Pdf for Details)
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Hikurangi Plateau: Crustal Structure, Rifted Formation, and Gondwana Subduction History
Article Geochemistry 3 Volume 9, Number 7 Geophysics 3 July 2008 Q07004, doi:10.1029/2007GC001855 GeosystemsG G ISSN: 1525-2027 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Click Here for Full Article Hikurangi Plateau: Crustal structure, rifted formation, and Gondwana subduction history Bryan Davy Institute of Geological and Nuclear Sciences, P.O. Box 30368, Lower Hutt, New Zealand ([email protected]) Kaj Hoernle IFM-GEOMAR, Wischhofstraße 1-3, D-24148 Kiel, Germany Reinhard Werner Tethys Geoconsulting GmbH, Wischhofstraße 1-3, D-24148 Kiel, Germany [1] Seismic reflection profiles across the Hikurangi Plateau Large Igneous Province and adjacent margins reveal the faulted volcanic basement and overlying Mesozoic-Cenozoic sedimentary units as well as the structure of the paleoconvergent Gondwana margin at the southern plateau limit. The Hikurangi Plateau crust can be traced 50–100 km southward beneath the Chatham Rise where subduction cessation timing and geometry are interpreted to be variable along the margin. A model fit of the Hikurangi Plateau back against the Manihiki Plateau aligns the Manihiki Scarp with the eastern margin of the Rekohu Embayment. Extensional and rotated block faults which formed during the breakup of the combined Manihiki- Hikurangi plateau are interpreted in seismic sections of the Hikurangi Plateau basement. Guyots and ridge- like seamounts which are widely scattered across the Hikurangi Plateau are interpreted to have formed at 99–89 Ma immediately following Hikurangi Plateau jamming of the Gondwana convergent margin at 100 Ma. Volcanism from this period cannot be separately resolved in the seismic reflection data from basement volcanism; hence seamount formation during Manihiki-Hikurangi Plateau emplacement and breakup (125–120 Ma) cannot be ruled out. -
Hoplostethus Atlanticus Fisheries Relating to the South Pacific Regional Fishery Management Organisation
SP-07-SWG-INF-09 Chile 13 May 2009 Information describing orange roughy Hoplostethus atlanticus fisheries relating to the South Pacific Regional Fishery Management Organisation WORKING DRAFT 04 MAY 2007 1. Overview ................................................................................................................ 2 2. Taxonomy .............................................................................................................. 3 2.1 Phylum ............................................................................................................. 3 2.2 Class ................................................................................................................. 3 2.3 Order ................................................................................................................ 3 2.4 Family .............................................................................................................. 3 2.5 Genus and species ............................................................................................ 3 2.6 Scientific synonyms ......................................................................................... 3 2.7 Common names ............................................................................................... 3 2.8 Molecular (DNA or biochemical) bar coding .................................................. 3 3. Species characteristics ........................................................................................... 4 3.1 Global distribution and depth range -
Informe Final FIP Reineta N 2013-21 22-12-2015
1 UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS NATURALES Y OCEANOGRAFICAS DEPARTAMENTO DE OCEANOGRAFIA INFORME FINAL PROYECTO DEL FONDO DE INVESTIGACION PESQUERA “ORIGEN NATAL Y DISTRIBUCION GEOGRAFICA DE REINETA EN CHILE” FIP N° 2013-21 PROPONENTE: DEPARTAMENTO DE OCEANOGRAFIA UNIVERSIDAD DE CONCEPCION REQUIRENTE: FONDO DE INVESTIGACIÓN PESQUERA CONCEPCION, DICIEMBRE 2015 2 JEFE DE PROYECTO Ricardo Galleguillos González AUTORES Sandra Ferrada Fuentes Cristian B. Canales-Aguirre Victoria Herrera Yáñez Marcelo E. Oliva M. Edwin J. Niklitschek Pamela Toledo C. Elson Leal F. Claudio Carrasco Milton J. Pedraza COLABORADORES Daniela Lazo Felix P. Leiva Yessica Robles Luis A. Ñacari E. Cristóbal Garcés Alicia Gallardo G. Christian Ibieta F. Cristian Vargas A. Jessica Gonzalez A. Jorge Sáteler G. Julio Uribe A. Patricio Galvez G. CONCEPCION, DICIEMBRE 2015 3 Índice Resumen ejecutivo ............................................................................................................................................. 9 1. Antecedentes generales ............................................................................................................................... 15 2. Objetivos ....................................................................................................................................................... 19 2.1 Objetivo general .................................................................................................................................... 19 2.2 Objetivos específicos ........................................................................................................................... -
Fishes of the Eastern Ross Sea, Antarctica
Polar Biol (2004) 27: 637–650 DOI 10.1007/s00300-004-0632-2 REVIEW Joseph Donnelly Æ Joseph J. Torres Tracey T. Sutton Æ Christina Simoniello Fishes of the eastern Ross Sea, Antarctica Received: 26 November 2003 / Revised: 16 April 2004 / Accepted: 20 April 2004 / Published online: 16 June 2004 Ó Springer-Verlag 2004 Abstract Antarctic fishes were sampled with 41 midwater in Antarctica is dominated by a few fish families and 6 benthic trawls during the 1999–2000 austral (Bathylagidae, Gonostomatidae, Myctophidae and summer in the eastern Ross Sea. The oceanic pelagic Paralepididae) with faunal diversity decreasing south assemblage (0–1,000 m) contained Electrona antarctica, from the Antarctic Polar Front to the continent (Ever- Gymnoscopelus opisthopterus, Bathylagus antarcticus, son 1984; Kock 1992; Kellermann 1996). South of the Cyclothone kobayashii and Notolepis coatsi. These were Polar Front, the majority of meso- and bathypelagic replaced over the shelf by notothenioids, primarily Ple- fishes have circum-Antarctic distributions (McGinnis uragramma antarcticum. Pelagic biomass was low and 1982; Gon and Heemstra 1990). Taken collectively, the concentrated below 500 m. The demersal assemblage fishes are significant contributors to the pelagic biomass was characteristic of East Antarctica and included seven and are important trophic elements, both as predators species each of Artedidraconidae, Bathydraconidae and and prey (Rowedder 1979; Hopkins and Torres 1989; Channichthyidae, ten species of Nototheniidae, and Lancraft et al. 1989, 1991; Duhamel 1998). Over the three species each of Rajidae and Zoarcidae. Common continental slope and shelf, notothenioids dominate the species were Trematomus eulepidotus (36.5%), T. scotti ichthyofauna (DeWitt 1970). Most members of this (32.0%), Prionodraco evansii (4.9%), T. -
Benthic Invertebrate Bycatch from a Deep-Water Trawl Fishery, Chatham Rise, New Zealand
AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, VOL. 7, 27±40 (1997) CASE STUDIES AND REVIEWS Benthic invertebrate bycatch from a deep-water trawl fishery, Chatham Rise, New Zealand P. KEITH PROBERT1, DON G. MCKNIGHT2 and SIMON L. GROVE1 1Department of Marine Science, University of Otago, PO Box 56, Dunedin, New Zealand 2National Institute of Water and Atmospheric Research Ltd, PO Box 14-901, Kilbirnie, Wellington, New Zealand ABSTRACT 1. Benthic invertebrate bycatch was collected during trawling for orange roughy (Hoplostethus atlanticus) at water depths of 662±1524 m on the northern and eastern Chatham Rise, New Zealand, in July 1994. Seventy-three trawl tows were examined, 49 from `flat' areas and 24 from two groups of `hills' (small seamounts). Benthos was recorded from 82% of all tows. 2. Some 96 benthic species were recorded including Ophiuroidea (12 spp.), Natantia (11 spp.), Asteroidea (11 spp.), Gorgonacea (11 spp.), Holothuroidea (7 spp.), and Porifera (6 spp.). 3. Cluster analysis showed the bycatch from flats and hills to differ significantly. Dominant taxa from flats were Holothuroidea, Asteroidea and Natantia; whereas taxa most commonly recorded from hills were Gorgonacea and Scleractinia. Bycatch from the two geographically separate groups of hills also differed significantly. 4. The largest bycatch volumes comprised corals from hills: Scleractinia (Goniocorella dumosa), Stylasteridae (Errina chathamensis) and Antipatharia (?Bathyplates platycaulus). Such large sessile epifauna may significantly increase the complexity of benthic habitat and trawling damage may thereby depress local biodiversity. Coral patches may require 4100 yr to recover. 5. Other environmental effects of deep-water trawling are briefly reviewed. 6. There is an urgent need to assess more fully the impact of trawling on seamount biotas and, in consequence, possible conservation measures. -
New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E. -
Review: the Energetic Value of Zooplankton and Nekton Species of the Southern Ocean
Marine Biology (2018) 165:129 https://doi.org/10.1007/s00227-018-3386-z REVIEW, CONCEPT, AND SYNTHESIS Review: the energetic value of zooplankton and nekton species of the Southern Ocean Fokje L. Schaafsma1 · Yves Cherel2 · Hauke Flores3 · Jan Andries van Franeker1 · Mary‑Anne Lea4 · Ben Raymond5,4,6 · Anton P. van de Putte7 Received: 8 March 2018 / Accepted: 5 July 2018 / Published online: 18 July 2018 © The Author(s) 2018 Abstract Understanding the energy fux through food webs is important for estimating the capacity of marine ecosystems to support stocks of living resources. The energy density of species involved in trophic energy transfer has been measured in a large number of small studies, scattered over a 40-year publication record. Here, we reviewed energy density records of Southern Ocean zooplankton, nekton and several benthic taxa, including previously unpublished data. Comparing measured taxa, energy densities were highest in myctophid fshes (ranging from 17.1 to 39.3 kJ g−1 DW), intermediate in crustaceans (7.1 to 25.3 kJ g−1 DW), squid (16.2 to 24.0 kJ g−1 DW) and other fsh families (14.8 to 29.9 kJ g−1 DW), and lowest in jelly fsh (10.8 to 18.0 kJ g−1 DW), polychaetes (9.2 to 14.2 kJ g−1 DW) and chaetognaths (5.0–11.7 kJ g−1 DW). Data reveals diferences in energy density within and between species related to size, age and other life cycle parameters. Important taxa in Antarctic food webs, such as copepods, squid and small euphausiids, remain under-sampled. -
Age and Growth of Brauer's Lanternfish Gymnoscopelus Braueri and Rhombic Lanternfish Krefftichthys Anderssoni (Family Myctophidae) in the Scotia Sea, Southern Ocean
Received: 22 July 2019 Accepted: 14 November 2019 DOI: 10.1111/jfb.14206 REGULAR PAPER FISH Age and growth of Brauer's lanternfish Gymnoscopelus braueri and rhombic lanternfish Krefftichthys anderssoni (Family Myctophidae) in the Scotia Sea, Southern Ocean Ryan A. Saunders1 | Silvia Lourenço2,3 | Rui P. Vieira4 | Martin A. Collins1 | Carlos A. Assis5,6 | Jose C. Xavier7,1 1British Antarctic Survey, Natural Environment Research Council, Cambridge, UK Abstract 2MARE - Marine and Environmental Sciences This study examines age and growth of Brauer's lanternfish Gymnoscopelus braueri and Centre, Polytechnic of Leiria, Peniche, Portugal rhombic lanternfish Krefftichthys anderssoni from the Scotia Sea in the Southern Ocean, 3CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, through the analysis of annual growth increments deposited on sagittal otoliths. Oto- University of Porto, Matosinhos, Portugal lith pairs from 177 G. braueri and 118 K. anderssoni were collected in different seasons 4 Centre for Environment Fisheries and from the region between 2004 and 2009. Otolith-edge analysis suggested a seasonal Aquaculture Sciences, Lowestoft, UK change in opaque and hyaline depositions, indicative of an annual growth pattern, 5MARE-ULisboa – Marine and Environmental Sciences Centre, Faculty of Sciences, although variation within the populations of both species was apparent. Age estimates University of Lisbon, Lisbon, Portugal varied from 1 to 6 years for G. braueri (40 to 139 mm standard length; LS)andfrom 6Department of Animal Biology, Faculty of Sciences, University of Lisbon, Lisbon, Portugal 0 to 2 years for K. anderssoni (26 to 70 mm LS). Length-at-age data were broadly con- 7Department of Life Sciences, MARE-UC, sistent with population cohort parameters identified in concurrent length-frequency University of Coimbra, Coimbra, Portugal data from the region for both species. -
Helminth Communities in Three Sympatric Rodents from the Brazilian
Helminth communities in three sympatric rodents from the Brazilian Atlantic Forest: contrasting biomass and numerical abundance Simões, RO.a,b, Maldonado-Júnior, A.a and Luque, JL.c* aLaboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz – FIOCRUZ, Av. Brasil, 4365, Manguinhos, RJ, Brazil bCurso de Pós-graduação em Ciências Veterinárias, Universidade Federal Rural do Rio de Janeiro – UFRRJ, Seropédica, RJ, Brazil cDepartamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro – UFRRJ, CP 74508, CEP 23851-970, Seropédica, RJ, Brazil *e-mail: [email protected] Received June 30, 2011 – Accepted January 26, 2012 – Distributed November 30, 2012 (With 2 figures) Abstract The study of parasite body size is an important approach to understand the different patterns of helminth community structure, once it is usually analysed using only numerical descriptors which do not capture size heterogeneity among parasite species. In the present study, we compared the pattern in the helminth community of three sympatric wild rodent species Akodon cursor, A. montensis and Oligoryzomys nigripes using numerical abundance and biomass approaches. The cestode Rodentolepis akodontis was the worm with highest biomass in the three rodents. The trichostrongylid Stilestrongylus lanfrediae presented highest biomass in O. nigripes and represented 70% of the total numeric abundance of parasites. Interestingly, for Akodon spp. the species with more biomass represented less than 10% of the total numerical abundance. Parasites with the higher numeric abundance do not have the largest body size. Although the biomass pattern is different from numeric abundance, this difference does not influence in the helminth distribution community among the three sympatric hosts. -
Diet and Trophic Niche of Antarctic Silverfish Pleuragramma
Journal of Fish Biology (2013) 82, 141–164 doi:10.1111/j.1095-8649.2012.03476.x, available online at wileyonlinelibrary.com Diet and trophic niche of Antarctic silverfish Pleuragramma antarcticum in the Ross Sea, Antarctica M. H. Pinkerton*, J. Forman, S. J. Bury, J. Brown, P. Horn and R. L. O’Driscoll National Institute of Water and Atmospheric Research Ltd, Private Bag 14901, Wellington 6241, New Zealand (Received 16 April 2012, Accepted 18 September 2012) The diet of Antarctic silverfish Pleuragramma antarcticum was evaluated by examining stomach ◦ ◦ ◦ ◦ contents of specimens collected in the Ross Sea (71 –77 S; 165 –180 E) in January to March 2008. Pleuragramma antarcticum (50–236 mm standard length, LS) and prey items were analysed for stable-isotopic composition of carbon and nitrogen. According to index of relative importance (IRI), which incorporates frequency of occurrence, mass and number of prey items, the most impor- tant prey items were copepods (81%IRI over all specimens), predominantly Metridia gerlachei and Paraeuchaeta sp., with krill and fishes having low IRI (2·2and5·6%IRI overall). According to mass of prey (M) in stomachs, however, fishes (P. antarcticum and myctophids) and krill domi- nated overall diet (48 and 22%M, respectively), with copepods being a relatively minor constituent of overall diet by mass (9·9%M). Piscivory by P. antarcticum occurred mainly in the extreme south- west of the region and near the continental slope. Krill identified to species level in P. antarcticum stomachs were predominantly Euphausia superba (14·1%M) with some Euphausia crystallopho- rias (4·8%M). -
Charactensation of the Alfonsino (Beryx Splendens) Fishery in BYX 3
ISSN 1175-1584 MINISTRY OF FISHERIES Te Tautiaki i nga lid a Tangaroa Charactensation of the alfonsino (Beryx splendens) fishery in BYX 3 A. D. Langley N. A Walker New Zealand Fisheries Assessment Report 2002129 July 2002 Characterisation of the alfonsino (Beryx spZendm) fishery in BYX 3 A D. Langley N. A Walker Trophia Ltd PO Box 60 Kaikoura New Zealand Fisheries Assessment Report 2002129 July 2002 Published by Ministry of Fisheries Wellington 2002 ISSN 1175-1584 0 Ministry of Fisheries 2002 Citation: Langley, A.D.; Walker, N.A. (2002). Characterisation of the alfonsino (Beysplendens) fishery in BYX 3. New Zealand Fisheries Assessment Report 2002/29.40 p. This series continues the informal New Zealand Fisheries Assessment Research Document series which ceased at the end of 1999. EXECUTIVE SUMMARY Langley, A.D.; Walker, N.A. (2002). Characterisation of the alfonsino (Beryx splendem) fishery in BYX 3. New Zealand Fisheries Assessment Report 2002B9.40 p. Alfonsino, Belyx splendens, are distributed worldwide in temperate and bopical waters with the exception of the northeastern Pacific. The commercial fishery in New Zealand fishes seamounts and underwater ridges at depths ranging from 200 to 1000 m. In BYX 3, the alfonsino fishery off the east coast of the south island of New Zealand, a target trawl fishery has developed recently, particularly to the southeast of the Chatham Islands, which has resulted in a large increase in catches and a concomitant increase in bycatch of bluenose, EfypezogIypJze antarctica. These developments prompted concerns regarding the status of the stocks and the Ministry of Fisheries commissioned a review of the fishery. -
Orange Roughy New Zealand
Orange Roughy Hoplostethus atlanticus Image ©Monterey Bay Aquarium New Zealand Bottom Trawl July 21, 2014 Andy Woolmer and Jess Woo, Consulting Researcher 2 About Seafood Watch® The Monterey Bay Aquarium Seafood Watch® program evaluates the ecological sustainability of wild- caught and farmed seafood commonly found in the North American marketplace. Seafood Watch defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. The program’s mission is to engage and empower consumers and businesses to purchase environmentally responsible seafood fished or farmed in ways that minimize their impact on the environment or are in a credible improvement project with the same goal. Each sustainability recommendation is supported by a seafood report. Each report synthesizes and analyzes the most current ecological, fisheries and ecosystem science on a species, then evaluates this information against the program’s Sustainability Criteria to arrive at a recommendation of “Best Choice,” “Good Alternative,” or “Avoid.” In producing the seafood reports, Seafood Watch utilizes research published in academic, peer-reviewed journals whenever possible. Other sources of information include government technical publications, fishery management plans and supporting documents, and other scientific reviews of ecological sustainability. Seafood Watch research analysts also communicate with ecologists, fisheries and aquaculture scientists, and members of industry and conservation organizations when evaluating fisheries and aquaculture practices. Capture fisheries and aquaculture practices are highly dynamic; as the scientific information on each species changes, Seafood Watch’s sustainability recommendations and the underlying seafood reports will be updated to reflect these changes.