A GSM Stream Cipher

Total Page:16

File Type:pdf, Size:1020Kb

A GSM Stream Cipher Two Trivial Attacks on A5/1: A GSM Stream Cipher Ashish Jain1 and Narendra S. Chaudhari2 Department of Computer Science and Engineering, Indian Institute of Technology Indore, India A B S T R A C T Stream ciphers play an important role in those applications where high throughput remains critical and resources are very restricted e.g. in Europe and North America, A5/1 is widely used stream cipher that ensure confidentiality of conversations in GSM mobile phones. However careful security analysis of such cipher is very important due to widespread practical applicability. The basic building blocks used in the design of A5/1 are linear feedback shift registers (LFSRs). Algebraic attacks are new and very powerful tool to cryptanalyse LFSRs based stream ciphers even non-linear combiner are concerned. In this paper we compared previous attacks on A5/1 as well as an algebraic attack and a new guess and determine attack is proposed. 1. Introduction Stream ciphers are from the class of symmetric key ciphers which ensure privacy and confidentiality of secret data over communication channels. In a stream cipher each plaintext digit is encrypted with the corresponding pseudorandom cipher digit (keystream), to give a digit of the ciphertext. In practice, a digit is typically a bit and the combining operation is a „XOR‟. Typically, stream ciphers depend on a time-varying internal state that uniquely determines the status of stream cipher. An initial state of the stream cipher is normally determined by the secret key and the public initialization vector; the transition from one state to next is controlled by a clock. Stream ciphers are commonly classified as synchronous and asynchronous. In synchronous stream ciphers, the next state of the cryptosystem is defined independently of both the plaintext and ciphertext. Most of the stream ciphers are synchronous binary stream ciphers those are often constructed using linear feedback shift registers (LFSRs) because they can be easily implemented in hardware and can produce keystream bits at or near the clock speed however historically such stream ciphers were developed to employ in high data rate systems but today software based systems e.g. block ciphers are also capable of encrypting at extremely high data rates but some important applications prefer stream ciphers where the resources are restricted and the speed and simplicity of implementation in hardware is required e.g. in secure wireless communication. In general stream ciphers are much faster than block ciphers and typically require fewer resources for implementation in hardware and software. They have small buffer requirements and limited error propagation, since the symbol size is relatively small and each symbols processed independently, these properties make stream ciphers are most suitable for telecommunication applications such as mobile phone networks. Due to such widespread applications, security analysis of stream ciphers is very important; publish your cryptography design and invite others to attack or cryptanalyse it. Nearly all cryptography algorithms undergo this process and carefully examined to establish practical security of the system, in other words the goal of cryptanalysis is to find insecurity in a cryptography scheme thus permitting its subversion [1]. Typically Algebraic attacks, Tradeoff attacks, Correlation attacks, Guess and determine attacks and Statistical distinguishing attacks are methods of cryptanalyse stream ciphers. An algebraic attack on stream ciphers with linear feedback is a new and very powerful tool which has been introduced in 2003 by Courtois and Meier [2]. In this research we investigate algebraic analysis of A5/1 as well as a new guess and determine attack is proposed having time complexity is comparable better than previous guess and determine attack. Anderson [3], Golic [4] and Babbage [5] were the initiator in cryptanalyzing the A5/1 encryption algorithm when only a rough outline of the A5/1 was leaked. After 1999 when A5/1 was reverse engineered, it was analyzed by [6, 7, 8, 9, 10, 11 and 12]. A review and comparison of these previous attacks is presented in section 4, in section 2 basics of algebraic analysis is presented, section 3 describes design of A5/1, in section 5 proposed algebraic attack is explained and in section 6 a new guess and determine attack is described followed by conclusion & future work in section 7. 2. Algebraic Analysis Over Finite Field The general framework for the algebraic attacks on stream ciphers was developed by Courtois and Meier [1] is restricted to synchronous binary stream ciphers defined over GF(2) in which there are a state s∈GF(2)n. At each clock t the state s is updated by a “connection function" s → L(s) that is assumed to be linear over GF(2). Then a combiner f is applied to s, to produce the output bit b = f(s). 2.1. Framework for Algebraic Analysis. A typical algebraic attack consists of the following four steps [1]: Finding a system of algebraic equations that bind the initial state with the keystream that is visible during the attack. An important practical issue is to find as many independent algebraic equations of a low degree as the number of unknown monomials (for the initial state or secret key). Reducing the degree of the equations by determining their annihilators. This is one of the crucial parts of the attack, because efficiency of attack is depends on the degree of the equations–the smaller the better. Collecting enough keystream bits and substituting their values into the equations. Finally, solve the system of algebraic equations. 2.2. Our Contribution. In this paper we describe a simple algebraic attack on the A5/1 stream cipher. The limitation of our method is that there is no boundary for the degree of the generated equations which is crucial part of fast algebraic attack as shown in section 2.1. For effective algebraic attack this improvement in our proposed method is considered as future work.In section 6 we also proposed a new guess and determine attack having time complexity is comparable better than previous guess and determine attack. 3. Description of A5/1 GSM Stream Cipher A GSM conversation is drive as a sequence of frames, every frame is sent in 4.615 milliseconds. Each frame contains 228 bits; 114 bits represent the communication from A to B and the remaining 114 bits represent return communication. Every frame also contains frame counter Fn of 22 bit which is publicly known. In GSM a new 64 bit session key k is generated to drive each conversation. The session key followed by frame counter is used to set initial state of A5/1. A5/1 is built using three linear feedback shift registers (LFSRs) of lengths 19, 22, and 23 bits, denoted by R1, R2 and R3 respectively as shown in Fig. 1. Each linear shift registers have primitive feedback polynomials. Each register has a single "clocking" tap (bit 8 for R1, bit 10 for R2, and bit 10 for R3) they are clocked in a stop/go fashion using the majority rule. Note that at each step either two or three registers are clocked which implies that each register moves with probability 3/4 and stops with probability 1/4.The A5/1 works as follows: First, an initialization step is performed. Initially all LFSRs are set to 0 then all are clocked 64 times regularly and in parallel all bits of session key are consecutively XORed to the feedback of each of the registers. In the second step all LFSRs are again clocked 22 times regularly and the successive bits of frame counter are XORed in parallel to the feedback of each of the registers. In this way the initialization phase takes an overall of 64 + 22 = 86 clock- cycles results an initial state Si. In the third step based on the initial state Si, a warm-up phase is performed in this step all LFSRs are clocked irregularly (according to majority rule) for 100 clock-cycles and the output is discarded. The majority rule is a function from n inputs to one output. The value of the operation is true ┌ ┐ when at least n/2 arguments are true, false otherwise. Finally all LFSRs are irregularly clocked for 228 clock cycles, produces the 228 bits which forms keystream (KS) which combines with 228 bits of plaintext to generate ciphertext of 228 bits. For details about A5/1 we referred [8]. 0 1 0 2 1 3 2 4 3 0 5 4 1 6 5 2 7 6 3 8 7 4 9 8 5 10 9 6 Clock Control Unit 11 10 7 12 11 8 13 12 9 14 13 10 15 14 11 16 15 12 17 16 13 Bits Clocking Tapping bits Purpose → bits 18 17 14 Registers ↓ R1 8 13,16,17,18 19 18 15 R2 10 20,21 20 19 16 R3 10 7,20,21,22 21 20 17 22 21 18 R3 R2 R1 Keystream (KS) Fig.1. A5/1 Stream Cipher 4. Comparisons of Known Attacks on A5/1 In 1994, Anderson [3] had proposed a guess-and-determine attack on the A5/1 which was the first attack on alleged design of A5/1, he suggested guess all bits of registers R1 and R2 and the lower half of register R3 and then determine the remaining bits of R3 by the following equation:- R1[18] XOR R2[21] XOR R3[22] = KS[i] ------ (1) In the worst-case the verification of each of the 252 determined state candidates against the known keystream need to perform. Golic [5] proposed an attack that has a set of 240 linear equations. His idea was to guess the lower half of all three registers and determine the remaining bits with the known keystream using equation 1 but each operation in this attack is much more complicated since it is based on the solutions of system of linear equations.
Recommended publications
  • Breaking Crypto Without Keys: Analyzing Data in Web Applications Chris Eng
    Breaking Crypto Without Keys: Analyzing Data in Web Applications Chris Eng 1 Introduction – Chris Eng _ Director of Security Services, Veracode _ Former occupations . 2000-2006: Senior Consulting Services Technical Lead with Symantec Professional Services (@stake up until October 2004) . 1998-2000: US Department of Defense _ Primary areas of expertise . Web Application Penetration Testing . Network Penetration Testing . Product (COTS) Penetration Testing . Exploit Development (well, a long time ago...) _ Lead developer for @stake’s now-extinct WebProxy tool 2 Assumptions _ This talk is aimed primarily at penetration testers but should also be useful for developers to understand how your application might be vulnerable _ Assumes basic understanding of cryptographic terms but requires no understanding of the underlying math, etc. 3 Agenda 1 Problem Statement 2 Crypto Refresher 3 Analysis Techniques 4 Case Studies 5 Q & A 4 Problem Statement 5 Problem Statement _ What do you do when you encounter unknown data in web applications? . Cookies . Hidden fields . GET/POST parameters _ How can you tell if something is encrypted or trivially encoded? _ How much do I really have to know about cryptography in order to exploit implementation weaknesses? 6 Goals _ Understand some basic techniques for analyzing and breaking down unknown data _ Understand and recognize characteristics of bad crypto implementations _ Apply techniques to real-world penetration tests 7 Crypto Refresher 8 Types of Ciphers _ Block Cipher . Operates on fixed-length groups of bits, called blocks . Block sizes vary depending on the algorithm (most algorithms support several different block sizes) . Several different modes of operation for encrypting messages longer than the basic block size .
    [Show full text]
  • Key Differentiation Attacks on Stream Ciphers
    Key differentiation attacks on stream ciphers Abstract In this paper the applicability of differential cryptanalytic tool to stream ciphers is elaborated using the algebraic representation similar to early Shannon’s postulates regarding the concept of confusion. In 2007, Biham and Dunkelman [3] have formally introduced the concept of differential cryptanalysis in stream ciphers by addressing the three different scenarios of interest. Here we mainly consider the first scenario where the key difference and/or IV difference influence the internal state of the cipher (∆key, ∆IV ) → ∆S. We then show that under certain circumstances a chosen IV attack may be transformed in the key chosen attack. That is, whenever at some stage of the key/IV setup algorithm (KSA) we may identify linear relations between some subset of key and IV bits, and these key variables only appear through these linear relations, then using the differentiation of internal state variables (through chosen IV scenario of attack) we are able to eliminate the presence of corresponding key variables. The method leads to an attack whose complexity is beyond the exhaustive search, whenever the cipher admits exact algebraic description of internal state variables and the keystream computation is not complex. A successful application is especially noted in the context of stream ciphers whose keystream bits evolve relatively slow as a function of secret state bits. A modification of the attack can be applied to the TRIVIUM stream cipher [8], in this case 12 linear relations could be identified but at the same time the same 12 key variables appear in another part of state register.
    [Show full text]
  • MD5 Collisions the Effect on Computer Forensics April 2006
    Paper MD5 Collisions The Effect on Computer Forensics April 2006 ACCESS DATA , ON YOUR RADAR MD5 Collisions: The Impact on Computer Forensics Hash functions are one of the basic building blocks of modern cryptography. They are used for everything from password verification to digital signatures. A hash function has three fundamental properties: • It must be able to easily convert digital information (i.e. a message) into a fixed length hash value. • It must be computationally impossible to derive any information about the input message from just the hash. • It must be computationally impossible to find two files to have the same hash. A collision is when you find two files to have the same hash. The research published by Wang, Feng, Lai and Yu demonstrated that MD5 fails this third requirement since they were able to generate two different messages that have the same hash. In computer forensics hash functions are important because they provide a means of identifying and classifying electronic evidence. Because hash functions play a critical role in evidence authentication, a judge and jury must be able trust the hash values to uniquely identify electronic evidence. A hash function is unreliable when you can find any two messages that have the same hash. Birthday Paradox The easiest method explaining a hash collision is through what is frequently referred to as the Birthday Paradox. How many people one the street would you have to ask before there is greater than 50% probability that one of those people will share your birthday (same day not the same year)? The answer is 183 (i.e.
    [Show full text]
  • Introduction to Public Key Cryptography and Clock Arithmetic Lecture Notes for Access 2010, by Erin Chamberlain and Nick Korevaar
    1 Introduction to Public Key Cryptography and Clock Arithmetic Lecture notes for Access 2010, by Erin Chamberlain and Nick Korevaar We’ve discussed Caesar Shifts and other mono-alphabetic substitution ciphers, and we’ve seen how easy it can be to break these ciphers by using frequency analysis. If Mary Queen of Scots had known this, perhaps she would not have been executed. It was a long time from Mary Queen of Scots and substitution ciphers until the end of the 1900’s. Cryptography underwent the evolutionary and revolutionary changes which Si- mon Singh chronicles in The Code Book. If you are so inclined and have appropriate leisure time, you might enjoy reading Chapters 2-5, to learn some of these historical cryptography highlights: People came up with more complicated substitution ciphers, for example the Vigen`ere square. This Great Cipher of France baffled people for quite a while but a de- termined cryptographer Etienne Bazeries had a Eureka moment after three years of work, cracked the code, and possibly found the true identity of the Man in the Iron Mask, one of the great mysteries of the seventeeth century. Edgar Allan Poe and Sir Arthur Conan Doyle even dabbled in cryptanalysis. Secrecy was still a problem though because the key needed to be sent, and with the key anyone could encrypt and decrypt the messages. Frequency analysis was used to break all of these codes. In 1918 Scherbius invented his Enigma machine, but Alan Turing’s machine (the first computer?) helped in figuring out that supposedly unbreakable code, and hastened the end of the second World War.
    [Show full text]
  • The Mathemathics of Secrets.Pdf
    THE MATHEMATICS OF SECRETS THE MATHEMATICS OF SECRETS CRYPTOGRAPHY FROM CAESAR CIPHERS TO DIGITAL ENCRYPTION JOSHUA HOLDEN PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright c 2017 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TR press.princeton.edu Jacket image courtesy of Shutterstock; design by Lorraine Betz Doneker All Rights Reserved Library of Congress Cataloging-in-Publication Data Names: Holden, Joshua, 1970– author. Title: The mathematics of secrets : cryptography from Caesar ciphers to digital encryption / Joshua Holden. Description: Princeton : Princeton University Press, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2016014840 | ISBN 9780691141756 (hardcover : alk. paper) Subjects: LCSH: Cryptography—Mathematics. | Ciphers. | Computer security. Classification: LCC Z103 .H664 2017 | DDC 005.8/2—dc23 LC record available at https://lccn.loc.gov/2016014840 British Library Cataloging-in-Publication Data is available This book has been composed in Linux Libertine Printed on acid-free paper. ∞ Printed in the United States of America 13579108642 To Lana and Richard for their love and support CONTENTS Preface xi Acknowledgments xiii Introduction to Ciphers and Substitution 1 1.1 Alice and Bob and Carl and Julius: Terminology and Caesar Cipher 1 1.2 The Key to the Matter: Generalizing the Caesar Cipher 4 1.3 Multiplicative Ciphers 6
    [Show full text]
  • Stream Ciphers (Contd.)
    Stream Ciphers (contd.) Debdeep Mukhopadhyay Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302 Objectives • Non-linear feedback shift registers • Stream ciphers using LFSRs: – Non-linear combination generators – Non-linear filter generators – Clock controlled generators – Other Stream Ciphers Low Power Ajit Pal IIT Kharagpur 1 Non-linear feedback shift registers • A Feedback Shift Register (FSR) is non-singular iff for all possible initial states every output sequence of the FSR is periodic. de Bruijn Sequence An FSR with feedback function fs(jj−−12 , s ,..., s jL − ) is non-singular iff f is of the form: fs=⊕jL−−−−+ gss( j12 , j ,..., s jL 1 ) for some Boolean function g. The period of a non-singular FSR with length L is at most 2L . If the period of the output sequence for any initial state of a non-singular FSR of length L is 2L , then the FSR is called a de Bruijn FSR, and the output sequence is called a de Bruijn sequence. Low Power Ajit Pal IIT Kharagpur 2 Example f (,xxx123 , )1= ⊕⊕⊕ x 2 x 3 xx 12 t x1 x2 x3 t x1 x2 x3 0 0 0 0 4 0 1 1 1 1 0 0 5 1 0 1 2 1 1 0 6 0 1 0 3 1 1 1 3 0 0 1 Converting a maximal length LFSR to a de-Bruijn FSR Let R1 be a maximum length LFSR of length L with linear feedback function: fs(jj−−12 , s ,..., s jL − ). Then the FSR R2 with feedback function: gs(jj−−12 , s ,..., s jL − )=⊕ f sjj−−12 , s ,..., s j −L+1 is a de Bruijn FSR.
    [Show full text]
  • An Analysis of the Hermes8 Stream Ciphers
    An Analysis of the Hermes8 Stream Ciphers Steve Babbage1, Carlos Cid2, Norbert Pramstaller3,andH˚avard Raddum4 1 Vodafone Group R&D, Newbury, United Kingdom [email protected] 2 Information Security Group, Royal Holloway, University of London Egham, United Kingdom [email protected] 3 IAIK, Graz University of Technology Graz, Austria [email protected] 4 Dept. of Informatics, The University of Bergen, Bergen, Norway [email protected] Abstract. Hermes8 [6,7] is one of the stream ciphers submitted to the ECRYPT Stream Cipher Project (eSTREAM [3]). In this paper we present an analysis of the Hermes8 stream ciphers. In particular, we show an attack on the latest version of the cipher (Hermes8F), which requires very few known keystream bytes and recovers the cipher secret key in less than a second on a normal PC. Furthermore, we make some remarks on the cipher’s key schedule and discuss some properties of ci- phers with similar algebraic structure to Hermes8. Keywords: Hermes8, Stream Cipher, Cryptanalysis. 1 Introduction Hermes8 is one of the 34 stream ciphers submitted to eSTREAM, the ECRYPT Stream Cipher Project [3]. The cipher has a simple byte-oriented design, con- sisting of substitutions and shifts of the state register bytes. Two versions of the cipher have been proposed. Originally, the cipher Hermes8 [6] was submitted as candidate to eSTREAM. Although no weaknesses of Hermes8 were found dur- ing the first phase of evaluation, the cipher did not seem to present satisfactory performance in either software or hardware [4]. As a result, a slightly modified version of the cipher, named Hermes8F [7], was submitted for consideration dur- ing the second phase of eSTREAM.
    [Show full text]
  • Network Security Chapter 8
    Network Security Chapter 8 Network security problems can be divided roughly into 4 closely intertwined areas: secrecy (confidentiality), authentication, nonrepudiation, and integrity control. Question: what does non-repudiation mean? What does “integrity” mean? • Cryptography • Symmetric-Key Algorithms • Public-Key Algorithms • Digital Signatures • Management of Public Keys • Communication Security • Authentication Protocols • Email Security -- skip • Web Security • Social Issues -- skip Revised: August 2011 CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011 Network Security Security concerns a variety of threats and defenses across all layers Application Authentication, Authorization, and non-repudiation Transport End-to-end encryption Network Firewalls, IP Security Link Packets can be encrypted on data link layer basis Physical Wireless transmissions can be encrypted CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011 Network Security (1) Some different adversaries and security threats • Different threats require different defenses CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011 Cryptography Cryptography – 2 Greek words meaning “Secret Writing” Vocabulary: • Cipher – character-for-character or bit-by-bit transformation • Code – replaces one word with another word or symbol Cryptography is a fundamental building block for security mechanisms. • Introduction » • Substitution ciphers » • Transposition ciphers » • One-time pads
    [Show full text]
  • Modes of Operation for Compressed Sensing Based Encryption
    Modes of Operation for Compressed Sensing based Encryption DISSERTATION zur Erlangung des Grades eines Doktors der Naturwissenschaften Dr. rer. nat. vorgelegt von Robin Fay, M. Sc. eingereicht bei der Naturwissenschaftlich-Technischen Fakultät der Universität Siegen Siegen 2017 1. Gutachter: Prof. Dr. rer. nat. Christoph Ruland 2. Gutachter: Prof. Dr.-Ing. Robert Fischer Tag der mündlichen Prüfung: 14.06.2017 To Verena ... s7+OZThMeDz6/wjq29ACJxERLMATbFdP2jZ7I6tpyLJDYa/yjCz6OYmBOK548fer 76 zoelzF8dNf /0k8H1KgTuMdPQg4ukQNmadG8vSnHGOVpXNEPWX7sBOTpn3CJzei d3hbFD/cOgYP4N5wFs8auDaUaycgRicPAWGowa18aYbTkbjNfswk4zPvRIF++EGH UbdBMdOWWQp4Gf44ZbMiMTlzzm6xLa5gRQ65eSUgnOoZLyt3qEY+DIZW5+N s B C A j GBttjsJtaS6XheB7mIOphMZUTj5lJM0CDMNVJiL39bq/TQLocvV/4inFUNhfa8ZM 7kazoz5tqjxCZocBi153PSsFae0BksynaA9ZIvPZM9N4++oAkBiFeZxRRdGLUQ6H e5A6HFyxsMELs8WN65SCDpQNd2FwdkzuiTZ4RkDCiJ1Dl9vXICuZVx05StDmYrgx S6mWzcg1aAsEm2k+Skhayux4a+qtl9sDJ5JcDLECo8acz+RL7/ ovnzuExZ3trm+O 6GN9c7mJBgCfEDkeror5Af4VHUtZbD4vALyqWCr42u4yxVjSj5fWIC9k4aJy6XzQ cRKGnsNrV0ZcGokFRO+IAcuWBIp4o3m3Amst8MyayKU+b94VgnrJAo02Fp0873wa hyJlqVF9fYyRX+couaIvi5dW/e15YX/xPd9hdTYd7S5mCmpoLo7cqYHCVuKWyOGw ZLu1ziPXKIYNEegeAP8iyeaJLnPInI1+z4447IsovnbgZxM3ktWO6k07IOH7zTy9 w+0UzbXdD/qdJI1rENyriAO986J4bUib+9sY/2/kLlL7nPy5Kxg3 Et0Fi3I9/+c/ IYOwNYaCotW+hPtHlw46dcDO1Jz0rMQMf1XCdn0kDQ61nHe5MGTz2uNtR3bty+7U CLgNPkv17hFPu/lX3YtlKvw04p6AZJTyktsSPjubqrE9PG00L5np1V3B/x+CCe2p niojR2m01TK17/oT1p0enFvDV8C351BRnjC86Z2OlbadnB9DnQSP3XH4JdQfbtN8 BXhOglfobjt5T9SHVZpBbzhDzeXAF1dmoZQ8JhdZ03EEDHjzYsXD1KUA6Xey03wU uwnrpTPzD99cdQM7vwCBdJnIPYaD2fT9NwAHICXdlp0pVy5NH20biAADH6GQr4Vc
    [Show full text]
  • RC4-2S: RC4 Stream Cipher with Two State Tables
    RC4-2S: RC4 Stream Cipher with Two State Tables Maytham M. Hammood, Kenji Yoshigoe and Ali M. Sagheer Abstract One of the most important symmetric cryptographic algorithms is Rivest Cipher 4 (RC4) stream cipher which can be applied to many security applications in real time security. However, RC4 cipher shows some weaknesses including a correlation problem between the public known outputs of the internal state. We propose RC4 stream cipher with two state tables (RC4-2S) as an enhancement to RC4. RC4-2S stream cipher system solves the correlation problem between the public known outputs of the internal state using permutation between state 1 (S1) and state 2 (S2). Furthermore, key generation time of the RC4-2S is faster than that of the original RC4 due to less number of operations per a key generation required by the former. The experimental results confirm that the output streams generated by the RC4-2S are more random than that generated by RC4 while requiring less time than RC4. Moreover, RC4-2S’s high resistivity protects against many attacks vulnerable to RC4 and solves several weaknesses of RC4 such as distinguishing attack. Keywords Stream cipher Á RC4 Á Pseudo-random number generator This work is based in part, upon research supported by the National Science Foundation (under Grant Nos. CNS-0855248 and EPS-0918970). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author (s) and do not necessarily reflect the views of the funding agencies or those of the employers. M. M. Hammood Applied Science, University of Arkansas at Little Rock, Little Rock, USA e-mail: [email protected] K.
    [Show full text]
  • Hardware Implementation of the Salsa20 and Phelix Stream Ciphers
    Hardware Implementation of the Salsa20 and Phelix Stream Ciphers Junjie Yan and Howard M. Heys Electrical and Computer Engineering Memorial University of Newfoundland Email: {junjie, howard}@engr.mun.ca Abstract— In this paper, we present an analysis of the digital of battery limitations and portability, while for virtual private hardware implementation of two stream ciphers proposed for the network (VPN) applications and secure e-commerce web eSTREAM project: Salsa20 and Phelix. Both high speed and servers, demand for high-speed encryption is rapidly compact designs are examined, targeted to both field increasing. programmable (FPGA) and application specific integrated circuit When considering implementation technologies, normally, (ASIC) technologies. the ASIC approach provides better performance in density and The studied designs are specified using the VHDL hardware throughput, but an FPGA is reconfigurable and more flexible. description language, and synthesized by using Synopsys CAD In our study, several schemes are used, catering to the features tools. The throughput of the compact ASIC design for Phelix is of the target technology. 260 Mbps targeted for 0.18µ CMOS technology and the corresponding area is equivalent to about 12,400 2-input NAND 2. PHELIX gates. The throughput of Salsa20 ranges from 38 Mbps for the 2.1 Short Description of the Phelix Algorithm compact FPGA design, implemented using 194 CLB slices to 4.8 Phelix is claimed to be a high-speed stream cipher. It is Gbps for the high speed ASIC design, implemented with an area selected for both software and hardware performance equivalent to about 470,000 2-input NAND gates. evaluation by the eSTREAM project.
    [Show full text]
  • The Enigma History and Mathematics
    The Enigma History and Mathematics by Stephanie Faint A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master of Mathematics m Pure Mathematics Waterloo, Ontario, Canada, 1999 @Stephanie Faint 1999 I hereby declare that I am the sole author of this thesis. I authorize the University of Waterloo to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the University of Waterloo to reproduce this thesis by pho­ tocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. 11 The University of Waterloo requires the signatures of all persons using or pho­ tocopying this thesis. Please sign below, and give address and date. ill Abstract In this thesis we look at 'the solution to the German code machine, the Enigma machine. This solution was originally found by Polish cryptologists. We look at the solution from a historical perspective, but most importantly, from a mathematical point of view. Although there are no complete records of the Polish solution, we try to reconstruct what was done, sometimes filling in blanks, and sometimes finding a more mathematical way than was originally found. We also look at whether the solution would have been possible without the help of information obtained from a German spy. IV Acknowledgements I would like to thank all of the people who helped me write this thesis, and who encouraged me to keep going with it. In particular, I would like to thank my friends and fellow grad students for their support, especially Nico Spronk and Philippe Larocque for their help with latex.
    [Show full text]