The EMBL-EBI Search and Sequence Analysis Tools Apis in 2019

Total Page:16

File Type:pdf, Size:1020Kb

The EMBL-EBI Search and Sequence Analysis Tools Apis in 2019 W636–W641 Nucleic Acids Research, 2019, Vol. 47, Web Server issue Published online 12 April 2019 doi: 10.1093/nar/gkz268 The EMBL-EBI search and sequence analysis tools APIs in 2019 Fabio´ Madeira†, Young mi Park†, Joon Lee, Nicola Buso, Tamer Gur, Nandana Madhusoodanan, Prasad Basutkar, Adrian R.N. Tivey, Simon C. Potter , Robert D. Finn and Rodrigo Lopez* European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK Received January 31, 2019; Revised March 22, 2019; Editorial Decision April 01, 2019; Accepted April 03, 2019 ABSTRACT lic data resources focus on a specific data type, but often value arises from the interconnectivity between multiple re- The EMBL-EBI provides free access to popular sources and datasets (1). Cross-referencing between data re- bioinformatics sequence analysis applications as sources combined with expert curation and knowledge has well as to a full-featured text search engine with the potential to enhance the value of the existing data. An- powerful cross-referencing and data retrieval capa- other way of improving the value of these data is to develop bilities. Access to these services is provided via novel ways to use bioinformatics applications that take ad- user-friendly web interfaces and via established vantage of these cross-references and enrich tool output and RESTful and SOAP Web Services APIs (https: analytical results. Good examples of such applications are //www.ebi.ac.uk/seqdb/confluence/display/JDSAT/ sequence similarity search suites such as NCBI BLAST+ EMBL-EBI+Web+Services+APIs+-+Data+Retrieval). (2), FASTA (3), HMMER3 (4), as well as functional clas- Both systems have been developed with the same sification and annotation programs such as InterProScan5 (5), which allow large collections of sequence data to be core principles that allow them to integrate an ever- searched. The EMBL-EBI has devoted a lot of effort to de- increasing volume of biological data, making them velop two Web Service API-centred frameworks, Job Dis- an integral part of many popular data resources patcher (6) and EBI Search (7), for providing access to (i) provided at the EMBL-EBI. Here, we describe the sequence analysis tools and to (ii) a free text search and latest improvements made to the frameworks which powerful cross-referencing engine, respectively. Here, we de- enhance the interconnectivity between public EMBL- scribe the various enhancements made recently to these ser- EBI resources and ultimately enhance biological vices. Additionally, examples of integration between the re- data discoverability, accessibility, interoperability sources are provided, which aim to demonstrate the ‘Soft- and reusability. ware as a Service’ (SaaS) capabilities of the APIs. INTRODUCTION The frameworks With the advent of many technological developments, the The Job Dispatcher framework (6) provides reliable Bioin- volume and types of data generated in the life sciences have formatics Sequence Analysis Web Services. Tools run- greatly expanded over the last years. High-throughput data ning under it comprise core bioinformatics analytical tools is increasingly not only generated in fields ranging from and nucleotide and protein sequence databases hosted at proteomics, metabolomics and metagenomics, but also in EMBL-EBI via three fundamental interfaces: web browser, those such as structural biology, traditionally viewed as RESTful and SOAP Web Services. The framework has three low-throughput. This puts pressure on the data custodians main components: (i) a tools configuration module; (ii) a that are not only expected to provide continuous access to cluster scheduling interface that communicates with a high- thedata,butalsotodosoinalternativeformatsandover performance computer (HPC) queuing system and (iii) a new access methods. Application Programming Interfaces rendering module for displaying enriched results. Extensive (APIs) are increasingly used to improve the way in which bi- validation routines are built into the web service to ensure ological data are consumed and integrated into third-party input parameter values and input data types sent to the systems. Despite these efforts, the reality is that most pub- tools are valid and appropriate. Similarly, tool outputs are *To whom correspondence should be addressed. Tel: +44 1223 494 423; Fax: +44 1223 494 468; Email: [email protected] †The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors. C The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. Nucleic Acids Research, 2019, Vol. 47, Web Server issue W637 examined to confirm tool execution, detect errors and pro- terface itself is a client of its own API and provides a good duce human-readable reports. In many cases, visual rep- example of its capabilities. resentations of tool results are provided to help the user The EBI Search engine indexes cross-references between understand the job output both interactively using a web entries in different domains. This is now more visible to browser or programmatically. users by displaying the number of, and links to the cross- EBI Search (7) is available from https://www.ebi.ac.uk/ references available. The implementation of the new visual- ebisearch and is a fast and scalable search engine imple- ization (see Figure 1) is the result of a collaboration with the mented with the Apache Lucene framework (https://lucene. user experience (UX) teams at the EMBL-EBI. apache.org) that provides easy and uniform access to pub- During 2017, EBI Search was involved in the Thor lic biological data resources hosted at the EMBL-EBI. The project (https://project-thor.eu/), with the aim of establish- search engine indexes freely available data resources in var- ing associations between scientists and the datasets they ious formats such as XML, JSON and plain text from have worked on. EBI Search is now indexing and showing EMBL-EBI and provides text searching as well as other these via a User Interface (UI) that scientists can use to useful functions for query management, result filtering and claim datasets into their ORCID (https://orcid.org/). Fur- cross-reference exploration through its RESTful API. This ther information on this service is available from: https: powerful API allows users to create a complex view of //www.ebi.ac.uk/ebisearch/orcidclaimdocumentation.ebi. data resources, helping them find answers to their biolog- ical questions. EBI Search is also accessible via a web in- Updates on the frameworks and APIs terface developed with the Angular JavaScript framework (https://angular.io/). Job Dispatcher was improved with the addition of Swag- ger OpenAPI UI , available at https://www.ebi.ac.uk/Tools/ common/tools/help. This UI covers all of the bioinformat- Bioinformatics tools as a service ics tools provided by Job Dispatcher and allows users to Job Dispatcher Web Services have been integrated into mul- explore the API endpoints, as well as to explore valid pa- tiple EMBL-EBI resources. Examples of tools integration rameters and options that each bioinformatics application are the NCBI BLAST+ services integrated into the web- expects. Collaboration with UX experts has led to im- sites of UniProtKB (8), ENA (9) and Ensembl Genomes proved user experience when navigating through the Job (10). Similar integration is done with SSEARCH (3)aspart Dispatcher web pages and results. Work was carried out to of services offered by the PDBe (11). One of the biggest improve the way tool results are displayed and how they users of the framework is InterPro (12) whose InterProScan can be integrated into workflows. Notably, the framework 5(5) protein sequence scanning against InterPro databases now provides a convenient set of example inputs, as well is powered by Job Dispatcher. A new integration for this up- as outputs, for all bioinformatics tools provided. A new set date is batch HMMER3 (4) phmmer, hmmscan and hmm- of auto-generated REST clients in Python, Perl and Java search analysis jobs, which are similarly powered by the have been introduced, which are actively maintained (https: Job Dispatcher Web Services. Dbfetch (http://www.ebi.ac. //github.com/ebi-wp/webservice-clients). These clients are uk/Tools/dbfetch) is a service that allows a variety of data, available for local installation, but a Docker (https://www. including sequence data, to be retrieved in a variety of for- docker.com/) container is also provided so that the clients mats using a unique endpoint and a consistent API. It pro- can be reproducibly run in a variety of operating sys- vides a web interface and programmatic interface, acting tems and environments. The Perl and Python clients in- as a central support service for other EMBL-EBI services. clude a feature that allow sequence search analysis (e.g. For example, Job Dispatcher and SIFTS sequence-structure NCBI BLAST+, FASTA and HMMER3) to be submit- mapping provided by the PDBe (13), which also highlights ted in batches, from an input that is composed by mul- the interconnectivity between data resources and the appli- tiple sequences in fasta format (using the optional flag ‘– cations. multifasta’). Common Workflow Language (CWL)16 ( )de- scriptions, as well as sample CWL workflows, have also been made available (https://github.com/ebi-wp/webservice-cwl) EBI Search as a service and can be used to ease the integration of the Web Services The capability of ‘EBI Search as a Service’ implemented in into workflows. Dbfetch now allows Cross-Origin Resource the EBI Search API has been used by more than 15 projects Sharing (CORS) from all origins, which enables usage of the in EMBL-EBI (https://www.ebi.ac.uk/ebisearch/overview.
Recommended publications
  • Ensembl Genomes: Extending Ensembl Across the Taxonomic Space P
    Published online 1 November 2009 Nucleic Acids Research, 2010, Vol. 38, Database issue D563–D569 doi:10.1093/nar/gkp871 Ensembl Genomes: Extending Ensembl across the taxonomic space P. J. Kersey*, D. Lawson, E. Birney, P. S. Derwent, M. Haimel, J. Herrero, S. Keenan, A. Kerhornou, G. Koscielny, A. Ka¨ ha¨ ri, R. J. Kinsella, E. Kulesha, U. Maheswari, K. Megy, M. Nuhn, G. Proctor, D. Staines, F. Valentin, A. J. Vilella and A. Yates EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK Received August 14, 2009; Revised September 28, 2009; Accepted September 29, 2009 ABSTRACT nucleotide archives; numerous other genomes exist in states of partial assembly and annotation; thousands of Ensembl Genomes (http://www.ensemblgenomes viral genomes sequences have also been generated. .org) is a new portal offering integrated access to Moreover, the increasing use of high-throughput genome-scale data from non-vertebrate species sequencing technologies is rapidly reducing the cost of of scientific interest, developed using the Ensembl genome sequencing, leading to an accelerating rate of genome annotation and visualisation platform. data production. This not only makes it likely that in Ensembl Genomes consists of five sub-portals (for the near future, the genomes of all species of scientific bacteria, protists, fungi, plants and invertebrate interest will be sequenced; but also the genomes of many metazoa) designed to complement the availability individuals, with the possibility of providing accurate and of vertebrate genomes in Ensembl. Many of the sophisticated annotation through the similarly low-cost databases supporting the portal have been built in application of functional assays.
    [Show full text]
  • Abstracts Genome 10K & Genome Science 29 Aug - 1 Sept 2017 Norwich Research Park, Norwich, Uk
    Genome 10K c ABSTRACTS GENOME 10K & GENOME SCIENCE 29 AUG - 1 SEPT 2017 NORWICH RESEARCH PARK, NORWICH, UK Genome 10K c 48 KEYNOTE SPEAKERS ............................................................................................................................... 1 Dr Adam Phillippy: Towards the gapless assembly of complete vertebrate genomes .................... 1 Prof Kathy Belov: Saving the Tasmanian devil from extinction ......................................................... 1 Prof Peter Holland: Homeobox genes and animal evolution: from duplication to divergence ........ 2 Dr Hilary Burton: Genomics in healthcare: the challenges of complexity .......................................... 2 INVITED SPEAKERS ................................................................................................................................. 3 Vertebrate Genomics ........................................................................................................................... 3 Alex Cagan: Comparative genomics of animal domestication .......................................................... 3 Plant Genomics .................................................................................................................................... 4 Ksenia Krasileva: Evolution of plant Immune receptors ..................................................................... 4 Andrea Harper: Using Associative Transcriptomics to predict tolerance to ash dieback disease in European ash trees ............................................................................................................
    [Show full text]
  • Comparative Analysis of Multiple Sequence Alignment Tools
    I.J. Information Technology and Computer Science, 2018, 8, 24-30 Published Online August 2018 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijitcs.2018.08.04 Comparative Analysis of Multiple Sequence Alignment Tools Eman M. Mohamed Faculty of Computers and Information, Menoufia University, Egypt E-mail: [email protected]. Hamdy M. Mousa, Arabi E. keshk Faculty of Computers and Information, Menoufia University, Egypt E-mail: [email protected], [email protected]. Received: 24 April 2018; Accepted: 07 July 2018; Published: 08 August 2018 Abstract—The perfect alignment between three or more global alignment algorithm built-in dynamic sequences of Protein, RNA or DNA is a very difficult programming technique [1]. This algorithm maximizes task in bioinformatics. There are many techniques for the number of amino acid matches and minimizes the alignment multiple sequences. Many techniques number of required gaps to finds globally optimal maximize speed and do not concern with the accuracy of alignment. Local alignments are more useful for aligning the resulting alignment. Likewise, many techniques sub-regions of the sequences, whereas local alignment maximize accuracy and do not concern with the speed. maximizes sub-regions similarity alignment. One of the Reducing memory and execution time requirements and most known of Local alignment is Smith-Waterman increasing the accuracy of multiple sequence alignment algorithm [2]. on large-scale datasets are the vital goal of any technique. The paper introduces the comparative analysis of the Table 1. Pairwise vs. multiple sequence alignment most well-known programs (CLUSTAL-OMEGA, PSA MSA MAFFT, BROBCONS, KALIGN, RETALIGN, and Compare two biological Compare more than two MUSCLE).
    [Show full text]
  • The ELIXIR Core Data Resources: ​Fundamental Infrastructure for The
    Supplementary Data: The ELIXIR Core Data Resources: fundamental infrastructure ​ for the life sciences The “Supporting Material” referred to within this Supplementary Data can be found in the Supporting.Material.CDR.infrastructure file, DOI: 10.5281/zenodo.2625247 (https://zenodo.org/record/2625247). ​ ​ Figure 1. Scale of the Core Data Resources Table S1. Data from which Figure 1 is derived: Year 2013 2014 2015 2016 2017 Data entries 765881651 997794559 1726529931 1853429002 2715599247 Monthly user/IP addresses 1700660 2109586 2413724 2502617 2867265 FTEs 270 292.65 295.65 289.7 311.2 Figure 1 includes data from the following Core Data Resources: ArrayExpress, BRENDA, CATH, ChEBI, ChEMBL, EGA, ENA, Ensembl, Ensembl Genomes, EuropePMC, HPA, IntAct /MINT , InterPro, PDBe, PRIDE, SILVA, STRING, UniProt ● Note that Ensembl’s compute infrastructure physically relocated in 2016, so “Users/IP address” data are not available for that year. In this case, the 2015 numbers were rolled forward to 2016. ● Note that STRING makes only minor releases in 2014 and 2016, in that the interactions are re-computed, but the number of “Data entries” remains unchanged. The major releases that change the number of “Data entries” happened in 2013 and 2015. So, for “Data entries” , the number for 2013 was rolled forward to 2014, and the number for 2015 was rolled forward to 2016. The ELIXIR Core Data Resources: fundamental infrastructure for the life sciences ​ 1 Figure 2: Usage of Core Data Resources in research The following steps were taken: 1. API calls were run on open access full text articles in Europe PMC to identify articles that ​ ​ mention Core Data Resource by name or include specific data record accession numbers.
    [Show full text]
  • Bioinformatics Study of Lectins: New Classification and Prediction In
    Bioinformatics study of lectins : new classification and prediction in genomes François Bonnardel To cite this version: François Bonnardel. Bioinformatics study of lectins : new classification and prediction in genomes. Structural Biology [q-bio.BM]. Université Grenoble Alpes [2020-..]; Université de Genève, 2021. En- glish. NNT : 2021GRALV010. tel-03331649 HAL Id: tel-03331649 https://tel.archives-ouvertes.fr/tel-03331649 Submitted on 2 Sep 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE GRENOBLE ALPES préparée dans le cadre d’une cotutelle entre la Communauté Université Grenoble Alpes et l’Université de Genève Spécialités: Chimie Biologie Arrêté ministériel : le 6 janvier 2005 – 25 mai 2016 Présentée par François Bonnardel Thèse dirigée par la Dr. Anne Imberty codirigée par la Dr/Prof. Frédérique Lisacek préparée au sein du laboratoire CERMAV, CNRS et du Computer Science Department, UNIGE et de l’équipe PIG, SIB Dans les Écoles Doctorales EDCSV et UNIGE Etude bioinformatique des lectines: nouvelle classification et prédiction dans les génomes Thèse soutenue publiquement le 8 Février 2021, devant le jury composé de : Dr. Alexandre de Brevern UMR S1134, Inserm, Université Paris Diderot, Paris, France, Rapporteur Dr.
    [Show full text]
  • Deep Profiling of Protease Substrate Specificity Enabled by Dual Random and Scanned Human Proteome Substrate Phage Libraries
    Deep profiling of protease substrate specificity enabled by dual random and scanned human proteome substrate phage libraries Jie Zhoua, Shantao Lib, Kevin K. Leunga, Brian O’Donovanc, James Y. Zoub,d, Joseph L. DeRisic,d, and James A. Wellsa,d,e,1 aDepartment of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158; bDepartment of Biomedical Data Science, Stanford University, Stanford, CA 94305; cDepartment of Biochemistry and Biophysics, University of California, San Francisco, CA 94158; dChan Zuckerberg Biohub, San Francisco, CA 94158; and eDepartment of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158 Edited by Benjamin F. Cravatt, Scripps Research Institute, La Jolla, CA, and approved August 19, 2020 (received for review May 11, 2020) Proteolysis is a major posttranslational regulator of biology inside lysate and miss low abundance proteins and those simply not and outside of cells. Broad identification of optimal cleavage sites expressed in cell lines tested that typically express only half their and natural substrates of proteases is critical for drug discovery genomes (13). and to understand protease biology. Here, we present a method To potentially screen a larger and more diverse sequence that employs two genetically encoded substrate phage display space, investigators have developed genetically encoded substrate libraries coupled with next generation sequencing (SPD-NGS) that phage (14, 15) or yeast display libraries (16, 17). Degenerate DNA allows up to 10,000-fold deeper sequence coverage of the typical six- sequences (up to 107) encoding random peptides were fused to a to eight-residue protease cleavage sites compared to state-of-the-art phage or yeast coat protein gene for a catch-and-release strategy synthetic peptide libraries or proteomics.
    [Show full text]
  • "Phylogenetic Analysis of Protein Sequence Data Using The
    Phylogenetic Analysis of Protein Sequence UNIT 19.11 Data Using the Randomized Axelerated Maximum Likelihood (RAXML) Program Antonis Rokas1 1Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee ABSTRACT Phylogenetic analysis is the study of evolutionary relationships among molecules, phenotypes, and organisms. In the context of protein sequence data, phylogenetic analysis is one of the cornerstones of comparative sequence analysis and has many applications in the study of protein evolution and function. This unit provides a brief review of the principles of phylogenetic analysis and describes several different standard phylogenetic analyses of protein sequence data using the RAXML (Randomized Axelerated Maximum Likelihood) Program. Curr. Protoc. Mol. Biol. 96:19.11.1-19.11.14. C 2011 by John Wiley & Sons, Inc. Keywords: molecular evolution r bootstrap r multiple sequence alignment r amino acid substitution matrix r evolutionary relationship r systematics INTRODUCTION the baboon-colobus monkey lineage almost Phylogenetic analysis is a standard and es- 25 million years ago, whereas baboons and sential tool in any molecular biologist’s bioin- colobus monkeys diverged less than 15 mil- formatics toolkit that, in the context of pro- lion years ago (Sterner et al., 2006). Clearly, tein sequence analysis, enables us to study degree of sequence similarity does not equate the evolutionary history and change of pro- with degree of evolutionary relationship. teins and their function. Such analysis is es- A typical phylogenetic analysis of protein sential to understanding major evolutionary sequence data involves five distinct steps: (a) questions, such as the origins and history of data collection, (b) inference of homology, (c) macromolecules, developmental mechanisms, sequence alignment, (d) alignment trimming, phenotypes, and life itself.
    [Show full text]
  • Methods in and Applications of the Sequencing of Short Non-Coding Rnas" (2013)
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2013 Methods in and Applications of the Sequencing of Short Non- Coding RNAs Paul Ryvkin University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, Genetics Commons, and the Molecular Biology Commons Recommended Citation Ryvkin, Paul, "Methods in and Applications of the Sequencing of Short Non-Coding RNAs" (2013). Publicly Accessible Penn Dissertations. 922. https://repository.upenn.edu/edissertations/922 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/922 For more information, please contact [email protected]. Methods in and Applications of the Sequencing of Short Non-Coding RNAs Abstract Short non-coding RNAs are important for all domains of life. With the advent of modern molecular biology their applicability to medicine has become apparent in settings ranging from diagonistic biomarkers to therapeutics and fields angingr from oncology to neurology. In addition, a critical, recent technological development is high-throughput sequencing of nucleic acids. The convergence of modern biotechnology with developments in RNA biology presents opportunities in both basic research and medical settings. Here I present two novel methods for leveraging high-throughput sequencing in the study of short non- coding RNAs, as well as a study in which they are applied to Alzheimer's Disease (AD). The computational methods presented here include High-throughput Annotation of Modified Ribonucleotides (HAMR), which enables researchers to detect post-transcriptional covalent modifications ot RNAs in a high-throughput manner. In addition, I describe Classification of RNAs by Analysis of Length (CoRAL), a computational method that allows researchers to characterize the pathways responsible for short non-coding RNA biogenesis.
    [Show full text]
  • Performance Evaluation of Leading Protein Multiple Sequence Alignment Methods
    International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-9 Issue-1, October 2019 Performance Evaluation of Leading Protein Multiple Sequence Alignment Methods Arunima Mishra, B. K. Tripathi, S. S. Soam MSA is a well-known method of alignment of three or more Abstract: Protein Multiple sequence alignment (MSA) is a biological sequences. Multiple sequence alignment is a very process, that helps in alignment of more than two protein intricate problem, therefore, computation of exact MSA is sequences to establish an evolutionary relationship between the only feasible for the very small number of sequences which is sequences. As part of Protein MSA, the biological sequences are not practical in real situations. Dynamic programming as used aligned in a way to identify maximum similarities. Over time the sequencing technologies are becoming more sophisticated and in pairwise sequence method is impractical for a large number hence the volume of biological data generated is increasing at an of sequences while performing MSA and therefore the enormous rate. This increase in volume of data poses a challenge heuristic algorithms with approximate approaches [7] have to the existing methods used to perform effective MSA as with the been proved more successful. Generally, various biological increase in data volume the computational complexities also sequences are organized into a two-dimensional array such increases and the speed to process decreases. The accuracy of that the residues in each column are homologous or having the MSA is another factor critically important as many bioinformatics same functionality. Many MSA methods were developed over inferences are dependent on the output of MSA.
    [Show full text]
  • HMMER User's Guide
    HMMER User's Guide Biological sequence analysis using pro®le hidden Markov models http://hmmer.wustl.edu/ Version 2.1.1; December 1998 Sean Eddy Dept. of Genetics, Washington University School of Medicine 4566 Scott Ave., St. Louis, MO 63110, USA [email protected] With contributions by Ewan Birney ([email protected]) Copyright (C) 1992-1998, Washington University in St. Louis. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are retained on all copies. The HMMER software package is a copyrighted work that may be freely distributed and modi®ed under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Some versions of HMMER may have been obtained under specialized commercial licenses from Washington University; for details, see the ®les COPYING and LICENSE that came with your copy of the HMMER software. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Appendix for a copy of the full text of the GNU General Public License. 1 Contents 1 Tutorial 5 1.1 The programs in HMMER . 5 1.2 Files used in the tutorial . 6 1.3 Searching a sequence database with a single pro®le HMM . 6 HMM construction with hmmbuild . 7 HMM calibration with hmmcalibrate . 7 Sequence database search with hmmsearch . 8 Searching major databases like NR or SWISSPROT .
    [Show full text]
  • Comparing Tools for Non-Coding RNA Multiple Sequence Alignment Based On
    Downloaded from rnajournal.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press ES Wright 1 1 TITLE 2 RNAconTest: Comparing tools for non-coding RNA multiple sequence alignment based on 3 structural consistency 4 Running title: RNAconTest: benchmarking comparative RNA programs 5 Author: Erik S. Wright1,* 6 1 Department of Biomedical Informatics, University of Pittsburgh (Pittsburgh, PA) 7 * Corresponding author: Erik S. Wright ([email protected]) 8 Keywords: Multiple sequence alignment, Secondary structure prediction, Benchmark, non- 9 coding RNA, Consensus secondary structure 10 Downloaded from rnajournal.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press ES Wright 2 11 ABSTRACT 12 The importance of non-coding RNA sequences has become increasingly clear over the past 13 decade. New RNA families are often detected and analyzed using comparative methods based on 14 multiple sequence alignments. Accordingly, a number of programs have been developed for 15 aligning and deriving secondary structures from sets of RNA sequences. Yet, the best tools for 16 these tasks remain unclear because existing benchmarks contain too few sequences belonging to 17 only a small number of RNA families. RNAconTest (RNA consistency test) is a new 18 benchmarking approach relying on the observation that secondary structure is often conserved 19 across highly divergent RNA sequences from the same family. RNAconTest scores multiple 20 sequence alignments based on the level of consistency among known secondary structures 21 belonging to reference sequences in their output alignment. Similarly, consensus secondary 22 structure predictions are scored according to their agreement with one or more known structures 23 in a family.
    [Show full text]
  • Annual Scientific Report 2013 on the Cover Structure 3Fof in the Protein Data Bank, Determined by Laponogov, I
    EMBL-European Bioinformatics Institute Annual Scientific Report 2013 On the cover Structure 3fof in the Protein Data Bank, determined by Laponogov, I. et al. (2009) Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nature Structural & Molecular Biology 16, 667-669. © 2014 European Molecular Biology Laboratory This publication was produced by the External Relations team at the European Bioinformatics Institute (EMBL-EBI) A digital version of the brochure can be found at www.ebi.ac.uk/about/brochures For more information about EMBL-EBI please contact: [email protected] Contents Introduction & overview 3 Services 8 Genes, genomes and variation 8 Molecular atlas 12 Proteins and protein families 14 Molecular and cellular structures 18 Chemical biology 20 Molecular systems 22 Cross-domain tools and resources 24 Research 26 Support 32 ELIXIR 36 Facts and figures 38 Funding & resource allocation 38 Growth of core resources 40 Collaborations 42 Our staff in 2013 44 Scientific advisory committees 46 Major database collaborations 50 Publications 52 Organisation of EMBL-EBI leadership 61 2013 EMBL-EBI Annual Scientific Report 1 Foreword Welcome to EMBL-EBI’s 2013 Annual Scientific Report. Here we look back on our major achievements during the year, reflecting on the delivery of our world-class services, research, training, industry collaboration and European coordination of life-science data. The past year has been one full of exciting changes, both scientifically and organisationally. We unveiled a new website that helps users explore our resources more seamlessly, saw the publication of ground-breaking work in data storage and synthetic biology, joined the global alliance for global health, built important new relationships with our partners in industry and celebrated the launch of ELIXIR.
    [Show full text]