Building Stars out of Gas Clouds Star-Forming Regions Star Formation Is an Ongoing Process in Galaxies

Total Page:16

File Type:pdf, Size:1020Kb

Building Stars out of Gas Clouds Star-Forming Regions Star Formation Is an Ongoing Process in Galaxies Astronomy 218 Building Stars out of Gas clouds Star-Forming Regions Star formation is an ongoing process in galaxies. It is concentrated in a number of star-forming regions throughout these galaxies. Star-forming regions are associated with dark & emission nebulae. Collapsing Clouds The association with nebulae is causal, star formation occurs when part of a dust cloud contracts under its own gravitational force. Typical density in the dense core of a molecular cloud is 12 −3 nmc ~ 10 molecules m . This equates to a mass density of ρmc = μ mp nmc. −15 −3 −12 −3 ρmc = 1.7 × 10 μ kg m = 2.9 × 10 μ M☉ AU Clearly, tremendous compression must occur to reach the −3 densities of stars. For example, ρ☉ = 1400 kg m . A molecular cloud core of a solar mass would have a radius 6 Rmc ~ 10 R☉ = 4000 AU = 0.02 pc. Collapse Time An estimate of the collapse time can be calculated from Kepler’s law. For a gas particle with orbital semimajor axis a, where M(r) is the mass interior to the particle's position. If the entire cloud is collapsing, M(r) is constant and we can consider the molecule to be on a very eccentric orbit. Then a = r0/2 and the time to reach the center, tff ~ P/2. Note that the result does not depend on the size of the cloud, r0, only the initial cloud density, ρ0. Sound Waves This estimate of tff indicates how long collapse takes once it starts, but how does collapse start? The gas cloud is in hydrostatic equilibrium, with pressure balancing gravity. Any external push on the cloud is met by pressure waves, which travel at the speed of sound, The travel time for a wave of increased pressure to reach the surface and balance the external push is tpress ~ r0/cs. If tpress < tff the pressure can respond to a perturbation and maintain hydrostatic equilibrium, but if tpress > tff, the equilibrium is unstable. Jean’s Length The relationship tpress > tff leads to a limit of the size a cloud that is stable, which depends on density and temperature. A cloud larger than the Jean’s length, rJ, is prone to collapse when perturbed. For molecular hydrogen, μ = 2 & γ = 7/5. The corresponding mass is the Jean’s mass, MJ. Horsehead Nebula The Horsehead Nebula (Barnard 33), ~1 pc across and with a mass of 1000 M☉, is too large to collapse into a single star. Instead small dense cores, with M ~ MJ within the nebula that will individually form stars. Fragmentation The first stage of star formation is the contraction of a large interstellar cloud, probably triggered by a shock or pressure wave from a nearby star. As it contracts, opacity and turbulence and gravitational instability cause the cloud fragments into smaller pieces with M ~ MJ. Star Clusters As a result of this fragmentation, stars don’t form individually, but in clusters of hundreds to thousands, like this star-forming region in the Orion Nebula Angular momentum At the large sizes of molecular gas clouds, even small rotational velocities produce significant angular momentum. For example, the Horsehead nebula as a −1 whole is rotating at ʋrot ~ 1 km s . The dense cloud core −1 rotate more slowly, ʋrot ~ 0.1 km s During the cloud’s collapse, conservation of angular momentum magnifies ʋrot 6 5 −1 ≈ 10 ʋ0 ≈ 10 km s Observations have not revealed any young stars with rotation rates as rapid as 105 km s−1, indicating that something is removing angular momentum from stars as they form. Protoplanetary Disk The collapsing cloud’s million-fold decrease in radius is altered by the attendant increase in rotational velocity, turning the cloud into a disk. For matter orbiting in the disk, gravity balances the centripetal acceleration This limits the collapsing disk to β Pictoris, a radius Beuzit, et al. Grenoble/ESO until it can shed its angular momentum. Transferring L⃗ Angular momentum can not be “lost”, it can only be transferred. In the disk, inner regions are moving more quickly than outer regions, thus viscosity will tend to drag the outer regions forward. This increases the outer regions velocity, transferring angular momentum outward. Magnetic fields in the disk, which were organized and concentrated during the collapse, provide a magnetic equivalent of viscosity. A wind from the disk, streaming along the magnetic field can also carry away angular momentum. Protostar As individual fragments collapse, their density rises, making them opaque. This raises the temperature and inhibits further fragmentation. By the time the fragment has collapsed to 100 AU, n ~ 1018 −3 m , Tc ~ 10,000 K. Over ~100,000 years, the protostar will collapse further in radius to 1 24 −3 AU, with n ~ 10 m , 6 Tc ~ 10 K. The protostar appears on the H–R diagram as its surface nears 3000 K. Disk & Wind Even before a protostar is really a star, they have very strong winds. These winds clear out the gas from the nebular disk over a volume roughly the size of the solar system, leaving the debris disk to form planets. 0.1 pc In the crowded surroundings of a star forming region, sometimes winds from neighboring stars interact. Herbig-Haro Objects The polar jets from a protostar carry significant mass, energy and angular momentum into the molecular cloud. Collisions between the jets and gas cloud produce Herbig–Haro objects. Seeing Protostars It is very difficult to see protostars directly through their shroud of gas and dust. The thickness of the protoplanetary disk, 0.001 parsec ~ 200 AU, is comparable to the diameter of the protostar. 0.001 pc 0.001 pc The protostar is gradually revealed as its winds disperse the gas in the disk. Pre-Main Sequence Once the cloud has become a protostar, it is in hydrostatic equilibrium. A protostar’s luminosity results from gravitational contraction and the timescale of its contraction, the Kelvin-Helmholtz timescale. Once accretion onto the star stops, stabilizing its mass, the star is considered a pre-main sequence star. Hayashi & Henyey The remainder of the star’s Hayashi lifecycle will play out on the track H–R diagram. Henyey track Initially the protostar is convective throughout and it follows the Hayashi track in the H-R Diagram as it contracts. Over ~106 yrs it reaches 28 −3 10 R☉, with n ~ 10 m , 6 Tc ~ 5 × 10 K. 7 7 Over ~10 yrs, Tc → 10 K and the core becomes radiative. From here, contraction follows the Henyey track. Nuclear Burning 6 Near the top of the Hayashi track, as Tc → 10 K, deuterium burning (2H + 1H → 3He + γ) commences. Deuterium burning establishes steep temperature gradients, maintaining convection. Convection brings deuterium-rich matter to the core until deuterium is exhausted throughout the star. Later, once the core reaches 10 million K, hydrogen burning begins, though it initially provides insufficient energy to fully balance gravity. The star therefore slowly contract, its radius decreasing by ~25% over 30 million years, until it reaches equilibrium with 7 Tc = 1.5 × 10 K. The star has reached the main sequence. Formation of Sun-like Stars This table summarizes the stages that a sun-like star goes through in the process of forming from an interstellar cloud. Note the increase of the timescale with density and the extreme rise of the central temperature. Stars of Other Masses This H–R diagram shows the evolution of stars of different masses. For stars M < ½M☉, the core remains convective, so these stars follow the Hayashi track all the way to the main sequence. For stars M > 3 M☉, the core becomes radiative much earlier, transitioning to the Henyey track sooner. This inhibits 2H exhaustion. Failed Stars Not all collapsing molecular cloud cores produce stars. Some fragments are too small for fusion ever to begin. While they initially radiate gravitational energy from their collapse, they quickly cool off and become dark. A protostar must have 0.08 solar masses (~ 80 times the mass of Jupiter) in order to become dense and hot enough that fusion via the pp-chain can begin, allowing the star a long luminous life. For collapsing clouds of mass between 12-80 Jupiter masses, deuterium burning allows a brief luminous phases, lasting < 108 years. These “failed star” are called brown dwarves. Observing Brown Dwarves As with extra-solar planets, brown dwarves are difficult to observe directly, as they are very dim. These images show binary-star systems believed to contain a brown dwarf. The difference in luminosity between the star and the brown dwarf is apparent. Clearing Clouds With hundreds to thousands of stars produced in close proximity from a single interstellar cloud, formation of a star cluster has a tremendous effect on the local environment. Star Formation provoked Star formation can trigger a chain reaction within a molecular cloud. Shock waves from nearby star formation can provide the push needed to start the collapse process in another interstellar cloud. Other triggers: Planetary nebulae Supernovae Density waves in galactic spiral arms Galaxy collisions Construction by Destruction This is the part of the Carina Nebula, where newly formed stars are tearing apart their natal molecular cloud. The forces of stellar winds and radiation are not wholly destructive, forming stars in the compressed cloud. Here 2 pair of Herbig-Haro objects jetting from the cloud attest to new born stars within. Next Time Life of the Sun.
Recommended publications
  • Arxiv:2007.13451V2 [Gr-Qc] 24 Nov 2020 on GR and Its Modifications [31–33], but Also Delivers Model Particles As Well As Dark Matter Candidates [56– Drawbacks
    Early evolutionary tracks of low-mass stellar objects in modified gravity Aneta Wojnar1, ∗ 1Laboratory of Theoretical Physics, Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia Using a simple model of low-mass stellar objects we have shown modified gravity impact on their early evolution, such as Hayashi tracks, radiative core development, effective temperature, masses, and luminosities. We have also suggested that the upper mass' limit of fully convective stars on the Main Sequence might be different than commonly adopted. I. INTRODUCTION is, in the so-called mass gap [38]), which merged with a black hole of 23M , provided even more questions for Working on modified gravity does not make one to for- theoretical physics of compact objects. get the elegance and success of Einstein's theory of grav- However, it turns out that there is a class of stellar ity, being already confirmed by many observations [1]; objects, with the internal structure much better under- even more, General Relativity (GR) still delights when stood than that of neutron stars, which might be used to one of its mysterious predictions, such as the existence of constrain theories of gravity. It is a family of low-mass black holes, is directly affirmed by the finding of gravi- stars (LMS) [39{41] which includes such ordinary objects tational waves as a result of black holes' binary mergers as M dwarfs (also called red dwarfs), which are cool Main [2] as well as soon after the imaging of the shadow of the Sequence stars with masses in the range [0:09 − 0:6]M , supermassive black hole of M87 [3] (see [4] for a review).
    [Show full text]
  • Revisiting the Pre-Main-Sequence Evolution of Stars I. Importance of Accretion Efficiency and Deuterium Abundance ?
    Astronomy & Astrophysics manuscript no. Kunitomo_etal c ESO 2018 March 22, 2018 Revisiting the pre-main-sequence evolution of stars I. Importance of accretion efficiency and deuterium abundance ? Masanobu Kunitomo1, Tristan Guillot2, Taku Takeuchi,3,?? and Shigeru Ida4 1 Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan e-mail: [email protected] 2 Université de Nice-Sophia Antipolis, Observatoire de la Côte d’Azur, CNRS UMR 7293, 06304 Nice CEDEX 04, France 3 Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan 4 Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan Received 5 February 2016 / Accepted 6 December 2016 ABSTRACT Context. Protostars grow from the first formation of a small seed and subsequent accretion of material. Recent theoretical work has shown that the pre-main-sequence (PMS) evolution of stars is much more complex than previously envisioned. Instead of the traditional steady, one-dimensional solution, accretion may be episodic and not necessarily symmetrical, thereby affecting the energy deposited inside the star and its interior structure. Aims. Given this new framework, we want to understand what controls the evolution of accreting stars. Methods. We use the MESA stellar evolution code with various sets of conditions. In particular, we account for the (unknown) efficiency of accretion in burying gravitational energy into the protostar through a parameter, ξ, and we vary the amount of deuterium present. Results. We confirm the findings of previous works that, in terms of evolutionary tracks on the Hertzsprung-Russell (H-R) diagram, the evolution changes significantly with the amount of energy that is lost during accretion.
    [Show full text]
  • Single Star Implementation Notes
    Mon. Not. R. Astron. Soc. 000, 000{000 (0000) Printed 8 November 2017 (MN LATEX style file v2.2) Single Star Implementation Notes PFH 8 November 2017 1 METHODS 1=2 − 1 times the cloud diameter Lcloud) are driven as an Ornstein-Uhlenbeck process in Fourier space, with the com- Our simulations use GIZMO (?),1, and include full self- pressive part of the modes projected out via Helmholtz de- gravity, adaptive resolution, ideal and non-ideal magneto- composition so that we can specify the ratio of compress- hydrodynamics (MHD), detailed cooling and heating ible and incompressible/solenoidal modes. Unless otherwise physics, protostar formation, accretion, and feedback in the specified we adopt pure solenoidal driving, appropriate for form of protostellar jets and radiative heating, and main- e.g. galactic shear (so that we do not artificially \force" com- sequence stellar feedback in the form of photo-ionization pression/collapse), but we vary this. The specific implemen- and photo-electric heating, radiation pressure, stellar winds, tation here has been verified in ????. and supernovae. A subset of our runs include explicit treat- The driving specifies the large-scale steady-state (one- ment of the dust particle and cosmic ray dynamics as well dimensional) turbulent velocity σ ≡ hv2 i1=2 and as radiation-hydrodynamics; otherwise these are included in 1D turb; 1D Mach number M ≡ h(v =c )2i1=2, where v is simplified form. turb; 1D s turb; 1D an (arbitrary) projection (in detail we average over all 1.1 Gravity random projections). Unless otherwise specified, we initial- ize our clouds on the linewidth-size relation from ?, with All our simulations include full self-gravity for gas, stars, −1 1=2 σ1D ≈ 0:7 km s (Lcloud=pc) and dust.
    [Show full text]
  • Useful Constants
    Appendix A Useful Constants A.1 Physical Constants Table A.1 Physical constants in SI units Symbol Constant Value c Speed of light 2.997925 × 108 m/s −19 e Elementary charge 1.602191 × 10 C −12 2 2 3 ε0 Permittivity 8.854 × 10 C s / kgm −7 2 μ0 Permeability 4π × 10 kgm/C −27 mH Atomic mass unit 1.660531 × 10 kg −31 me Electron mass 9.109558 × 10 kg −27 mp Proton mass 1.672614 × 10 kg −27 mn Neutron mass 1.674920 × 10 kg h Planck constant 6.626196 × 10−34 Js h¯ Planck constant 1.054591 × 10−34 Js R Gas constant 8.314510 × 103 J/(kgK) −23 k Boltzmann constant 1.380622 × 10 J/K −8 2 4 σ Stefan–Boltzmann constant 5.66961 × 10 W/ m K G Gravitational constant 6.6732 × 10−11 m3/ kgs2 M. Benacquista, An Introduction to the Evolution of Single and Binary Stars, 223 Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4419-9991-7, © Springer Science+Business Media New York 2013 224 A Useful Constants Table A.2 Useful combinations and alternate units Symbol Constant Value 2 mHc Atomic mass unit 931.50MeV 2 mec Electron rest mass energy 511.00keV 2 mpc Proton rest mass energy 938.28MeV 2 mnc Neutron rest mass energy 939.57MeV h Planck constant 4.136 × 10−15 eVs h¯ Planck constant 6.582 × 10−16 eVs k Boltzmann constant 8.617 × 10−5 eV/K hc 1,240eVnm hc¯ 197.3eVnm 2 e /(4πε0) 1.440eVnm A.2 Astronomical Constants Table A.3 Astronomical units Symbol Constant Value AU Astronomical unit 1.4959787066 × 1011 m ly Light year 9.460730472 × 1015 m pc Parsec 2.0624806 × 105 AU 3.2615638ly 3.0856776 × 1016 m d Sidereal day 23h 56m 04.0905309s 8.61640905309
    [Show full text]
  • Stellar Evolution
    Stellar Astrophysics: Stellar Evolution 1 Stellar Evolution Update date: December 14, 2010 With the understanding of the basic physical processes in stars, we now proceed to study their evolution. In particular, we will focus on discussing how such processes are related to key characteristics seen in the HRD. 1 Star Formation From the virial theorem, 2E = −Ω, we have Z M 3kT M GMr = dMr (1) µmA 0 r for the hydrostatic equilibrium of a gas sphere with a total mass M. Assuming that the density is constant, the right side of the equation is 3=5(GM 2=R). If the left side is smaller than the right side, the cloud would collapse. For the given chemical composition, ρ and T , this criterion gives the minimum mass (called Jeans mass) of the cloud to undergo a gravitational collapse: 3 1=2 5kT 3=2 M > MJ ≡ : (2) 4πρ GµmA 5 For typical temperatures and densities of large molecular clouds, MJ ∼ 10 M with −1=2 a collapse time scale of tff ≈ (Gρ) . Such mass clouds may be formed in spiral density waves and other density perturbations (e.g., caused by the expansion of a supernova remnant or superbubble). What exactly happens during the collapse depends very much on the temperature evolution of the cloud. Initially, the cooling processes (due to molecular and dust radiation) are very efficient. If the cooling time scale tcool is much shorter than tff , −1=2 the collapse is approximately isothermal. As MJ / ρ decreases, inhomogeneities with mass larger than the actual MJ will collapse by themselves with their local tff , different from the initial tff of the whole cloud.
    [Show full text]
  • Phys 321: Lecture 7 Stellar EvoluOn
    Phys 321: Lecture 7 Stellar Evolu>on Prof. Bin Chen, Tiernan Hall 101, [email protected] Stellar Evoluon • Formaon of protostars (covered in Phys 320; briefly reviewed here) • Pre-main-sequence evolu>on (this lecture) • Evolu>on on the main sequence (this lecture) • Post-main-sequence evolu>on (this lecture) • Stellar death (next lecture) The Interstellar Medium and Star Formation the cloud’s internal kinetic energy, given by The Interstellar Medium and Star Formation the cloud’s internal kinetic energy, given by 3 K NkT, 3 = 2 The Interstellar MediumK andNkT, Star Formation = 2 where N is the total number2 ofTHE particles. FORMATIONwhere ButNNisis the just total OF number PROTOSTARS of particles. But N is just M Mc N c , Our understandingN , of stellar evolution has= µm developedH significantly since the 1960s, reaching = µmH the pointwhere whereµ is the much mean of molecular the life weight. history Now, of by a the star virial is theorem, well determined. the condition for This collapse success has been where µ is the mean molecular weight.due to advances Now,(2K< byU the in) becomes observational virial theorem, techniques, the condition improvements for collapse in our knowledge of the physical | | (2K< U ) becomes processes important in stars, and increases in computational2 power. In the remainder of this | | 3MckT 3 GMc chapter, we will present an overview of< the lives. of stars, leaving de(12)tailed discussions 2 µmH 5 Rc of s3oMmeckTspecia3l pGMhasces of evolution until later, specifically stellar pulsation, supernovae, The radius< may be replaced. by using the initial mass density(12) of the cloud, ρ , assumed here µmH 5 Rc 0 and comtop beac constantt objec throughoutts (stellar theco cloud,rpses).
    [Show full text]
  • Astronomy General Information
    ASTRONOMY GENERAL INFORMATION HERTZSPRUNG-RUSSELL (H-R) DIAGRAMS -A scatter graph of stars showing the relationship between the stars’ absolute magnitude or luminosities versus their spectral types or classifications and effective temperatures. -Can be used to measure distance to a star cluster by comparing apparent magnitude of stars with abs. magnitudes of stars with known distances (AKA model stars). Observed group plotted and then overlapped via shift in vertical direction. Difference in magnitude bridge equals distance modulus. Known as Spectroscopic Parallax. SPECTRA HARVARD SPECTRAL CLASSIFICATION (1-D) -Groups stars by surface atmospheric temp. Used in H-R diag. vs. Luminosity/Abs. Mag. Class* Color Descr. Actual Color Mass (M☉) Radius(R☉) Lumin.(L☉) O Blue Blue B Blue-white Deep B-W 2.1-16 1.8-6.6 25-30,000 A White Blue-white 1.4-2.1 1.4-1.8 5-25 F Yellow-white White 1.04-1.4 1.15-1.4 1.5-5 G Yellow Yellowish-W 0.8-1.04 0.96-1.15 0.6-1.5 K Orange Pale Y-O 0.45-0.8 0.7-0.96 0.08-0.6 M Red Lt. Orange-Red 0.08-0.45 *Very weak stars of classes L, T, and Y are not included. -Classes are further divided by Arabic numerals (0-9), and then even further by half subtypes. The lower the number, the hotter (e.g. A0 is hotter than an A7 star) YERKES/MK SPECTRAL CLASSIFICATION (2-D!) -Groups stars based on both temperature and luminosity based on spectral lines.
    [Show full text]
  • Ast 777: Star and Planet Formation Pre-Main Sequence Stars and the IMF
    Ast 777: Star and Planet Formation Pre-main sequence stars and the IMF https://universe-review.ca/F08-star05.htm The main phases of star formation https://www.americanscientist.org/sites/americanscientist.org/files/2005223144527_306.pdf The star has formed* but is not yet on the MS * it has attained its final mass (or ~99% of it) https://www.americanscientist.org/sites/americanscientist.org/files/2005223144527_306.pdf The star is optically visible and is a Class II or III star (or TTS or HAeBe) https://www.americanscientist.org/sites/americanscientist.org/files/2005223144527_306.pdf PMS evolution is described by the equations of stellar evolution But there are differences from MS evolution: ‣ initial conditions are very different from the MS (and have significant uncertainties) ‣ energy is produced by gravitational collapse and deuterium burning (This was mostly figured out 30-50 years ago so the references are old, but important for putting current work in context) But see later… How big is a star when the core stops collapsing? Upper limit can be determined by assuming that all the gravitational energy of the core is used to dissociate and ionized the H2+He gas (i.e., no radiative losses during collapse) Each H2 requires 4.48eV to dissociate —> this produces a short-lived intermediate step along the way to a protostar, called the first hydrostatic core (hinted at, though not definitively confirmed, through FIR/mm observations) How big is a star when the core stops collapsing? Upper limit can be determined by assuming that all the gravitational
    [Show full text]
  • The Influence of Radiative Core Growth on Coronal X-Ray Emission from Pre
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE MNRAS Advance Access published February 2, 2016 provided by St Andrews Research Repository MNRAS 000, 1–22 (2015) Preprint 30 January 2016 Compiled using MNRAS LATEX style file v3.0 The influence of radiative core growth on coronal X-ray emission from pre-main sequence stars Scott G. Gregory,1? Fred C. Adams2;3 and Claire L. Davies4;1 1SUPA, School of Physics & Astronomy, University of St Andrews, St Andrews, KY16 9SS, U.K. 2Physics Department, University of Michigan, Ann Arbor, MI 48109, U.S.A. 3Astronomy Department, University of Michigan, Ann Arbor, MI 48109, U.S.A. 4School of Physics, University of Exeter, Exeter, EX4 4QL, U.K. Downloaded from Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Pre-main sequence (PMS) stars of mass & 0:35 M transition from hosting fully convective interiors to configurations with a radiative core and outer convective envelope during their http://mnras.oxfordjournals.org/ gravitational contraction. This stellar structure change influences the external magnetic field topology and, as we demonstrate herein, affects the coronal X-ray emission as a stellar analog of the solar tachocline develops. We have combined archival X-ray, spectroscopic, and photo- metric data for ∼1000 PMS stars from five of the best studied star forming regions; the ONC, NGC 2264, IC 348, NGC 2362, and NGC 6530. Using a modern, PMS calibrated, spectral type-to-effective temperature and intrinsic colour scale, we deredden the photometry using colours appropriate for each spectral type, and determine the stellar mass, age, and internal structure consistently for the entire sample.
    [Show full text]
  • Understanding the Luminosity and Surface Temperature of Stars
    Understanding the Luminosity and Surface Temperature of Stars 1. The Hertsprung-Russell diagram Astronomers like to plot the evolution of stars on what is known as the Hertsprung- Russell diagram. Modern versions of this diagram plot the luminosity of the star against its surface temperature, so to understand how a star moves on this diagram as it ages, we need to understand the physics that sets the luminosity and surface temperature of stars. Surprisingly, these can be understood at an approximate level using only basic physics, over most of the evolution of both low-mass and high-mass stars. 2. The role of heat loss Stellar evolution is fundamentally the story of what happens to a star by virtue of it losing an enormous amount of heat. By the virial theorem, the total kinetic energy in a star equals half its total gravitational potential energy (in absolute value), as long as the gas in the star remains nonrelativistic. This implies that when a gravitationally bound object loses heat by shining starlight, it always contracts to a state of higher internal kinetic energy. For a nonrelativistic gas, the pressure P is related to the kinetic energy density KE/V by 2 KE P = , (1) 3 V we can apply the nonrelativistic virial theorem KE 1 GMm = i (2) N 2 R where mi is the average ion mass (about the mass of a proton, usually) to assert that the characteristic pressure over the interior (i.e., the core pressure Pc) approximates GMρ 2 P ∼ ∝ , (3) c R R4 where ρ ∝ M/R3 is the mass density.
    [Show full text]
  • Chapter 5 Theory of Stellar Evolution
    1 ⋅ Stellar Interiors Copyright (2003) George W. Collins, II 5 Theory of Stellar Evolution . One of the great triumphs of the twentieth century has been the detailed description of the life history of a star. We now understand with some confidence more than 90 percent of that life history. Problems still exist for the very early phases and the terminal phases of a star's life. These phases are very short, and the problems arise as much from the lack of observational data as from the difficulties encountered in the theoretical description. Nevertheless, continual progress is being made, and it would not be surprising if even these remaining problems are solved by the end of the century. 112 5 ⋅ Theory of Stellar Evolution To avoid vagaries and descriptions which may later prove inaccurate, we concentrate on what is known with some certainty. Thus, we assume that stars can contract out of the interstellar medium, and generally we avoid most of the detailed description of the final, fatal collapse of massive stars. In addition, the fascinating field of the evolution of close binary stars, where the evolution of one member of the system influences the evolution of the other through mass exchange, will be left for another time. The evolution of so-called normal stars is our central concern. Although the details of the theory of stellar evolution are complex, it is possible to gain some insight into the results expected of these calculations from some simple considerations. We have developed all the formalisms for calculating steady-state stellar models. However, those models could often be accurately represented by an equilibrium model composed of a polytrope or combinations of polytropes.
    [Show full text]
  • Proto and Pre-Main Sequence Stellar Evolution in a Molecular Cloud Environment
    MNRAS 000,1{20 (2017) Preprint 1 February 2018 Compiled using MNRAS LATEX style file v3.0 Explaining the luminosity spread in young clusters: proto and pre-main sequence stellar evolution in a molecular cloud environment Sigurd S. Jensen? & Troels Haugbølley Centre for Star and Planet Formation, Niels Bohr Institute and Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark Accepted 2017 October 31. Received October 30; in original form 2017 June 27 ABSTRACT Hertzsprung-Russell diagrams of star forming regions show a large luminosity spread. This is incompatible with well-defined isochrones based on classic non-accreting pro- tostellar evolution models. Protostars do not evolve in isolation of their environment, but grow through accretion of gas. In addition, while an age can be defined for a star forming region, the ages of individual stars in the region will vary. We show how the combined effect of a protostellar age spread, a consequence of sustained star formation in the molecular cloud, and time-varying protostellar accretion for individual proto- stars can explain the observed luminosity spread. We use a global MHD simulation including a sub-scale sink particle model of a star forming region to follow the accre- tion process of each star. The accretion profiles are used to compute stellar evolution models for each star, incorporating a model of how the accretion energy is distributed to the disk, radiated away at the accretion shock, or incorporated into the outer lay- ers of the protostar. Using a modelled cluster age of 5 Myr we naturally reproduce the luminosity spread and find good agreement with observations of the Collinder 69 cluster, and the Orion Nebular Cluster.
    [Show full text]