution of Low Flow in Anahola Stream, Kauaÿi, Hawaiÿi By Chui Ling Cheng and Reuben H. Wolff Prepared in cooperation with the State of Hawaiÿi Department of Hawaiian Home Lands Scientific Investigations Report 2012–5264 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod Suggested citation: Cheng, C.L., and Wolff, R.H., 2012, Availability and distribution of low flow in Anahola Stream, Kauaÿi, Hawaiÿi: U.S. Geological Survey Scientific Investigations Report 2012-5264, 32 p. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. -
Biological Assessment of Kahana Stream, Island of O'ahu
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarSpace at University of Hawai'i at Manoa Biological Assessment of Kahana Stream, Island of O‘ahu, Hawai‘i: An Application of PABITRA Survey Methods1 J. M. Fitzsimons,2 J. E. Parham,3 L. K. Benson,4 M. G. McRae,2 and R. T. Nishimoto5 Abstract: Aquatic biologists surveyed Kahana Stream on O‘ahu, Hawai‘i, during December 2001 and January, March, and May 2002 to provide a background of information before restoring water diverted from the headwaters of the stream since the mid-1920s. Kahana Stream has all but one species of macrofauna com- mon in unaltered Hawaiian streams, but abundance and distribution of am- phidromous species differ conspicuously. A single specimen of ‘o‘opu ‘alamo‘o (Lentipes concolor) was found near the headwaters; until recently, this species was regarded as extinct on O‘ahu. Only two individuals of the freshwater limpet (hı¯hı¯wai, Neritina granosa) were found, and the brackish-water limpet (hapawai, Neritina vespertina) was not observed. Construction of the Waia¯hole Ditch Tun- nel about 80 yr ago reduced the amount of water entering Kahana headwaters, and unimpeded growth of hau (Hibiscus tiliaceus) from the shore into the stream has slowed water movement in the middle and lower sections of the stream and estuary. Reduced flow has resulted in an extension farther inland of certain es- tuarine and lower-reach species (the prawn Macrobrachium grandimanus and fishes Eleotris sandwicensis and Stenogobius hawaiiensis). Alien fishes and larger in- vertebrates occur throughout Kahana Stream. -
Parasites of Hawaiian Stream Fishes: Sources and Impacts
Biology of Hawaiian Streams and Estuaries. Edited by N.L. Evenhuis 157 & J.M. Fitzsimons. Bishop Museum Bulletin in Cultural and Environmental Studies 3: 157–169 (2007). Parasites of Hawaiian Stream Fishes: Sources and Impacts WILLIAM F. FONT Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana 70402, USA; email: [email protected] Abstract Introduced freshwater fishes impact native Hawaiian stream fishes in two important ways. In addition to direct negative effects associated factors such as predation, competition, and interference, indirect effects may occur when exotic fishes transfer their parasites to native hosts. Six species of helminths that have been introduced with alien live-bearing fishes, including guppies, green swordtails, shortfin mollies, and mosquitofish which now parasitize the five species of gobioids that occur naturally in Hawaiian streams. Some of these exotic parasites form large populations and produce heavy infec- tions in native fishes that can result in disease. Sources, host specificity, distribution, and life cycles of these parasites were studied to assess their potential for pathogenicity and to aid in the formulation of comprehensive conservation and management plans for native stream species in Hawai‘i. Introduction Vitousek et al. (1997) regarded introduced species to be second only to habitat destruction as a threat to biodiversity. Although he was referring to the global distribution of alien species, his experience with the negative impacts of introductions was gained through his extensive research in Hawai‘i. Much research has been conducted on species introduced either accidentally or deliberately into ter- restrial ecosystems within the archipelago by humans. Maciolek (1984) and Devick (1991) ad- dressed the problem of introduced species in Hawaiian streams. -
Aspects of the Behavioral Ecology, Life History, Genetics, and Morophology
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2002 Aspects of the behavioral ecology, life history, genetics, and morophology of the Hawaiian kuhliid fishes Lori Keene Benson Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Benson, Lori Keene, "Aspects of the behavioral ecology, life history, genetics, and morophology of the Hawaiian kuhliid fishes" (2002). LSU Doctoral Dissertations. 1890. https://digitalcommons.lsu.edu/gradschool_dissertations/1890 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. ASPECTS OF THE BEHAVIORAL ECOLOGY, LIFE HISTORY, GENETICS, AND MORPHOLOGY OF THE HAWAIIAN KUHLIID FISHES A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College In partial fulfillment of the Requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Lori Keene Benson B.S., University of Tampa, 1995 December 2002 ACKNOWLEDGMENTS I would like to first thank my major professor, Dr. Mike Fitzsimons, for being a wonderful adviser on matters both scientific and unscientific. He was supportive when I left Baton Rouge during my final year of graduate school to pursue a job opportunity. I feel that I couldn’t have successfully juggled all of these responsibilities without him. I am also especially grateful for all of the help I received from my fellow graduate students at LSU. -
Final Report Posted
FINAL REPORT Control and Mitigation of Aquatic Invasive Species in Pacific Island Streams SERDP Project RC-2447 MAY 2020 Michael Blum Tulane University J. Derek Hogan Texas A&M University – Corpus Christi Peter B. McIntyre Cornell University Distribution Statement A Page Intentionally Left Blank This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense. Page Intentionally Left Blank Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. -
Metadata for Hawaii Environmental Sensitivity Index (ESI)
HYDRO Hawaii ESI: HYDRO (Hydrology Polygons and Lines) Metadata: Identification_Information Data_Quality_Information Spatial_Data_Organization_Information Spatial_Reference_Information Entity_and_Attribute_Information Distribution_Information Metadata_Reference_Information Identification_Information: Citation: Citation_Information: Originator: National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, Office of Response and Restoration, Hazardous Materials Response Division, Seattle, Washington Publication_Date: 200111 Title: Hawaii ESI: HYDRO (Hydrology Polygons and Lines) Edition: Second Geospatial_Data_Presentation_Form: Vector digital data Series_Information: Series_Name: None Issue_Identification: Hawaii Publication_Information: Publication_Place: Seattle, Washington Publisher: National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, Office of Response and Restoration, Hazardous Materials Response Division, Seattle, Washington Other_Citation_Details: Prepared by Research Planning, Inc., Columbia, South Carolina for the National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, Office of Response and Restoration, Hazardous Materials Response Division, Seattle, Washington Description: Abstract: This data set contains vector arcs and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for Hawaii. The HYDRO data layer contains all annotation used in producing the atlas. The annotation features are categorized into -
Assimilation Efficiency of Prey in the Hawaiian Monk Seal, Monachus Schauinslandi Gwen D. Goodman-Lowe, James R. Carpenter
Assimilation Efficiency of Prey in the Hawaiian Monk Seal, Monachus schauinslandi Gwen D. Goodman-Lowe, James R. Carpenter, and Shannon Atkinson Gwen D. Goodman-Lowe. Dept. of Zoology, Hawaii Institute of Marine Biology, University of Hawaii, Box 1346, Kaneohe, HI 96744, (808) 236-7416, Fax (808) 236-7443, email: [email protected] James R. Carpenter. Department of Animal Sciences, 1800 East-West Road, University of Hawaii, Honolulu, HI 96822 Shannon Atkinson. Hawaii Institute of Marine Biology, University of Hawaii, Box 1346, Kaneohe, HI 96744 2 Assimilation Efficiency of Prey in the Hawaiian Monk Seal, Monachus schauinslandi Gwen D. Goodman-Lowe, James R. Carpenter, and Shannon Atkinson Abstract Assimilation efficiency, digestive efficiency, metabolizable energy, and nitrogen retention in three captive adult male Hawaiian monk seals (Monachus schauinslandi) were measured using the indigestible marker, chromic oxide for four experimental diets: a control diet of herring (Clupea harengus), and three test diets consisting of flagtail (Kuhlia sandvicensis), squid (Loligo sp.), and lobster (Panulirus marginatus), each of which was used in combination with the herring diet. The addition of all three test prey to herring decreased the digestibility of gross energy by a mean of 3.58 + 3.89%. Assimilation efficiency of gross energy for herring was 96.1 + 4.0%, for flagtail was 73.8 + 6.8%, and for squid was 94.1 + 5.7%, but could not be determined for lobster. Digestive efficiency and metabolizable energy of the diets examined were high (4602.2 + 247.1 kcal * d-1 and 4062.5 + 178.4 kcal * d-1, respectively) and were positively correlated with the amount of gross energy ingested. -
Improbable Colonists: Helminth Par.Asites of Freshwater Fishes on an Oceanic Island 1
Micronesica 30(1): 105-115, 1997 Improbable Colonists: Helminth Par.asites of Freshwater Fishes on an Oceanic Island 1 WILLIAM F. FONT Department of Biological Sciences Southeastern Louisiana University Hammond, Louisiana 70402 USA Email: WFFONT@SELUEDU Abstract-Eleven species ofhelminth parasites were found in 5 species of native gobioid and 4 species of introduced poeciliid stream fishes from 29 aquatic habitats on the islands ofHawai'i, O'ahu, and Kaua'i in the Hawaiian archipelago. Mechanisms by which these parasites origi nally colonized Hawai'i, either naturally or by means of human activi ties, were investigated. Two sources of native, or naturally occurring par asites, were identified: marine fishes and migratory piscivorous birds. Four native species, of which the roundworm Spirocamallanus istiblenni was the most numerous, originated in marine fishes. An additional 3 par asites used migratory piscivorous birds as final hosts and fishes as inter mediate hosts. The remaining 4 species of parasites were introduced into Hawai 'i by man. Three of these species of helminths, a roundworm Ca rnal/anus cotti, a tapeworm Bothriocephalus acheilognathi, and a leech Myzobdella lugubris, introduced when exotic poeciliid fishes were brought to the archipelago, were the most widespread and abundant helminths parasitizing stream fishes. Biological characteristics that en hance the probability of colonization of oceanic islands by parasites in clude: broad host specificity, the utilization of vagile final hosts, and the use of common and ubiquitous intermediate hosts. The colonization po tential of both allogenic and autogenic parasites of freshwater fishes on oceanic islands is compared with results of previous studies of allogenic and autogenic colonists of continental islands. -
The Marine Biodiversity and Fisheries Catches of the Pitcairn Island Group
The Marine Biodiversity and Fisheries Catches of the Pitcairn Island Group THE MARINE BIODIVERSITY AND FISHERIES CATCHES OF THE PITCAIRN ISLAND GROUP M.L.D. Palomares, D. Chaitanya, S. Harper, D. Zeller and D. Pauly A report prepared for the Global Ocean Legacy project of the Pew Environment Group by the Sea Around Us Project Fisheries Centre The University of British Columbia 2202 Main Mall Vancouver, BC, Canada, V6T 1Z4 TABLE OF CONTENTS FOREWORD ................................................................................................................................................. 2 Daniel Pauly RECONSTRUCTION OF TOTAL MARINE FISHERIES CATCHES FOR THE PITCAIRN ISLANDS (1950-2009) ...................................................................................... 3 Devraj Chaitanya, Sarah Harper and Dirk Zeller DOCUMENTING THE MARINE BIODIVERSITY OF THE PITCAIRN ISLANDS THROUGH FISHBASE AND SEALIFEBASE ..................................................................................... 10 Maria Lourdes D. Palomares, Patricia M. Sorongon, Marianne Pan, Jennifer C. Espedido, Lealde U. Pacres, Arlene Chon and Ace Amarga APPENDICES ............................................................................................................................................... 23 APPENDIX 1: FAO AND RECONSTRUCTED CATCH DATA ......................................................................................... 23 APPENDIX 2: TOTAL RECONSTRUCTED CATCH BY MAJOR TAXA ............................................................................ -
The Enigmatic Jungle Perch - Recent Research Provides Some Answers
SPC Fisheries Newsletter #40 January - March 1987 THE ENIGMATIC JUNGLE PERCH - RECENT RESEARCH PROVIDES SOME ANSWERS by A.D. Lewis Fisheries Division, Ministry of Primary Industries, Suva, Fiji and A.E. Hogan Department of Primary Industry, Queensland, Australia. INTRODUCTION Mountain trout, aholehole, sesele, sakelo, ika droka, mahore, umatari, jungle perch - all names given thoughout their wide Indo-Pacific range to small silvery fishes of the family Kuhliidae. Found in both marine and freshwater habitats, from east Africa to Hawaii, most of the six or so species have characteristic tail marking which give them their common name of flagtail perch. They are believed to be most closely related to the well known north American basses fCentrgrchidae). Although good food fish, most flagtails attain relatively small sizes (less than 300 gm) and arouse little interest where they occur, other than as a minor subsistence food item. The exception is the largest member of the family, the jungle perch, Kuhlia rupestris (Lacepede), which grows to 450 mm in total length and 3 kg in weight and has acquired, in Australia at least, the reputation as a "legendary angling species" (Merrick and Schmida, 1984), as well as a considerable mystique. A handsome silvery species, with black markings dorso-laterally and a dark blotch on each caudal lobe (Figure 1), it is also regarded as excellent eating. The typical jungle perch habitat (figure 2) is fast-flowing perennial coastal streams in rain forest areas. In Australia, for example, the species is apparently restricted to the north-eastern and central Queensland coast and is absent from the slow-flowing Gulf of Carpentaria and Northern Territory rivers. -
Fishes Collected During the 2017 Marinegeo Assessment of Kāne
Journal of the Marine Fishes collected during the 2017 MarineGEO Biological Association of the ā ‘ ‘ ‘ United Kingdom assessment of K ne ohe Bay, O ahu, Hawai i 1 1 1,2 cambridge.org/mbi Lynne R. Parenti , Diane E. Pitassy , Zeehan Jaafar , Kirill Vinnikov3,4,5 , Niamh E. Redmond6 and Kathleen S. Cole1,3 1Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 159, Washington, DC 20013-7012, USA; 2Department of Biological Sciences, National University of Singapore, Original Article Singapore 117543, 14 Science Drive 4, Singapore; 3School of Life Sciences, University of Hawai‘iatMānoa, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI 96822, USA; 4Laboratory of Ecology and Evolutionary Biology of Cite this article: Parenti LR, Pitassy DE, Jaafar Aquatic Organisms, Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690091, Russia; 5Laboratory of Z, Vinnikov K, Redmond NE, Cole KS (2020). 6 Fishes collected during the 2017 MarineGEO Genetics, National Scientific Center of Marine Biology, Vladivostok 690041, Russia and National Museum of assessment of Kāne‘ohe Bay, O‘ahu, Hawai‘i. Natural History, Smithsonian Institution DNA Barcode Network, Smithsonian Institution, PO Box 37012, MRC 183, Journal of the Marine Biological Association of Washington, DC 20013-7012, USA the United Kingdom 100,607–637. https:// doi.org/10.1017/S0025315420000417 Abstract Received: 6 January 2020 We report the results of a survey of the fishes of Kāne‘ohe Bay, O‘ahu, conducted in 2017 as Revised: 23 March 2020 part of the Smithsonian Institution MarineGEO Hawaii bioassessment. We recorded 109 spe- Accepted: 30 April 2020 cies in 43 families.