Muzeul Ţării Crişurilor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
References Please Help Making This Preliminary List As Complete As Possible!
Cypraeidae - important references Please help making this preliminary list as complete as possible! ABBOTT, R.T. (1965) Cypraea arenosa Gray, 1825. Hawaiian Shell News 14(2):8 ABREA, N.S. (1980) Strange goings on among the Cypraea ziczac. Hawaiian Shell News 28 (5):4 ADEGOKE, O.S. (1973) Paleocene mollusks from Ewekoro, southern Nigeria. Malacologia 14:19-27, figs. 1-2, pls. 1-2. ADEGOKE, O.S. (1977) Stratigraphy and paleontology of the Ewekoro Formation (Paleocene) of southeastern Nigeria. Bulletins of American Paleontology 71(295):1-379, figs. 1-6, pls. 1-50. AIKEN, R. P. (2016) Description of two undescribed subspecies and one fossil species of the Genus Cypraeovula Gray, 1824 from South Africa. Beautifulcowries Magazine 8: 14-22 AIKEN, R., JOOSTE, P. & ELS, M. (2010) Cypraeovula capensis - A specie of Diversity and Beauty. Strandloper 287 p. 16 ff AIKEN, R., JOOSTE, P. & ELS, M. (2014) Cypraeovula capensis. A species of diversity and beauty. Beautifulcowries Magazine 5: 38–44 ALLAN, J. (1956) Cowry Shells of World Seas. Georgian House, Melbourne, Australia, 170 p., pls. 1-15. AMANO, K. (1992) Cypraea ohiroi and its associated molluscan species from the Miocene Kadonosawa Formation, northeast Japan. Bulletin of the Mizunami Fossil Museum 19:405-411, figs. 1-2, pl. 57. ANCEY, C.F. (1901) Cypraea citrina Gray. The Nautilus 15(7):83. ANONOMOUS. (1971) Malacological news. La Conchiglia 13(146-147):19-20, 5 unnumbered figs. ANONYMOUS. (1925) Index and errata. The Zoological Journal. 1: [593]-[603] January. ANONYMOUS. (1889) Cypraea venusta Sowb. The Nautilus 3(5):60. ANONYMOUS. (1893) Remarks on a new species of Cypraea. -
Pulmonata, Helicidae) and the Systematic Position of Cylindrus Obtusus Based on Nuclear and Mitochondrial DNA Marker Sequences
© 2013 The Authors Accepted on 16 September 2013 Journal of Zoological Systematics and Evolutionary Research Published by Blackwell Verlag GmbH J Zoolog Syst Evol Res doi: 10.1111/jzs.12044 Short Communication 1Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway; 2Central Research Laboratories, Natural History Museum, Vienna, Austria; 33rd Zoological Department, Natural History Museum, Vienna, Austria; 4Department of Integrative Zoology, University of Vienna, Vienna, Austria; 5Department of Zoology, Hungarian Natural History Museum, Budapest, Hungary New data on the phylogeny of Ariantinae (Pulmonata, Helicidae) and the systematic position of Cylindrus obtusus based on nuclear and mitochondrial DNA marker sequences 1 2,4 2,3 3 2 5 LUIS CADAHIA ,JOSEF HARL ,MICHAEL DUDA ,HELMUT SATTMANN ,LUISE KRUCKENHAUSER ,ZOLTAN FEHER , 2,3,4 2,4 LAURA ZOPP and ELISABETH HARING Abstract The phylogenetic relationships among genera of the subfamily Ariantinae (Pulmonata, Helicidae), especially the sister-group relationship of Cylindrus obtusus, were investigated with three mitochondrial (12S rRNA, 16S rRNA, Cytochrome c oxidase subunit I) and two nuclear marker genes (Histone H4 and H3). Within Ariantinae, C. obtusus stands out because of its aberrant cylindrical shell shape. Here, we present phylogenetic trees based on these five marker sequences and discuss the position of C. obtusus and phylogeographical scenarios in comparison with previously published results. Our results provide strong support for the sister-group relationship between Cylindrus and Arianta confirming previous studies and imply that the split between the two genera is quite old. The tree reveals a phylogeographical pattern of Ariantinae with a well-supported clade comprising the Balkan taxa which is the sister group to a clade with individuals from Alpine localities. -
Upper Eocene) of the Sultanate of Oman
Pala¨ontol Z (2016) 90:63–99 DOI 10.1007/s12542-015-0277-1 RESEARCH PAPER Terrestrial and lacustrine gastropods from the Priabonian (upper Eocene) of the Sultanate of Oman 1 1 2 3 Mathias Harzhauser • Thomas A. Neubauer • Dietrich Kadolsky • Martin Pickford • Hartmut Nordsieck4 Received: 17 January 2015 / Accepted: 15 September 2015 / Published online: 29 October 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Terrestrial and aquatic gastropods from the sparse non-marine fossil record of the Eocene in the Tethys upper Eocene (Priabonian) Zalumah Formation in the region. The occurrence of the genera Lanistes, Pila, and Salalah region of the Sultanate of Oman are described. The Gulella along with some pomatiids, probably related to assemblages reflect the composition of the continental extant genera, suggests that the modern African–Arabian mollusc fauna of the Palaeogene of Arabia, which, at that continental faunas can be partly traced back to Eocene time, formed parts of the southeastern Tethys coast. Sev- times and reflect very old autochthonous developments. In eral similarities with European faunas are observed at the contrast, the diverse Vidaliellidae went extinct, and the family level, but are rarer at the genus level. These simi- morphologically comparable Neogene Achatinidae may larities point to an Eocene (Priabonian) rather than to a have occupied the equivalent niches in extant environ- Rupelian age, although the latter correlation cannot be ments. Carnevalea Harzhauser and Neubauer nov. gen., entirely excluded. At the species level, the Omani assem- Arabiella Kadolsky, Harzhauser and Neubauer nov. gen., blages lack any relations to coeval faunas. -
Ecological Groups of Snails – Use and Perspectives
The subdivision of all central European Holocene and Late Glacial land snail species to ecological groups ecological Glacial Early Holocene Middle Holocene Late Holocene (sensu Walker at al 2012) modern immigrants comment group Acanthinula aculeata Acanthinula aculeata Acanthinula aculeata Acanthinula aculeata Acicula parcelineata Acicula parcelineata Aegopinella epipedostoma one sites Aegopinella nitens Aegopinella nitens Aegopinella nitidula Aegopinella nitidula few sites Aegopinella pura Aegopinella pura Aegopinella pura Aegopinella pura Aegopis verticillus Ecological groups of snails Argna bielzi Argna bielzi Bulgarica cana Bulgarica cana Carpathica calophana Carpathica calophana one site; undated Causa holosericea Causa holosericea Clausilia bidentata no fossil data Clausilia cruciata Clausilia cruciata Clausilia cruciata – use and perspectives Cochlodina laminata Cochlodina laminata Cochlodina laminata Cochlodina laminata Cochlodina orthostoma Cochlodina orthostoma Cochlodina orthostoma Cochlodina orthostoma Daudebardia brevipes Daudebardia brevipes Daudebardia rufa Daudebardia rufa Daudebardia rufa Daudebardia rufa Discus perspectivus Discus perspectivus Discus perspectivus 1 2 1 1 ) Lucie Juřičková , Michal Horsák , Jitka Horáčková and Vojen Ložek Discus ruderatus Discus ruderatus Discus ruderatus Discus ruderatus Ena montana Ena montana Ena montana Ena montana forest Eucobresia nivalis Eucobresia nivalis Eucobresia nivalis Faustina faustina Faustina faustina Faustina faustina Faustina faustina Faustina rossmaessleri Faustina -
Flexopecten Glaber Linnaeus, 1758) at Different Depths in the Aegean Sea
Mar. Sci. Tech. Bull. (2021) 10(3): 278-285 dergipark.org.tr/en/pub/masteb e–ISSN: 2147–9666 www.masteb.com [email protected] DOI: 10.33714/masteb.947869 RESEARCH ARTICLE Growth and survival performance of smooth scallop (Flexopecten glaber Linnaeus, 1758) at different depths in the Aegean Sea Selçuk Yiğitkurt1* 1 Ege University, Faculty of Fisheries, Department of Aquaculture, 35100, Izmir, Turkey ARTICLE INFO ABSTRACT Article History: This study was conducted between July 2016 and 2017 to determine the growth and survival rates Received: 04.06.2021 of the smooth scallop Flexopecten glaber spats in Urla Karantina Island. The sea water temperature Received in revised form: 20.07.2021 was determined as 21.56±6.33°C, 21.1±6.40°C and 20.87±6.35°C at 2, 4 and 6 m depths, respectively. Accepted: 25.07.2021 Salinity values varied between 36 and 38.19 PSU in the region. The highest chlorophyll-a value was Available online: 08.08.2021 determined as 8.95 µg l-1 in August at 2m depth and 1.65 µg l-1 as the lowest at 4 m depth in January. Keywords: Average values of total particulate matter amount were calculated as 4.41±1.86 mg l-1, 5.09±1.88 mg Flexopecten glaber l-1 and 5.47±1.89 mg l-1 at 2, 4 and 6m depth, respectively. Scallop spats with an average height of Smooth scallop 8.26±1.55 mm were measured at the beginning of the study. The heights of the smooth scallop spats, Growth which were placed at 2m, 4m and 6m depths in the study area, were 42.6±1.11 mm, 41.53±12.85 mm Culture and 41.57±1.64 mm and their weights were measured as 12.71±0.89 g, 12.85±0.53 g and 12.82±1.00 Specific growth rate Aegean Sea g, respectively. -
Invertebrate Animals (Metazoa: Invertebrata) of the Atanasovsko Lake, Bulgaria
Historia naturalis bulgarica, 22: 45-71, 2015 Invertebrate Animals (Metazoa: Invertebrata) of the Atanasovsko Lake, Bulgaria Zdravko Hubenov, Lyubomir Kenderov, Ivan Pandourski Abstract: The role of the Atanasovsko Lake for storage and protection of the specific faunistic diversity, characteristic of the hyper-saline lakes of the Bulgarian seaside is presented. The fauna of the lake and surrounding waters is reviewed, the taxonomic diversity and some zoogeographical and ecological features of the invertebrates are analyzed. The lake system includes from freshwater to hyper-saline basins with fast changing environment. A total of 6 types, 10 classes, 35 orders, 82 families and 157 species are known from the Atanasovsko Lake and the surrounding basins. They include 56 species (35.7%) marine and marine-brackish forms and 101 species (64.3%) brackish-freshwater, freshwater and terrestrial forms, connected with water. For the first time, 23 species in this study are established (12 marine, 1 brackish and 10 freshwater). The marine and marine- brackish species have 4 types of ranges – Cosmopolitan, Atlantic-Indian, Atlantic-Pacific and Atlantic. The Atlantic (66.1%) and Cosmopolitan (23.2%) ranges that include 80% of the species, predominate. Most of the fauna (over 60%) has an Atlantic-Mediterranean origin and represents an impoverished Atlantic-Mediterranean fauna. The freshwater-brackish, freshwater and terrestrial forms, connected with water, that have been established from the Atanasovsko Lake, have 2 main types of ranges – species, distributed in the Palaearctic and beyond it and species, distributed only in the Palaearctic. The representatives of the first type (52.4%) predomi- nate. They are related to the typical marine coastal habitats, optimal for the development of certain species. -
T.C. Süleyman Demirel Üniversitesi Fen Bilimleri
T.C. SÜLEYMAN DEM İREL ÜN İVERS İTES İ FEN B İLİMLER İ ENST İTÜSÜ KUZEYBATI ANADOLU’NUN KARASAL GASTROPODLARI ÜM İT KEBAPÇI Danı şman: Prof. Dr. M. Zeki YILDIRIM DOKTORA TEZ İ BİYOLOJ İ ANAB İLİMDALI ISPARTA – 2007 Fen Bilimleri Enstitüsü Müdürlü ğüne Bu çalı şma jürimiz tarafından …………. ANAB İLİM DALI'nda oybirli ği/oyçoklu ğu ile DOKTORA TEZ İ olarak kabul edilmi ştir. Ba şkan : (Ünvanı, Adı ve Soyadı) (İmza) (Kurumu)................................................... Üye : (Ünvanı, Adı ve Soyadı) (İmza) (Kurumu)................................................... Üye : (Ünvanı, Adı ve Soyadı) (İmza) (Kurumu)................................................... Üye: (Ünvanı, Adı ve Soyadı) (İmza) (Kurumu)................................................... Üye : (Ünvanı, Adı ve Soyadı) (İmza) (Kurumu)................................................... ONAY Bu tez .../.../20.. tarihinde yapılan tez savunma sınavı sonucunda, yukarıdaki jüri üyeleri tarafından kabul edilmi ştir. ...../...../20... Prof. Dr. Fatma GÖKTEPE Enstitü Müdürü İÇİNDEK İLER Sayfa İÇİNDEK İLER......................................................................................................... i ÖZET........................................................................................................................ ix ABSTRACT.............................................................................................................. x TE ŞEKKÜR ............................................................................................................. xi ŞEK -
Redalyc.Lista Sistemática De Los Moluscos Marinos Y Estuarinos Del
Comunicaciones de la Sociedad Malacológica del Uruguay ISSN: 0037-8607 [email protected] Sociedad Malacológica del Uruguay Uruguay Clavijo, Cristhian; Scarabino, Fabrizio; Rojas, Alejandra; Martínez, Sergio Lista sistemática de los moluscos marinos y estuarinos del cuaternario de Uruguay Comunicaciones de la Sociedad Malacológica del Uruguay, vol. 9, núm. 88, 2005, pp. 381-411 Sociedad Malacológica del Uruguay Montevideo, Uruguay Disponible en: http://www.redalyc.org/articulo.oa?id=52408804 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Comunicaciones de la Sociedad Malacológica del Uruguay ISSN 0037- 8607 9 (88): 381 – 411. 2005 LISTA SISTEMÁTICA DE LOS MOLUSCOS MARINOS Y ESTUARINOS DEL CUATERNARIO DE URUGUAY Cristhian Clavijo § , Fabrizio Scarabino § , Alejandra Rojas * & Sergio Martínez * R ESUMEN Hasta el momento han sido citadas 142 especies de moluscos marinos y estuarinos para el Cuaternario de Uruguay. Esta fauna está compuesta taxonómicamente de la siguiente forma: Polyplacophora (2 especies), Scaphopoda (1), Gastropoda (66) y Bivalvia (73). PALABRAS CLAVE: Holoceno, Pleistoceno, Polyplacophora, Scaphopoda, Gastropoda, Bivalvia, Atlántico Sudoccidental. A BSTRACT Systematic list of the marine and estuarine molluscs from the Quaternary of Uruguay. Until now 142 species of marine and estuarine molluscs have been recorded from the Quaternary of Uruguay. This fauna is taxonomically composed as follows: Polyplacophora (2 species), Scaphopoda (1), Gastropoda (66) and Bivalvia (73). KEY WORDS: Holocene, Pleistocene, Polyplacophora, Scaphopoda, Gastropoda, Bivalvia, Southwestern Atlantic. INTRODUCCIÓN pobremente estudiados, constituyendo un particular ejemplo de los desafíos a superar. -
THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject. -
Conch 40-6-Text.Indb
Journal of ConChology (2011), Vol.40, no.6 583 TAXONOMIC REVISION, HABITATS AND BIOGEOGRAPHY OF THE LAND SNAIL FAMILY DISCIDAE (GASTROPODA: PULMONATA) IN THE CANARY ISLANDS 1 1 2 3 3 DaViD t. holyoak , geralDine a. holyoak , yurena yanes , Maria r. alonso & Miguel iBáñeZ 1Quinta da Cachopa, Barcoila, 6100–014 Cabeçudo, Portugal. 2Instituto Andaluz de Ciencias de la Tierra (CSIC-Universidad de Granada), Camino del Jueves s/n, 18100, Armilla, Granada, Spain. 3Departamento de Biologia Animal, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Islas Canarias, Spain. Abstract The endemic Macaronesian Canaridiscus, provisionally placed in the Discidae genus Atlantica, are closely linked to the peculiar laurel forest habitat of these islands. Knowledge of Atlantica (Canaridiscus) is increased here with the descrip- tion, for the first time, of the genital system of three more of its species. The epiphallus is apparently lacking and the penis is much longer than that known from any of the Discidae of Europe and North America; generally it is too large to be more than partly accommodated in the distal female genital tract. Keraea has been regarded as an endemic Macaronesian genus of Discidae known only from a few shells, but its Madeiran species has been identified as a Trochulus (Hygromiidae) and its type species (from Tenerife) also matches Hygromiidae, not Discidae. The origin and relationships of the Macaronesian Discidae are discussed. The simplest explanatory model is apparently that they represent the last living relicts of a more diverse fauna of Discidae that lived in Europe during the Tertiary; Atlantica (Canaridiscus) was probably isolated early on from the remaining Discidae. -
Florida Keys Species List
FKNMS Species List A B C D E F G H I J K L M N O P Q R S T 1 Marine and Terrestrial Species of the Florida Keys 2 Phylum Subphylum Class Subclass Order Suborder Infraorder Superfamily Family Scientific Name Common Name Notes 3 1 Porifera (Sponges) Demospongia Dictyoceratida Spongiidae Euryspongia rosea species from G.P. Schmahl, BNP survey 4 2 Fasciospongia cerebriformis species from G.P. Schmahl, BNP survey 5 3 Hippospongia gossypina Velvet sponge 6 4 Hippospongia lachne Sheepswool sponge 7 5 Oligoceras violacea Tortugas survey, Wheaton list 8 6 Spongia barbara Yellow sponge 9 7 Spongia graminea Glove sponge 10 8 Spongia obscura Grass sponge 11 9 Spongia sterea Wire sponge 12 10 Irciniidae Ircinia campana Vase sponge 13 11 Ircinia felix Stinker sponge 14 12 Ircinia cf. Ramosa species from G.P. Schmahl, BNP survey 15 13 Ircinia strobilina Black-ball sponge 16 14 Smenospongia aurea species from G.P. Schmahl, BNP survey, Tortugas survey, Wheaton list 17 15 Thorecta horridus recorded from Keys by Wiedenmayer 18 16 Dendroceratida Dysideidae Dysidea etheria species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 19 17 Dysidea fragilis species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 20 18 Dysidea janiae species from G.P. Schmahl, BNP survey; Tortugas survey, Wheaton list 21 19 Dysidea variabilis species from G.P. Schmahl, BNP survey 22 20 Verongida Druinellidae Pseudoceratina crassa Branching tube sponge 23 21 Aplysinidae Aplysina archeri species from G.P. Schmahl, BNP survey 24 22 Aplysina cauliformis Row pore rope sponge 25 23 Aplysina fistularis Yellow tube sponge 26 24 Aplysina lacunosa 27 25 Verongula rigida Pitted sponge 28 26 Darwinellidae Aplysilla sulfurea species from G.P. -
Clams” Fauna Along French Coasts
Asian Journal of Research in Animal and Veterinary Sciences 1(1): 1-12, 2018; Article no.AJRAVS.39207 The Regulation of Interspecific Variations of Shell Shape in Bivalves: An Illustration with the Common “Clams” Fauna along French Coasts Jean Béguinot1* 1Biogéosciences, UMR 6282, CNRS, Université Bourgogne Franche-Comté, 6, Boulevard Gabriel, 21000 Dijon, France. Author’s contribution The sole author designed, analyzed, interpreted and prepared the manuscript. Article Information DOI: 10.9734/AJRAVS/2018/39207 Editor(s): (1) Andras Fodor, Department of Animal Sciences, Ohio State University, USA. Reviewers: (1) Mahmoud Abdelhamid Dawood, Kafrelsheikh University, Egypt. (2) Mbadu Zebe Victorine, Democratic Republic of Congo. Complete Peer review History: http://www.sciencedomain.org/review-history/23116 Received 24th November 2017 th Original Research Article Accepted 6 February 2018 Published 10th February 2018 ABSTRACT I report an unexpected negative covariance occurring between two major parameters governing shell growth in marine bivalves, especially within the order Veneroida. This relationship is highlighted, here, considering a set of forty, rather common species of clams collected from French coasts. Interestingly, this negative covariance has two (geometrically related) consequences on the pattern of variation of shell shape at the inter-specific level: (i) An extended range of variation of shell elongation ‘E’ is made compatible with. (ii) A severely restricted range of variation of the ventral convexity ‘K’ of the shell contour. I suggest that: (i) The extended range of interspecific variation of the shell elongation ‘E’ results from a trend towards larger differentiation between species according to this functionally important parameter E, while, in contrast, (ii) The strongly restricted range of variation of the ventral convexity ‘K’ of the shell contour might arguably result from a common need for improved shell resistance, face to mechanical solicitations from the environment, either biotic or abiotic.