R Graphics Output

Total Page:16

File Type:pdf, Size:1020Kb

R Graphics Output G1 A ND4 ND1 CO3 12S IRBP GHR VWF CYTB R DLOOP BRCA1 Graphiurus microtis Graphiurus ocularis ● Graphiurus kelleni ● Graphiurus murinus ● Graphiurus lorraineus GLIRI Graphiurus johnstoni Graphiurus platyops ● Muscardinus avellanarius ● Myomimus roachi D ● ● Dryomys nitedula AE ● Dryomys laniger ● Eliomys melanurus Eliomys quercinus ● Glis glis ● Glirulus japonicus Aplodontia rufa AP ● Ratufa affinis Ratufa bicolor RA ● Sciurillus kuhlii Sciurillus pusillus SI ● Funambulus palmarum Funambulus pennantii ● ● Exilisciurus concinnus ● Exilisciurus exilis 8 ● Hyosciurus heinrichi ● ● Rubrisciurus rubriventer Prosciurillus murinus Nannosciurus melanotis ● Tamiops mcclellandii Tamiops swinhoei ● 11 ● Dremomys pernyi CALLOSCIURINAE ● Dremomys lokriah ● Dremomys gularis ● Dremomys rufigenis Dremomys pyrrhomerus ● Menetes berdmorei ● Rhinosciurus laticaudatus ● Lariscus insignis ● Callosciurus finlaysonii 12 ● ● Callosciurus erythraeus ● Callosciurus caniceps ● ● Callosciurus prevostii 9 ● Glyphotes simus ● ● Callosciurus nigrovittatus ● Sundasciurus lowii Sundasciurus fraterculus Sundasciurus samarensis Sundasciurus philippinensis ●● ● Sundasciurus mindanensis ● Sundasciurus hippurus Sundasciurus rabori ● Sundasciurus steerii ● ● Sundasciurus moellendorffi ● Sundasciurus juvencus Sundasciurus hoogstraali ● Sundasciurus brookei ● Sundasciurus jentinki Sundasciurus tenuis XERINAE Xerus erythropus ● ● Xerus princeps ● Xerus inauris ● ● Xerus rutilus ● Atlantoxerus getulus Spermophilopsis leptodactylus ● Xerinae b Glaucomys volans Glaucomys sabrinus Hylopetes nigripes ● ● ● Hylopetes sipora Hylopetes lepidus ● Hylopetes alboniger ● ● ● Petaurillus kinlochii ● ● Petinomys setosus Hylopetes phayrei Iomys horsfieldii Eoglaucomys fimbriatus ● Petaurista leucogenys ● ● Petaurista elegans Petaurista philippensis 10 ● SCIURINAE ● Petaurista xanthotis ● Petaurista alborufus ● Petaurista petaurista ● Pteromys volans Pteromys momonga Pteromyscus pulverulentus ● ● ● ● Belomys pearsonii ● Aeretes melanopterus ● Trogopterus xanthipes ● Eupetaurus cinereus SCIUROIDEA Aeromys tephromelas ● Tamiasciurus douglasii ● Tamiasciurus mearnsi Tamiasciurus hudsonicus ● Bootstrap >= 95 ● ● Rheithrosciurus macrotis ● Sciurus vulgaris ● 70 =< Bootstrap < 95 Sciurus lis ● Sciurus niger ● 50 =< Bootstrap < 70 ● ● Sciurus griseus Sciurus aberti Sciurus carolinensis ● Sciurus ignitus ● ● Sciurus aestuans Microsciurus flaviventer Sciurus variegatoides ● Sciurus stramineus Sciurus granatensis ● Syntheosciurus brochus Microsciurus alfari.
Recommended publications
  • Gliding Dragons and Flying Squirrels: Diversifying Versus Stabilizing Selection on Morphology Following the Evolution of an Innovation
    vol. 195, no. 2 the american naturalist february 2020 E-Article Gliding Dragons and Flying Squirrels: Diversifying versus Stabilizing Selection on Morphology following the Evolution of an Innovation Terry J. Ord,1,* Joan Garcia-Porta,1,† Marina Querejeta,2,‡ and David C. Collar3 1. Evolution and Ecology Research Centre and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales 2052, Australia; 2. Institute of Evolutionary Biology (CSIC–Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37–49, Barcelona 08003, Spain; 3. Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia 23606 Submitted August 1, 2018; Accepted July 16, 2019; Electronically published December 17, 2019 Online enhancements: supplemental material. Dryad data: https://doi.org/10.5061/dryad.t7g227h. fi abstract: Evolutionary innovations and ecological competition are eral de nitions of what represents an innovation have been factors often cited as drivers of adaptive diversification. Yet many offered (reviewed by Rabosky 2017), this classical descrip- innovations result in stabilizing rather than diversifying selection on tion arguably remains the most useful (Galis 2001; Stroud morphology, and morphological disparity among coexisting species and Losos 2016; Rabosky 2017). Hypothesized innovations can reflect competitive exclusion (species sorting) rather than sympat- have drawn considerable attention among ecologists and ric adaptive divergence (character displacement). We studied the in- evolutionary biologists because they can expand the range novation of gliding in dragons (Agamidae) and squirrels (Sciuridae) of ecological niches occupied within communities. In do- and its effect on subsequent body size diversification. We found that gliding either had no impact (squirrels) or resulted in strong stabilizing ing so, innovations are thought to be important engines of selection on body size (dragons).
    [Show full text]
  • Checklist of the Mammals of Indonesia
    CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation i ii CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation By Ibnu Maryanto Maharadatunkamsi Anang Setiawan Achmadi Sigit Wiantoro Eko Sulistyadi Masaaki Yoneda Agustinus Suyanto Jito Sugardjito RESEARCH CENTER FOR BIOLOGY INDONESIAN INSTITUTE OF SCIENCES (LIPI) iii © 2019 RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI) Cataloging in Publication Data. CHECKLIST OF THE MAMMALS OF INDONESIA: Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation/ Ibnu Maryanto, Maharadatunkamsi, Anang Setiawan Achmadi, Sigit Wiantoro, Eko Sulistyadi, Masaaki Yoneda, Agustinus Suyanto, & Jito Sugardjito. ix+ 66 pp; 21 x 29,7 cm ISBN: 978-979-579-108-9 1. Checklist of mammals 2. Indonesia Cover Desain : Eko Harsono Photo : I. Maryanto Third Edition : December 2019 Published by: RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI). Jl Raya Jakarta-Bogor, Km 46, Cibinong, Bogor, Jawa Barat 16911 Telp: 021-87907604/87907636; Fax: 021-87907612 Email: [email protected] . iv PREFACE TO THIRD EDITION This book is a third edition of checklist of the Mammals of Indonesia. The new edition provides remarkable information in several ways compare to the first and second editions, the remarks column contain the abbreviation of the specific island distributions, synonym and specific location. Thus, in this edition we are also corrected the distribution of some species including some new additional species in accordance with the discovery of new species in Indonesia.
    [Show full text]
  • Report on Biodiversity and Tropical Forests in Indonesia
    Report on Biodiversity and Tropical Forests in Indonesia Submitted in accordance with Foreign Assistance Act Sections 118/119 February 20, 2004 Prepared for USAID/Indonesia Jl. Medan Merdeka Selatan No. 3-5 Jakarta 10110 Indonesia Prepared by Steve Rhee, M.E.Sc. Darrell Kitchener, Ph.D. Tim Brown, Ph.D. Reed Merrill, M.Sc. Russ Dilts, Ph.D. Stacey Tighe, Ph.D. Table of Contents Table of Contents............................................................................................................................. i List of Tables .................................................................................................................................. v List of Figures............................................................................................................................... vii Acronyms....................................................................................................................................... ix Executive Summary.................................................................................................................... xvii 1. Introduction............................................................................................................................1- 1 2. Legislative and Institutional Structure Affecting Biological Resources...............................2 - 1 2.1 Government of Indonesia................................................................................................2 - 2 2.1.1 Legislative Basis for Protection and Management of Biodiversity and
    [Show full text]
  • The Impact of Locomotion on the Brain Evolution of Squirrels and Close Relatives ✉ Ornella C
    ARTICLE https://doi.org/10.1038/s42003-021-01887-8 OPEN The impact of locomotion on the brain evolution of squirrels and close relatives ✉ Ornella C. Bertrand 1 , Hans P. Püschel 1, Julia A. Schwab 1, Mary T. Silcox 2 & Stephen L. Brusatte1 How do brain size and proportions relate to ecology and evolutionary history? Here, we use virtual endocasts from 38 extinct and extant rodent species spanning 50+ million years of evolution to assess the impact of locomotion, body mass, and phylogeny on the size of the brain, olfactory bulbs, petrosal lobules, and neocortex. We find that body mass and phylogeny are highly correlated with relative brain and brain component size, and that locomotion strongly influences brain, petrosal lobule, and neocortical sizes. Notably, species living in 1234567890():,; trees have greater relative overall brain, petrosal lobule, and neocortical sizes compared to other locomotor categories, especially fossorial taxa. Across millions of years of Eocene- Recent environmental change, arboreality played a major role in the early evolution of squirrels and closely related aplodontiids, promoting the expansion of the neocortex and petrosal lobules. Fossoriality in aplodontiids had an opposing effect by reducing the need for large brains. 1 School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland, UK. 2 Department of Anthropology, University of Toronto Scarborough, ✉ Toronto, ON, Canada. email: [email protected] COMMUNICATIONS BIOLOGY | (2021) 4:460 | https://doi.org/10.1038/s42003-021-01887-8 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01887-8 hat ecological and evolutionary factors affect brain size striking differences between living sciurids and aplodontiids raise in mammals? Studies have assessed the impact of the question of how this modern rodent assemblage emerged.
    [Show full text]
  • Phylogeny, Biogeography and Systematic Revision of Plain Long-Nosed Squirrels (Genus Dremomys, Nannosciurinae) Q ⇑ Melissa T.R
    Molecular Phylogenetics and Evolution 94 (2016) 752–764 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeny, biogeography and systematic revision of plain long-nosed squirrels (genus Dremomys, Nannosciurinae) q ⇑ Melissa T.R. Hawkins a,b,c,d, , Kristofer M. Helgen b, Jesus E. Maldonado a,b, Larry L. Rockwood e, Mirian T.N. Tsuchiya a,b,d, Jennifer A. Leonard c a Smithsonian Conservation Biology Institute, Center for Conservation and Evolutionary Genetics, National Zoological Park, Washington DC 20008, USA b Division of Mammals, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington DC 20013-7012, USA c Estación Biológica de Doñana (EBD-CSIC), Conservation and Evolutionary Genetics Group, Avda. Americo Vespucio s/n, Sevilla 41092, Spain d George Mason University, Department of Environmental Science and Policy, 4400 University Drive, Fairfax, VA 20030, USA e George Mason University, Department of Biology, 4400 University Drive, Fairfax, VA 20030, USA article info abstract Article history: The plain long-nosed squirrels, genus Dremomys, are high elevation species in East and Southeast Asia. Received 25 March 2015 Here we present a complete molecular phylogeny for the genus based on nuclear and mitochondrial Revised 19 October 2015 DNA sequences. Concatenated mitochondrial and nuclear gene trees were constructed to determine Accepted 20 October 2015 the tree topology, and date the tree. All speciation events within the plain-long nosed squirrels (genus Available online 31 October 2015 Dremomys) were ancient (dated to the Pliocene or Miocene), and averaged older than many speciation events in the related Sunda squirrels, genus Sundasciurus.
    [Show full text]
  • Squirrels of Sulawesi: an Introduction
    Squirrels of Sulawesi: An introduction by David Mead 2013 Sulang Language Data and Working Papers: Topics in Lexicography, no. 26 Sulawesi Language Alliance http://sulang.org/ SulangLexTopics026-v1 LANGUAGES Language of materials : English ABSTRACT This article has two parts. The first part comprises thumbnail sketches of the twelve squirrel species found on the island of Sulawesi. The second part is a description of some other small mammals which may potentially be confused with squirrels, at least during the initial phases of lexicography research. TABLE OF CONTENTS Part 1: Checklist of squirrel species; Giant squirrels; Beautiful squirrels; Dwarf squirrels; Long-nosed squirrels; Part 2: Some similar animals from around Indonesia; Tarsiers; Tree shrews; Flying squirrels; Colugos; Sugar gliders; Cuscuses; References. VERSION HISTORY Version 2 [31 July 2014] Checklist updated to accord with Musser et al. (2010) and to a greater or lesser extent all thumbnail descriptions revised. Version 1 [26 June 2013] Drafted October 2010, significantly revised June 2013. © 2010–2014 by David Mead Text is licensed under terms of the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 Unported license. Images are licensed as individually noted in the text. Squirrels of Sulawesi: An introduction by David Mead This article has two parts. The first part comprises thumbnail sketches of the twelve squirrel species found on the island of Sulawesi, as they are currently recognized. The second part is a description of some other small mammals which may potentially be confused with squirrels, at least during the initial phases of lexicography research before the live animal is encountered. My source for squirrel species present on Sulawesi is Musser et al.
    [Show full text]
  • 107 Rare Mammals Recorded in Borneo – Malaysia
    TAPROBANICA , ISSN 1800-427X. October, 2011. Vol. 03, No. 02: pp. 107-109. © Taprobanica Private Limited, Jl. Kuricang 18 Gd.9 No.47, Ciputat 15412, Tangerang, Indonesia. Rare mammals recorded in Borneo – Order: Erinaceomorpha Malaysia Short-tailed Gymnure, Hylomys suillus dorsalis (endemic subspecies): Mesilau Resort, Kinabalu National Park, 1900 m (Fig. 2). While on a wildlife-watching trip to Sabah, Borneo, May 21 to June 5, 2011, Jeffrey Harding and I saw several rare and endangered mammal species whose distributions are not well known. Following is a list of the rarest ones with notes on location, elevation, and conservation status. Elevations were taken with a Barigo altimeter. Conservation status notes are based on IUCN (2011). Taxonomy follows Wilson & Reeder (2005). Evidence included field notes and photographs for most species mentioned below. I offer these notes in case they may be of use in future conservation efforts or distribution studies. Order: Carnivora Fig. 2: Short-tailed Gymnure Small-toothed Palm Civet, Arctogalidia trivirgata stigmaticus: not listed as endangered, but Order: Primates population decreasing and range poorly known. I Besides the common and widespread Long-tailed photographed (Fig. 1) one at night on the middle Macaques (M. fascicularis) and Silvered Lutungs Kinabatangan River feeding on figs. Unlike the (Trachypithecus cristatus), we saw the following illustrations in Payne et al. (1985) and Francis endangered species in the wild: (2008), this individual has thin, dark lateral bars on its sides and stripes on the side of its neck, in Southern Pig-tailed Macaque, Macaca addition to the usual dark longitudinal stripes on the nemestrina (vulnerable, population decreasing).
    [Show full text]
  • A Checklist of the Mammals of South-East Asia
    A Checklist of the Mammals of South-east Asia A Checklist of the Mammals of South-east Asia PHOLIDOTA Pangolin (Manidae) 1 Sunda Pangolin (Manis javanica) 2 Chinese Pangolin (Manis pentadactyla) INSECTIVORA Gymnures (Erinaceidae) 3 Moonrat (Echinosorex gymnurus) 4 Short-tailed Gymnure (Hylomys suillus) 5 Chinese Gymnure (Hylomys sinensis) 6 Large-eared Gymnure (Hylomys megalotis) Moles (Talpidae) 7 Slender Shrew-mole (Uropsilus gracilis) 8 Kloss's Mole (Euroscaptor klossi) 9 Large Chinese Mole (Euroscaptor grandis) 10 Long-nosed Chinese Mole (Euroscaptor longirostris) 11 Small-toothed Mole (Euroscaptor parvidens) 12 Blyth's Mole (Parascaptor leucura) 13 Long-tailed Mole (Scaptonyx fuscicauda) Shrews (Soricidae) 14 Lesser Stripe-backed Shrew (Sorex bedfordiae) 15 Myanmar Short-tailed Shrew (Blarinella wardi) 16 Indochinese Short-tailed Shrew (Blarinella griselda) 17 Hodgson's Brown-toothed Shrew (Episoriculus caudatus) 18 Bailey's Brown-toothed Shrew (Episoriculus baileyi) 19 Long-taied Brown-toothed Shrew (Episoriculus macrurus) 20 Lowe's Brown-toothed Shrew (Chodsigoa parca) 21 Van Sung's Shrew (Chodsigoa caovansunga) 22 Mole Shrew (Anourosorex squamipes) 23 Himalayan Water Shrew (Chimarrogale himalayica) 24 Styan's Water Shrew (Chimarrogale styani) Page 1 of 17 Database: Gehan de Silva Wijeyeratne, www.jetwingeco.com A Checklist of the Mammals of South-east Asia 25 Malayan Water Shrew (Chimarrogale hantu) 26 Web-footed Water Shrew (Nectogale elegans) 27 House Shrew (Suncus murinus) 28 Pygmy White-toothed Shrew (Suncus etruscus) 29 South-east
    [Show full text]
  • Deramakot Forest Reserve
    Borneo’s Mammals - Deramakot Forest Reserve Naturetrek Tour Report 15 - 29 October 2018 Bornean Orangutan by Derek Smith Moonrat by David Allison Thomas's Flying Squirrel by David Allison North Bornean Gibbon by Derek Smith Report compiled by Tom Mabbett Images courtesy of Derek Smith, David Allison & Mike Robinson Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Borneo’s Mammals - Deramakot Forest Reserve Tour participants: Tom Mabbett and Henry Sapinggi (leaders) with seven Naturetrek clients Summary This was a really superb trip with a huge range of mammals and birds encountered. We enjoyed wonderful views of no less than 18 wild Orang-utans across the tour. Other species included many troops of Proboscis Monkey, rather tricky Pygmy Elephants - but we did see them, three civet species, a fantastic Binturong, Leopard Cats, Greater and Lesser Mousedeer, a Moonrat and various squirrels and bats, with many Colugo and Slow Loris sightings to name but a few. Birds were superb along the way with various hornbills, kingfishers, bulbuls, owls, pittas and frogmouths. We had a lot of fun along the way of course, and despite not finding Clouded Leopard on this occasion, it was a most memorable visit to this special island. Day 1 Monday 15th October In transit from the UK, via Kuala Lumpur. Day 2 Tuesday 16th October We met up at Sandakan airport today in the early afternoon and headed to Sepilok Nature Resort for our first night. We checked in and soon were heading off to the nearby Orang-utan rehabilitation centre in time for the feeding there.
    [Show full text]
  • Body Size and Diet Mediate Evolution of Jaw Shape in Squirrels (Sciuridae)
    Rare ecomorphological convergence on a complex adaptive landscape: body size and diet mediate evolution of jaw shape in squirrels (Sciuridae) *Miriam Leah Zelditch; Museum of Paleontology, University of Michigan, Ann Arbor, MI 48109; [email protected] Ji Ye; Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109; [email protected] Jonathan S. Mitchell; Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109; [email protected] Donald L. Swiderski, Kresge Hearing Research Institute and Museum of Zoology, University of Michigan. [email protected] *Corresponding Author Running head: Convergence on a complex adaptive landscape Key Words: Convergence, diet evolution, jaw morphology, shape evolution, macroevolutionary adaptive landscape, geometric morphometrics Data archival information: doi: 10.5061/dryad.kq1g6. This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/evo.13168. This article is protected by copyright. All rights reserved. Abstract Convergence is widely regarded as compelling evidence for adaptation, often being portrayed as evidence that phenotypic outcomes are predictable from ecology, overriding contingencies of history. However, repeated outcomes may be very rare unless adaptive landscapes are simple, structured by strong ecological and functional constraints. One such constraint may be a limitation on body size because performance often scales with size, allowing species to adapt to challenging functions by modifying only size. When size is constrained, species might adapt by changing shape; convergent shapes may therefore be common when size is limiting and functions are challenging.
    [Show full text]
  • Scanned Document
    Malayan Nature Journal 2006, 59(2), 165 - 187 Small Mammal Survey at Two Sites in Planted Forest Zone, Bintulu, Sarawak DON E. WILSON1, KRISTOFER M.HELGEN1, CHIN SING YUN2 and BELDEN GIMAN2 Abstract: A survey for small mammals was done at two sites within the Forest Department of Sarawak's Planted Forests Project in the Bintulu Division. Sampling was carried out in Bukit Sarang, a flooded swamp forest, and in Samarakan forest, an area of mixed 6-7 year old Acacia mangium blocks interspersed with remnants of disturbed logged forest. A total of twenty-two chiropteran species was recorded from these sites, including the first confirmed Sarawak records of Hipposideros bicolor and Myotis montivagus, and two bat species possibly new to science. In addition, sixteen species of small mammals were recorded at both sites. A short taxonomic discussion including the regional significance is given for each species collected. The annotated checklist from these two areas revealed that certain mammal species do survive within Acacia plantings, while mammal species richness was high in designated conservation zones such as Bukit Sarang. Keywords. Bats, Small Mammals, Bukit Sarang, Acacia mangium. Planted Forest Zone Bintulu, Sarawak. INTRODUCTION During the late 1990s, the Sarawak State government began a major initiative to enhance the supply of industrial wood in its Planted Forests (Pulp and Paper) Project, and employed Grand Perfect Sdn Bhd as its principal contractor. The Planted Forest Zone (PFZ), located in the Bintulu Division, covers approximately 490,000 ha. Of this total, approximately 45% will be planted with the fast growing tree, Acacia mangium, while 30-35% has been set aside as conservation areas, either as large blocks (20,000-25,000 ha) or smaller forested riverine buffers or forest remnants within the acacia blocks.
    [Show full text]
  • Nuclear DNA Phylogeny of the Squirrels (Mammalia: Rodentia) and the Evolution of Arboreality from C-Myc and RAG1
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 30 (2004) 703–719 www.elsevier.com/locate/ympev Nuclear DNA phylogeny of the squirrels (Mammalia: Rodentia) and the evolution of arboreality from c-myc and RAG1 Scott J. Steppan,a,* Brian L. Storz,a and Robert S. Hoffmannb a Department of Biological Science, Florida State University, Tallahassee, FL 32306-1100, USA b Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, MRC-108, Washington, DC 20560, USA Received 24 February 2003; revised 15 May 2003 Abstract Although the family Sciuridae is large and well known, phylogenetic analyses are scarce. We report on a comprehensive mo- lecular phylogeny for the family. Two nuclear genes (c-myc and RAG1) comprising approximately 4500 bp of data (most in exons) are applied for the first time to rodent phylogenetics. Parsimony, likelihood, and Bayesian analyses of the separate gene regions and combined data reveal five major lineages and refute the conventional elevation of the flying squirrels (Pteromyinae) to subfamily status. Instead, flying squirrels are derived from one of the tree squirrel lineages. C-myc indels corroborate the sequence-based topologies. The common ancestor of extant squirrels appears to have been arboreal, confirming the fossil evidence. The results also reveal an unexpected clade of mostly terrestrial squirrels with African and Holarctic centers of diversity. We present a revised classification of squirrels. Our results demonstrate the phylogenetic utility of relatively slowly evolving nuclear exonic data even for relatively recent clades. Ó 2003 Elsevier Science (USA). All rights reserved. 1. Introduction compromised by an incomplete understanding of their phylogenetic relationships.
    [Show full text]