A Placenta-Specific Receptor for the Fusogenic, Endogenous Retrovirus-Derived, Human Syncytin-2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alpha-Satellite RNA Transcripts Are Repressed by Centromere
RESEARCH ARTICLE Alpha-satellite RNA transcripts are repressed by centromere–nucleolus associations Leah Bury1†, Brittania Moodie1†, Jimmy Ly1,2, Liliana S McKay1, Karen HH Miga3, Iain M Cheeseman1,2* 1Whitehead Institute for Biomedical Research, Cambridge, United States; 2Department of Biology, Massachusetts Institute of Technology, Cambridge, United States; 3UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, United States Abstract Although originally thought to be silent chromosomal regions, centromeres are instead actively transcribed. However, the behavior and contributions of centromere-derived RNAs have remained unclear. Here, we used single-molecule fluorescence in-situ hybridization (smFISH) to detect alpha-satellite RNA transcripts in intact human cells. We find that alpha-satellite RNA- smFISH foci levels vary across cell lines and over the cell cycle, but do not remain associated with centromeres, displaying localization consistent with other long non-coding RNAs. Alpha-satellite expression occurs through RNA polymerase II-dependent transcription, but does not require established centromere or cell division components. Instead, our work implicates centromere– nucleolar interactions as repressing alpha-satellite expression. The fraction of nucleolar-localized centromeres inversely correlates with alpha-satellite transcripts levels across cell lines and transcript levels increase substantially when the nucleolus is disrupted. The control of alpha-satellite transcripts by centromere-nucleolar contacts provides a mechanism to modulate centromere transcription and chromatin dynamics across diverse cell states and conditions. *For correspondence: [email protected] †These authors contributed equally to this work Introduction Chromosome segregation requires the function of a macromolecular kinetochore structure to con- Competing interests: The nect chromosomal DNA and spindle microtubule polymers. -
CATALOG NUMBER: AKR-213 STORAGE: Liquid Nitrogen Note
CATALOG NUMBER: AKR-213 STORAGE: Liquid nitrogen Note: For best results begin culture of cells immediately upon receipt. If this is not possible, store at -80ºC until first culture. Store subsequent cultured cells long term in liquid nitrogen. QUANTITY & CONCENTRATION: 1 mL, 1 x 106 cells/mL in 70% DMEM, 20% FBS, 10% DMSO Background HeLa cells are the most widely used cancer cell lines in the world. These cells were taken from a lady called Henrietta Lacks from her cancerous cervical tumor in 1951 which today is known as the HeLa cells. These were the very first cell lines to survive outside the human body and grow. Both GFP and blasticidin-resistant genes are introduced into parental HeLa cells using lentivirus. Figure 1. HeLa/GFP Cell Line. Left: GFP Fluorescence; Right: Phase Contrast. Quality Control This cryovial contains at least 1.0 × 106 HeLa/GFP cells as determined by morphology, trypan-blue dye exclusion, and viable cell count. The HeLa/GFP cells are tested free of microbial contamination. Medium 1. Culture Medium: D-MEM (high glucose), 10% fetal bovine serum (FBS), 0.1 mM MEM Non- Essential Amino Acids (NEAA), 2 mM L-glutamine, 1% Pen-Strep, (optional) 10 µg/mL Blasticidin. 2. Freeze Medium: 70% DMEM, 20% FBS, 10% DMSO. Methods Establishing HeLa/GFP Cultures from Frozen Cells 1. Place 10 mL of complete DMEM growth medium in a 50-mL conical tube. Thaw the frozen cryovial of cells within 1–2 minutes by gentle agitation in a 37°C water bath. Decontaminate the cryovial by wiping the surface of the vial with 70% (v/v) ethanol. -
Ervmap Analysis Reveals Genome-Wide Transcription of INAUGURAL ARTICLE Human Endogenous Retroviruses
ERVmap analysis reveals genome-wide transcription of INAUGURAL ARTICLE human endogenous retroviruses Maria Tokuyamaa, Yong Konga, Eric Songa, Teshika Jayewickremea, Insoo Kangb, and Akiko Iwasakia,c,1 aDepartment of Immunobiology, Yale School of Medicine, New Haven, CT 06520; bDepartment of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520; and cHoward Hughes Medical Institute, Chevy Chase, MD 20815 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2018. Contributed by Akiko Iwasaki, October 23, 2018 (sent for review August 24, 2018; reviewed by Stephen P. Goff and Nir Hacohen) Endogenous retroviruses (ERVs) are integrated retroviral elements regulates expression of IFN-γ–responsive genes, such as AIM2, that make up 8% of the human genome. However, the impact of APOL1, IFI6, and SECTM1 (16). ERV elements can drive ERVs on human health and disease is not well understood. While transcription of genes, generate chimeric transcripts with protein- select ERVs have been implicated in diseases, including autoim- coding genes in cancer, serve as splice donors or acceptors mune disease and cancer, the lack of tools to analyze genome- for neighboring genes, and be targets of recombination and in- wide, locus-specific expression of proviral autonomous ERVs has crease genomic diversity (17, 18). ERVs that are elevated in hampered the progress in the field. Here we describe a method breast cancer tissues correlate with the expression of granzyme called ERVmap, consisting of an annotated database of 3,220 hu- and perforin levels, implying a possible role of ERVs in immune man proviral ERVs and a pipeline that allows for locus-specific surveillance of tumors (19). -
Paleovirology of 'Syncytins', Retroviral Env Genes Exapted for a Role in Placentation
Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation Christian Lavialle1,2, Guillaume Cornelis1,2, Anne Dupressoir1,2, Ce´cile Esnault1,2, Odile Heidmann1,2,Ce´cile Vernochet1,2 1,2 rstb.royalsocietypublishing.org and Thierry Heidmann 1UMR 8122, Unite´ des Re´trovirus Endoge`nes et E´le´ments Re´troı¨des des Eucaryotes Supe´rieurs, CNRS, Institut Gustave Roussy, 94805 Villejuif, France 2Universite´ Paris-Sud XI, 91405 Orsay, France Review The development of the emerging field of ‘paleovirology’ allows biologists to reconstruct the evolutionary history of fossil endogenous retroviral sequences Cite this article: Lavialle C, Cornelis G, integrated within the genome of living organisms and has led to the retrieval of conserved, ancient retroviral genes ‘exapted’ by ancestral hosts to fulfil Dupressoir A, Esnault C, Heidmann O, essential physiological roles, syncytin genes being undoubtedly among the Vernochet C, Heidmann T. 2013 Paleovirology most remarkable examples of such a phenomenon. Indeed, syncytins are of ‘syncytins’, retroviral env genes exapted for a ‘new’ genes encoding proteins derived from the envelope protein of endogen- role in placentation. Phil Trans R Soc B 368: ous retroviral elements that have been captured and domesticated on multiple 20120507. occasions and independently in diverse mammalian species, through a pro- http://dx.doi.org/10.1098/rstb.2012.0507 cess of convergent evolution. Knockout of syncytin genes in mice provided evidence for their absolute requirement for placenta development and embryo survival, via formation by cell–cell fusion of syncytial cell layers at One contribution of 13 to a Theme Issue the fetal–maternal interface. -
Polyclonal Antibody to MFSD2 (C-Term) - Aff - Purified
OriGene Technologies, Inc. OriGene Technologies GmbH 9620 Medical Center Drive, Ste 200 Schillerstr. 5 Rockville, MD 20850 32052 Herford UNITED STATES GERMANY Phone: +1-888-267-4436 Phone: +49-5221-34606-0 Fax: +1-301-340-8606 Fax: +49-5221-34606-11 [email protected] [email protected] AP26290PU-N Polyclonal Antibody to MFSD2 (C-term) - Aff - Purified Alternate names: HMFN0656, Major facilitator superfamily domain-containing protein 2, PP9177 Quantity: 0.1 mg Background: Multidrug transporters, such as MFSD2A, are membrane proteins that expel a wide spectrum of cytotoxic compounds from the cell and render cells resistant to multiple drugs. Major Facilitator Superfamily (MFS) members are capable of transporting various substrates such as sugars, polyols, drugs, neurotransmitters, amino acids, peptides, and inorganic anions, although most members are substrate-specific. MFSD2A is a novel lung cancer tumor suppressor gene that regulates cell cycle progression and matrix attachment and has recently been described as the human receptor for syncytin-2, a retrovirus-derived protein mediating fusion of placental trophoblasts. MFSD2A is expressed in many tissues and is highly induced in liver and brown adipose tissue (BAT) during fasting. The activation of the betaAR signaling pathway plays a major role in the induction of MFSD2A expression during adaptive thermogenesis. Uniprot ID: Q8NA29 NCBI: NP_001129965 GeneID: 84879 Host: Rabbit Immunogen: 18 amino acid peptide near the carboxy terminus of human MFSD2A Format: State: Liquid Ig fraction Purification: Affinity chromatography purified via peptide column Buffer System: PBS containing 0.02% sodium azide Applications: ELISA. Western blot: 1 - 2 µg/ml. Positive control: Lung Tissue Lysate. -
High-Level Expression of the HIV Entry Inhibitor Griffithsin from the Plastid Genome and Retention of Biological Activity in Dried Tobacco Leaves
Plant Molecular Biology (2018) 97:357–370 https://doi.org/10.1007/s11103-018-0744-7 High-level expression of the HIV entry inhibitor griffithsin from the plastid genome and retention of biological activity in dried tobacco leaves Matthijs Hoelscher1 · Nadine Tiller1,3 · Audrey Y.‑H. Teh2 · Guo‑Zhang Wu1 · Julian K‑C. Ma2 · Ralph Bock1 Received: 20 April 2018 / Accepted: 29 May 2018 / Published online: 9 June 2018 © The Author(s) 2018 Abstract Key message The potent anti-HIV microbicide griffithsin was expressed to high levels in tobacco chloroplasts, ena- bling efficient purification from both fresh and dried biomass, thus providing storable material for inexpensive production and scale-up on demand. Abstract The global HIV epidemic continues to grow, with 1.8 million new infections occurring per year. In the absence of a cure and an AIDS vaccine, there is a pressing need to prevent new infections in order to curb the disease. Topical microbicides that block viral entry into human cells can potentially prevent HIV infection. The antiviral lectin griffithsin has been identified as a highly potent inhibitor of HIV entry into human cells. Here we have explored the possibility to use transplastomic plants as an inexpensive production platform for griffithsin. We show that griffithsin accumulates in stably transformed tobacco chloroplasts to up to 5% of the total soluble protein of the plant. Griffithsin can be easily purified from leaf material and shows similarly high virus neutralization activity as griffithsin protein recombinantly expressed in bacteria. We also show that dried tobacco provides a storable source material for griffithsin purification, thus enabling quick scale-up of production on demand. -
THE CANCER WHICH SURVIVED: Insights from the Genome of an 11,000 Year-Old Cancer
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo THE CANCER WHICH SURVIVED: Insights from the genome of an 11,000 year-old cancer Andrea Strakova and Elizabeth P. Murchison Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK [email protected] and [email protected] ABSTRACT The canine transmissible venereal tumour (CTVT) is a transmissible cancer that is spread between dogs by the allogeneic transfer of living cancer cells during coitus. CTVT affects dogs around the world and is the oldest and most divergent cancer lineage known in nature. CTVT first emerged as a cancer about 11,000 years ago from the somatic cells of an individual dog, and has subsequently acquired adaptations for cell transmission between hosts and for survival as an allogeneic graft. Furthermore, it has achieved a genome configuration which is compatible with long-term survival. Here, we discuss and speculate on the evolutionary processes and adaptions which underlie the success of this remarkable lineage. INTRODUCTION The canine transmissible venereal tumour (CTVT) (Figure 1A) is a cancer that first emerged as a tumour affecting an individual dog that lived about 11,000 years ago [1-3]. Rather than dying together with its original host, the cells of this cancer are still alive today, having been passaged between dogs by the transfer of living cancer cells during coitus (Figure 1B). The genome of CTVT, which has recently been sequenced, bears the imprint of the evolutionary history of this extraordinary cell lineage [1]. -
Chemical Tools for Synthesis, Modification, and Analysis of Lipids
Chemical Society Reviews Chemical tools for synthesis, modification, and analysis of lipids Journal: Chemical Society Reviews Manuscript ID CS-TRV-02-2020-000154.R1 Article Type: Tutorial Review Date Submitted by the 12-May-2020 Author: Complete List of Authors: Flores, Judith; University of California, San Diego, Chemistry & Biochemistry White, Brittany; Cornell University, Chemistry and Chemical Biology Brea, Roberto; University of California, San Diego, Chemistry & Biochemistry Baskin, Jeremy; Cornell University, Chemistry and Chemical Biology Devaraj, Neal; University of California, San Diego, Chemistry and Biochemistry Page 1 of 13 PleaseChemical do not Society adjust Reviews margins TUTORIAL REVIEW Lipids: chemical tools for their synthesis, modification, and analysis †a †b a b, a, Received 00th January 20xx, Judith Flores, Brittany M. White, Roberto J. Brea, Jeremy M. Baskin * and Neal K. Devaraj * Accepted 00th January 20xx Lipids remain one of the most enigmatic classes of biological molecules. Whereas lipids are well known to form basic units DOI: 10.1039/x0xx00000x of membrane structure and energy storage, deciphering the exact roles and biological interactions of distinct lipid species rsc.li/chem-soc-rev has proven elusive. How these building blocks are synthesized, trafficked, and stored are also questions that require closer inspection. This tutorial review covers recent advances on the preparation, derivatization, and analysis of lipids. In particular, we describe several chemical approaches that form part of a powerful toolbox for controlling and characterizing lipid structure. We believe these tools will be helpful in numerous applications, including the study of lipid-protein interactions and the development of novel drug delivery systems. Key learning points 1. -
Supplementary Data
Supplementary Fig. 1 A B Responder_Xenograft_ Responder_Xenograft_ NON- NON- Lu7336, Vehicle vs Lu7466, Vehicle vs Responder_Xenograft_ Responder_Xenograft_ Sagopilone, Welch- Sagopilone, Welch- Lu7187, Vehicle vs Lu7406, Vehicle vs Test: 638 Test: 600 Sagopilone, Welch- Sagopilone, Welch- Test: 468 Test: 482 Responder_Xenograft_ NON- Lu7860, Vehicle vs Responder_Xenograft_ Sagopilone, Welch - Lu7558, Vehicle vs Test: 605 Sagopilone, Welch- Test: 333 Supplementary Fig. 2 Supplementary Fig. 3 Supplementary Figure S1. Venn diagrams comparing probe sets regulated by Sagopilone treatment (10mg/kg for 24h) between individual models (Welsh Test ellipse p-value<0.001 or 5-fold change). A Sagopilone responder models, B Sagopilone non-responder models. Supplementary Figure S2. Pathway analysis of genes regulated by Sagopilone treatment in responder xenograft models 24h after Sagopilone treatment by GeneGo Metacore; the most significant pathway map representing cell cycle/spindle assembly and chromosome separation is shown, genes upregulated by Sagopilone treatment are marked with red thermometers. Supplementary Figure S3. GeneGo Metacore pathway analysis of genes differentially expressed between Sagopilone Responder and Non-Responder models displaying –log(p-Values) of most significant pathway maps. Supplementary Tables Supplementary Table 1. Response and activity in 22 non-small-cell lung cancer (NSCLC) xenograft models after treatment with Sagopilone and other cytotoxic agents commonly used in the management of NSCLC Tumor Model Response type -
Breakdown of Hela Cell DNA Mediated by Vaccinia Virus (Viral DNA/Alkaline Sucrose Gradients) J
Proc. Nat. Acad. Sci. USA Vol. 70, No. 11, pp. 3200-3204, November 1973 Breakdown of HeLa Cell DNA Mediated by Vaccinia Virus (viral DNA/alkaline sucrose gradients) J. RODNEY PARKHURST, A. R. PETERSON, AND CHARLES HEIDELBERGER* McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wis. 53706 Communicated by Kenneth B. Raper, July 9, 1973 ABSTRACT Breakdown of HeLa cell DNA begins within occurs as an early event in the infection process, and that 90 min after infection with vaccinia virus at a multiplicity host-cell DNA does not appear to be reutilized for the syn- of infection of 2-plaque-forming units per cell, and ends about 7.5 hr after infection. HeLa cell DNA is degraded thesis of class I viral DNA. to a uniform size of 1 to 2 X 107 daltons, as judged by MATERIALS AND METHODS alkaline sucrose sedimentation analysis. The rate of host- cell DNA degradation by vaccinia virus increased directly Cell Culture, Virus, and Mode of Infection. The basic tech- with the multiplicity of infection. Sedimentation pat- niques were the same as those described by Oki et al. (8). terns in neutral and alkaline sucrose gradients of viral DNA from infected cells, as well as from partially purified HeLa S3 cells and vaccinia virus (WR strain) used in these virions, indicated that two size classes of DNA were pres- experiments were shown to be free of mycoplasma by a modi- ent. Class 1 DNA sediments like T4 DNA in neutral gra- fied Hayflick method (11). dients and has a molecular weight twice that of T4 DNA in alkaline gradients. -
Survivin Mediates Paclitaxel Effect in Hela That Survivin May Play an Important Role in Hela Western Blot Cells Apoptosis17
European Review for Medical and Pharmacological Sciences 2017; 21: 3504-3509 Down-regulation of survivin enhances paclitaxel-induced Hela cell apoptosis F. GU1, L. LI2, Q.-F. YUAN3, C. LI4, Z.-H. LI4 1Department of Obstetrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China 2Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China 3Department of Gynecology and Obstetrics, Huangdao Qingdao District Wang Tai Center Hospital, Qingdao, China 4Department of Gynecology, Qingdao Haici Hospital, Qingdao, Shandong Province, China Abstract. – OBJECTIVE: Paclitaxel is one of success rate of cervical cancer treatment is a big the common anticancer drugs in the treatment challenge in the medical field. Targeted therapy of cervical cancer, while the mechanism of re- is the first choice in clinic8,9. The curative effect straining and killing cancer cells is still unclear. This study aimed to investigate the molecular of current molecular targeting anti-apoptotic pro- mechanism of paclitaxel in regulating prolifera- teins, such as survivin and apollon on cervical tion and apoptosis of cervical cancer Hela cells. cancer, is still not satisfactory. Therefore, it is MATERIALS AND METHODS: Paclitaxel at 2 urgently required to explore more effective mole- μmol/L was used to treat Hela cells for 48 h. MTT cular targets for the treatment of cervical cancer assay and flow cytometry were applied to test He- in clinic. Paclitaxel is a kind of important first-li- la cells proliferation and apoptosis respective- ne anticancer drug for the treatment of cervical ly. Western blot was adopted to determine the ex- 10 pression of survivin. SiRNA was performed to cancer . -
Common Read the Immortal Life of Henrietta Lacks Our Common Read
Common Read The Immortal Life of Henrietta Lacks Our common read book has inter-disciplinary value/relevance, covering social and biological sciences as well as humanities and education including scientific/medical ethics, nursing, biology, genetics, psychology, sociology, communication, business, criminal justice, history, deaf studies and social justice. Below are chapter summaries that focus on the above disciplines to give respective faculty ideas about how the book can be used for their courses. Part One: Life 1. The Exam….1951: A medical visit at Johns Hopkins, Baltimore, the “northern most Southern city.” Although Johns Hopkins is established as an indigent hospital, Jim Crow era policies/ideologies are pervasive in the care/treatment of black patients. 2. Clover…1920-1942: Birthplace of Henrietta and several of the Lacks family members, including Day, Henrietta’s cousin, husband, and father of her children. A “day in the life” snapshot of life and work in this rural agricultural small town with distinct social/economic divisions across race and socioeconomic status. 3. Diagnosis and Treatment…1951: Henrietta’s diagnosis of cervical carcinomas with a history/statistical profile of diagnostic techniques and prevailing treatment regime of the time. Henrietta’s statement of consent to operative procedures is given along with removal of cancerous tissue and subsequent radium insertion into her cervix. 4. The Birth of HeLa…1951: In depth discussion of the Johns Hopkins lab including the development of an appropriate medium to grow cells. HeLa cells, the first immortal line, are born in this meticulously sterilized lab by the Geys. 5. “Blackness Be Spreadin All Inside”…1951: A look back at the lively, fun loving youthful Henrietta compared to some of the heartache of the birth of Henrietta’s second daughter, Elsie, who was born “special” (epileptic, deaf, and unable to speak).