Sports Medicine 32
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shoulder Pain – Complexity to Simplicity
Shoulder Pain – Complexity to Simplicity A Regional Approach to Shoulder Pain The best way to approach a problem of shoulder pain is to look at the pain from a regional point of view. This allows for easy identification of specific pathological problems that occur at each region. In this talk, we look at the patterns of pain that occur with the different regions around the shoulder. From this, we will focus on the pathological problems that can be expected in each region and then look at specific physical examination findings that can be used to confirm a diagnosis or help further clarify the problem. Although this talk is focused on the diagnosis of causes of shoulder pain, we also take a look at some updates and salient features of treatment. In general, pain in the region of the shoulder can be grouped into 4 main types. These relate to specific patterns of pain that allow history taking to help us focus on the likely cause(s) before moving on to examination. A fairly clear-cut diagnosis is almost always achievable without the need to resort to special tests to help make the diagnosis. Of course, this does not include all possible causes of pain. The uncommon problem will still need a thorough and complete approach to determining cause, often with the requirement for special investigations. Remember that this is a good guide. Don't neglect other causes of referred pain that may cause pain in and around the shoulder. Included here is cardiac pain, diaphragmatic pain, apical lung disease and malignant bone pain. -
4-Brachial Plexus and Lumbosacral Plexus (Edited).Pdf
Color Code Brachial Plexus and Lumbosacral Important Doctors Notes Plexus Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives At the end of this lecture, the students should be able to : Describe the formation of brachial plexus (site, roots) List the main branches of brachial plexus Describe the formation of lumbosacral plexus (site, roots) List the main branches of lumbosacral plexus Describe the important Applied Anatomy related to the brachial & lumbosacral plexuses. Brachial Plexus Formation Playlist o It is formed in the posterior triangle of the neck. o It is the union of the anterior rami (or ventral) of the 5th ,6th ,7th ,8th cervical and the 1st thoracic spinal nerves. o The plexus is divided into 5 stages: • Roots • Trunks • Divisions • Cords • Terminal branches Really Tired? Drink Coffee! Brachial Plexus A P A P P A Brachial Plexus Trunks Divisions Cords o Upper (superior) trunk o o Union of the roots of Each trunk divides into Posterior cord: C5 & C6 anterior and posterior From the 3 posterior division divisions of the 3 trunks o o Middle trunk Lateral cord: From the anterior Continuation of the divisions of the upper root of C7 Branches and middle trunks o All three cords will give o Medial cord: o Lower (inferior) trunk branches in the axilla, It is the continuation of Union of the roots of the anterior division of C8 & T1 those will supply their respective regions. the lower trunk The Brachial Plexus Long Thoracic (C5,6,7) Anterior divisions Nerve to Subclavius(C5,6) Posterior divisions Dorsal Scapular(C5) Suprascapular(C5,6) upper C5 trunk Lateral Cord C6 middle (2LM) trunk C7 lower C8 trunk T1 Posterior Cord (ULTRA) Medial Cord (4MU) In the PowerPoint presentation this slide is animated. -
Cutaneous Innervation of the Lower Limb Cutaneous Nerves on the Front of the Thigh
Cutaneous Innervation of the Lower Limb https://www.earthslab.com/anatomy/cutaneous-innervation-of-the-lower-limb/ Cutaneous nerves on the front of the thigh • The ilio-inguinal nerve (L1) • The femoral branch of genitofemoral nerve (L1, L2) • The lateral cutaneous nerve of thigh (L2, L3) • The intermediate cutaneous nerve of thigh (L2, L3) • The medial cutaneous nerve of thigh (L2, L3) • The saphenous nerve (L3,4) https://www.slideshare.net/DrMohammadMahmoud/2-front-of-the-thigh-ii https://slideplayer.com/slide/9424949/ Cutaneous nerves of the gluteal region • Subcostal (T12) and ilio- hypogastric (L1) nerves • Posterior primary rami of L1,2,3 and S1,2,3 • Lateral cutaneous nerve of thigh (L2,3) • Posterior cutaneous nerve of thigh (S1,2,3) and perforating cutaneous nerve (S2,3) Cutaneous nerves on the front of leg and dorsum of foot • The infrapatellar branch of the saphenous nerve • The saphenous nerve • The lateral cutaneous nerve of the calf • The superficial peroneal nerve • The sural nerve • The deep peroneal nerve • The digital branches of the medial and lateral plantar nerves Cutaneous nerves on the back of leg • Saphenous nerve (L3, L4) • Posterior division of the medial cutaneous nerve of the thigh (L2, L3) • Posterior cutaneous nerve of the thigh (S1, S2, S3) • Sural nerve (L5, S1, S2) • Lateral cutaneous nerve of the calf (L4, L5, S1) • Peroneal or sural communicating nerve (L5, S1, S2) • Medial calcanean branches (S1, S2) Cutaneous nerves of the sole • Medial calcaneal branches of tibial nerve • Branches from medial plantar nerve • Branches from lateral plantar nerve SEGMENTAL INNERVATION Dermatomes • The area of skin supplied by one spinal segment is called a dermatome. -
Interventional Chronic Pain Treatment in Mature Theaters of Operation
28. INTERVENTIONAL CHRONIC PAIN pain, nonradicular arm pain, groin pain, noncardiac spinal and myofascial pain); and anticonvulsants TREATMENT IN MATURE THEATERS chest pain, and neck pain. The most common diag- and tricyclic antidepressants (usually prescribed for OF OPERATION noses conferred on these patients were lumbosacral radicular and other forms of neuropathic pain). The radiculopathy, recurrence of postsurgical pain, large majority of patients received at least one inter- IMPACT OF NONBATTLE-RELATED INJURIES lumbar facetogenic pain, myofascial pain, neuro- ventional procedure. The most frequently employed AND TREATMENT pathic pain, and lumbar degenerative disc disease. nerve blocks were lumbar transforaminal epidural The most common noninterventional treatments steroid injections (ESIs), trigger point injections, Acute nonbattle injuries (NBIs) and chronic pain have been nonsteroidal antiinflammatory drugs cervical ESIs, lumbar facet blocks, various groin conditions that recur during war have been termed (NSAIDs; > 90%); physical therapy referral (for back blocks, and plantar fascia injections. Table 28-1 lists the “hidden epidemic” by the former surgeon pain, neck pain, and leg pain); muscle relaxants (for procedures for common nerve blocks conducted in general of the US Army, James Peake. Since statistics have been kept, the impact of NBIs on unit readiness TABLE 28-1 has increased. In World War I, NBI was the fourth leading cause of soldier attrition. In World War II PROCEDURES FOR COMMON NERVE BLOCKS CONDUCTED IN THEATER and the Korean conflict, NBIs were the third leading cause of morbidity. By the Vietnam War, NBIs had Injection Injectate Need for Comments become the leading cause of hospital admissions, Volume* (mL) Fluoroscopy? where they have remained ever since. -
Management of Radicular Pain
Management of Radicular Pain Mel Cusi MBBS, FACSP, FFSEM (UK) Sport & Exercise Medicine Physician Dr Mel Cusi Sport & Exercise Medicine Physician Management of Radicular Pain A. Background B. Epidemiology C. Diagnosis D. Treatment Dr Mel Cusi Sport & Exercise Medicine Physician A. Background • Names and concepts – Radicular pain – Radiculopathy • Structures that can produce radicular Sx – Sinu‐vertebral nerve – Nerve root • Mechanisms of pain – Direct toxic effect of disc material – Chemical substances Dr Mel Cusi Sport & Exercise Medicine Physician B. Epidemiology • Occurs in 3‐5% of the population – More frequent in males in their 40’s – More frequent in females in their 50’s • In sporting population – More frequent in sports that combine spinal flexion/extension with rotation – Fast bowlers, gymnasts, dancers, RU backrowers, golfers, weightlifters, baseball pitchers Dr Mel Cusi Sport & Exercise Medicine Physician C. Diagnosis • Radicular pain is only a descriptive symptom • Diagnosis is made on the usual basis of – History – Clinical examination – Appropriate investigations (when required) Dr Mel Cusi Sport & Exercise Medicine Physician History • Acute LBP radiating to buttock / lower limb • Worse with flexion, sneezing, coughing. Sitting worse than standing • Some pointers – Referred pain from L1‐3 does not reach the knee – Unusual Symptoms (weight loss, fever, chills) point to something else – Beware of cauda equina: surgical emergency Dr Mel Cusi Sport & Exercise Medicine Physician Neurological Examination • Sensation – Subjective -
Studies on Brain and Spinal Cord Tumors
Studies on Brain and Spinal Cord Tumors Chapter 1 Osteochondroma of the Spine Iraj Lotfinia Professor of Neurosurgery, Tabriz Universsity of medical science, Tabriz, Iran. Fax: 00984113340830; Email: [email protected] Abstract Osteochondroma (OC) is the most common benign tumor of the bones, and it remains the most common precursor for secondary chondrosarcoma, which often occurs in the long bones’ metaphyseal areas. Rarely, it is also found in the spine. This tumor comprises a cartilage capped bone projection and is observed in both solitary and multiple forms. In many cases, the lesion can be definitively diagnosed according to radiological characteristics, but the rarity of these lesions in the spine, gradual onset of symptoms, and the frequent lack of observation of lesions in plain radiography may delay the diagnosis or cause misdiagnosis. These lesions are be- nign and do not risk the patient’s life; however, they rarely may be found to be a malignant degeneration that transformed into chondrosarcoma. When the lesion has led to clinical symptoms or has faced the patient with cosmetic challenges, or when definitive diagnosis is unknown, treatment is required. The primary treatment is the surgical removal of the lesion. Timely diagnosis and complete resection of the le- sion using surgery lead to complete recovery and prevent recurrence. 1. Introduction According to the World Health Organization’s (WHO’s) definition in 2002, osteocar- tilaginous exostosis are benign bone neoplasms covered by a cartilaginous cap created at the outer surface of the bone by endochondral ossification [1]. Osteochondroma (OC) is the most common benign primary tumor of the bone. -
Compiled for Lower Limb
Updated: December, 9th, 2020 MSI ANATOMY LAB: STRUCTURE LIST Lower Extremity Lower Extremity Osteology Hip bone Tibia • Greater sciatic notch • Medial condyle • Lesser sciatic notch • Lateral condyle • Obturator foramen • Tibial plateau • Acetabulum o Medial tibial plateau o Lunate surface o Lateral tibial plateau o Acetabular notch o Intercondylar eminence • Ischiopubic ramus o Anterior intercondylar area o Posterior intercondylar area Pubic bone (pubis) • Pectineal line • Tibial tuberosity • Pubic tubercle • Medial malleolus • Body • Superior pubic ramus Patella • Inferior pubic ramus Fibula Ischium • Head • Body • Neck • Ramus • Lateral malleolus • Ischial tuberosity • Ischial spine Foot • Calcaneus Ilium o Calcaneal tuberosity • Iliac fossa o Sustentaculum tali (talar shelf) • Anterior superior iliac spine • Anterior inferior iliac spine • Talus o Head • Posterior superior iliac spine o Neck • Posterior inferior iliac spine • Arcuate line • Navicular • Iliac crest • Cuboid • Body • Cuneiforms: medial, intermediate, and lateral Femur • Metatarsals 1-5 • Greater trochanter • Phalanges 1-5 • Lesser trochanter o Proximal • Head o Middle • Neck o Distal • Linea aspera • L • Lateral condyle • L • Intercondylar fossa (notch) • L • Medial condyle • L • Lateral epicondyle • L • Medial epicondyle • L • Adductor tubercle • L • L • L • L • 1 Updated: December, 9th, 2020 Lab 3: Anterior and Medial Thigh Anterior Thigh Medial thigh General Structures Muscles • Fascia lata • Adductor longus m. • Anterior compartment • Adductor brevis m. • Medial compartment • Adductor magnus m. • Great saphenous vein o Adductor hiatus • Femoral sheath o Compartments and contents • Pectineus m. o Femoral canal and ring • Gracilis m. Muscles & Associated Tendons Nerves • Tensor fasciae lata • Obturator nerve • Iliotibial tract (band) • Femoral triangle: Boundaries Vessels o Inguinal ligament • Obturator artery o Sartorius m. • Femoral artery o Adductor longus m. -
Dynamic Phases of Peroneal and Tibial Intraneural Ganglia Formation: a New Dimension Added to the Unifying Articular Theory
J Neurosurg 107:, 2007 Dynamic phases of peroneal and tibial intraneural ganglia formation: a new dimension added to the unifying articular theory ROBERT J. SPINNER, M.D.,1–3 KIMBERLY K. AMRAMI, M.D.,4 ALEXANDRA P. WOLANSKYJ, M.D.,5 NICHOLAS M. DESY, B.SC.,1,6 HUAN WANG, M.D.,1,7 EDUARDO E. BENARROCH, M.D.,8 JOHN A. SKINNER, M.D.,4 MICHAEL G. ROCK, M.D.,2 AND BERND W. SCHEITHAUER, M.D.9 Departments of 1Neurologic Surgery, 2Orthopedics, 3Anatomy, 4Radiology, 5Medicine, 8Neurology, and 9Anatomic Pathology, Mayo Clinic, Rochester, Minnesota; 6McGill University School of Medicine, Montreal, Quebec, Canada; and 7Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China Object. The pathogenesis of intraneural ganglia has been a controversial issue for longer than a century. Recently the authors identified a stereotypical pattern of occurrence of peroneal and tibial intraneural ganglia, and based on an under- standing of their pathogenesis provided a unifying articular explanation. Atypical features, which occasionally are ob- served, have offered an opportunity to verify further and expand on the authors’ proposed theory. Methods. Three unusual cases are presented to exemplify the dynamic features of peroneal and tibial intraneural gan- glia formation. Results. Two patients with a predominant deep peroneal nerve deficit shared essential anatomical findings common to peroneal intraneural ganglia: namely, 1) joint connections to the anterior portion of the superior tibiofibular joint, and 2) dissection of the cyst along the articular branch of the peroneal nerve and proximally. Magnetic resonance (MR) images obtained in these patients demonstrated some unusual findings, including the presence of a cyst within the tibial and sural nerves in the popliteal fossa region, and spontaneous regression of the cysts, which was observed on serial images obtained weeks apart. -
M34 M34/1 Latin M34, M34/1
M34 M34/1 M34 M34/1 Latin M34, M34/1 1 Tibia 34 Retinaculum 62 Vagina tendinum musculi 2 Malleolus medialis musculorum fibularium extensoris hallucis longi 3 Talus inferius [Retinaculum 63 A. dorsalis pedis 4 Lig. collaterale mediale musculorum peroneorum 64 M. extensor hallucis brevis [Lig. deltoideum] inferius] 65 N. cutaneus dorsalis 5 Lig. talonaviculare 35 Tendo musculi fibularis medialis 6 Os naviculare longus [Tendo musculi 66 Mm. interossei dorsales 7 Ligg. tarsi dorsalia fibularis longus] 67 Tendines musculi 8 Os metatarsi I 36 Lig. calcaneofibulare extensoris digitorum longi [Os metatarsale I] 37 Tendo calcaneus 68 Tendo musculi extensoris 9 Articualtio 38 Retinaculum musculo- hallucis longi metatarsophalangeae I rum fibularium superius 69 Nn. digitales dorsales pedis 10 Phalanx proximalis I [Retinaculum musculorum 70 Aa. digitales dorsales 11 Phalanx distalis I peroneorum superius] 71 M. abductor digiti minimi 12 Ligg. metatarsalia dorsalia 39 Lig. talocalcaneum 72 Tendines musculi 13 Os cuboideum interosseum extensoris digitorum brevis 14 Lig. bifurcatum 40 Lig. talofibulare posterius 73 Aa. metatarsales dorsales 15 Lig. talofibulare anterius 41 Articulationes metatarsop- 74 A. arcuata 16 Malleolus lateralis halangeae, Ligg. plantaria 75 M. fibularis tertius 17 Lig. tibio-fibulare anterius 42 Basis ossis metatarsi I [M. peroneus tertius] 18 Fibula 43 Ligg. tarsometatarsalia 76 Tendo musculi fibularis 19 Membrana interossea cruris plantaria brevis [Tendo musculi 20 Lig. collaterale mediale 44 Lig. cuboideonaviculare peronei brevis] [Lig. deltoideum], pars plantare 77® A. tarsalis lateralis tibiotalaris anterior 45 Lig. calcaneonaviculare 78 N. cutaneus dorsalis inter- 21 Lig. collaterale mediale plantare medius [Lig. deltoideum], pars 46 Sustentaculum tali 79 Retinaculum musculorum tibiocalcanea 47 Tuber calcanei extensorum superius 22 Lig. -
Lower Extremity Focal Neuropathies
LOWER EXTREMITY FOCAL NEUROPATHIES Lower Extremity Focal Neuropathies Arturo A. Leis, MD S.H. Subramony, MD Vettaikorumakankav Vedanarayanan, MD, MBBS Mark A. Ross, MD AANEM 59th Annual Meeting Orlando, Florida Copyright © September 2012 American Association of Neuromuscular & Electrodiagnostic Medicine 2621 Superior Drive NW Rochester, MN 55901 Printed by Johnson Printing Company, Inc. 1 Please be aware that some of the medical devices or pharmaceuticals discussed in this handout may not be cleared by the FDA or cleared by the FDA for the specific use described by the authors and are “off-label” (i.e., a use not described on the product’s label). “Off-label” devices or pharmaceuticals may be used if, in the judgment of the treating physician, such use is medically indicated to treat a patient’s condition. Information regarding the FDA clearance status of a particular device or pharmaceutical may be obtained by reading the product’s package labeling, by contacting a sales representative or legal counsel of the manufacturer of the device or pharmaceutical, or by contacting the FDA at 1-800-638-2041. 2 LOWER EXTREMITY FOCAL NEUROPATHIES Lower Extremity Focal Neuropathies Table of Contents Course Committees & Course Objectives 4 Faculty 5 Basic and Special Nerve Conduction Studies of the Lower Limbs 7 Arturo A. Leis, MD Common Peroneal Neuropathy and Foot Drop 19 S.H. Subramony, MD Mononeuropathies Affecting Tibial Nerve and its Branches 23 Vettaikorumakankav Vedanarayanan, MD, MBBS Femoral, Obturator, and Lateral Femoral Cutaneous Neuropathies 27 Mark A. Ross, MD CME Questions 33 No one involved in the planning of this CME activity had any relevant financial relationships to disclose. -
Clinical Anatomy of the Lower Extremity
Государственное бюджетное образовательное учреждение высшего профессионального образования «Иркутский государственный медицинский университет» Министерства здравоохранения Российской Федерации Department of Operative Surgery and Topographic Anatomy Clinical anatomy of the lower extremity Teaching aid Иркутск ИГМУ 2016 УДК [617.58 + 611.728](075.8) ББК 54.578.4я73. К 49 Recommended by faculty methodological council of medical department of SBEI HE ISMU The Ministry of Health of The Russian Federation as a training manual for independent work of foreign students from medical faculty, faculty of pediatrics, faculty of dentistry, protocol № 01.02.2016. Authors: G.I. Songolov - associate professor, Head of Department of Operative Surgery and Topographic Anatomy, PhD, MD SBEI HE ISMU The Ministry of Health of The Russian Federation. O. P.Galeeva - associate professor of Department of Operative Surgery and Topographic Anatomy, MD, PhD SBEI HE ISMU The Ministry of Health of The Russian Federation. A.A. Yudin - assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU The Ministry of Health of The Russian Federation. S. N. Redkov – assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU THE Ministry of Health of The Russian Federation. Reviewers: E.V. Gvildis - head of department of foreign languages with the course of the Latin and Russian as foreign languages of SBEI HE ISMU The Ministry of Health of The Russian Federation, PhD, L.V. Sorokina - associate Professor of Department of Anesthesiology and Reanimation at ISMU, PhD, MD Songolov G.I K49 Clinical anatomy of lower extremity: teaching aid / Songolov G.I, Galeeva O.P, Redkov S.N, Yudin, A.A.; State budget educational institution of higher education of the Ministry of Health and Social Development of the Russian Federation; "Irkutsk State Medical University" of the Ministry of Health and Social Development of the Russian Federation Irkutsk ISMU, 2016, 45 p. -
Nonsystemic Vasculitic Neuropathy: a Clinicopathological Study of 22 Cases
Nonsystemic Vasculitic Neuropathy: A Clinicopathological Study of 22 Cases EVANGELIA KARARIZOU, PANAGIOTA DAVAKI, NIKOS KARANDREAS, ROUBINI DAVOU, and DIMITRIOS VASSILOPOULOS ABSTRACT. Objective. The involvement of the peripheral nervous system in patients with systemic vasculitis has been reported, but nonsystemic peripheral nervous system vasculitis is not so well known. We inves- tigated the clinical, electrophysiological, and pathological features of nonsystemic vasculitic neu- ropathy (NSVN) in order to establish the clinical and histological manifestations and to promote the earlier diagnosis of the syndrome. Methods. Biopsies were selected from over 700 sural nerve biopsies performed at the Section of Neuropathology, Neurological Clinic of Athens University Hospital. The diagnosis of vasculitis was based on established clinicopathological criteria. Other causes of peripheral neuropathy were excluded. Complete laboratory, clinical, electrophysiological, and pathological studies were per- formed in all cases. Results. Nerve biopsies of 22 patients were diagnosed as NSVN. The pathological features were vasculitis and predominant axonal degeneration with a varying pattern of myelinated fiber loss. The vasculitic changes were found mainly in small epineural blood vessels. Mononeuritis multiplex and distal symmetrical sensorimotor neuropathy were equally frequent. Conclusion. NSVN should be suspected in a case of unexplained polyneuropathy without evidence of systemic involvement. Clinical and neurophysiological studies are essential for the detection of nerve involvement, but the specific diagnosis of NSVN may be missed unless a biopsy is performed. (J Rheumatol 2005;32:853–8) Key Indexing Terms: NONSYSTEMIC VASCULITIC NEUROPATHY NONSYSTEMIC VASCULITIS POLYNEUROPATHY AXONAL The syndrome of peripheral neuropathy due to vasculitis We examined the clinical, electrophysiological, and without manifestations of disorders in other systems was histopathological features of 22 patients with NSVN in first reported by Kernohan and Woltman in 19381.