Mysterious Abductions
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Platypus Collins, L.R
AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March. -
Reproductionreview
REPRODUCTIONREVIEW Wombat reproduction (Marsupialia; Vombatidae): an update and future directions for the development of artificial breeding technology Lindsay A Hogan1, Tina Janssen2 and Stephen D Johnston1,2 1Wildlife Biology Unit, Faculty of Science, School of Agricultural and Food Sciences, The University of Queensland, Gatton 4343, Queensland, Australia and 2Australian Animals Care and Education, Mt Larcom 4695, Queensland, Australia Correspondence should be addressed to L A Hogan; Email: [email protected] Abstract This review provides an update on what is currently known about wombat reproductive biology and reports on attempts made to manipulate and/or enhance wombat reproduction as part of the development of artificial reproductive technology (ART) in this taxon. Over the last decade, the logistical difficulties associated with monitoring a nocturnal and semi-fossorial species have largely been overcome, enabling new features of wombat physiology and behaviour to be elucidated. Despite this progress, captive propagation rates are still poor and there are areas of wombat reproductive biology that still require attention, e.g. further characterisation of the oestrous cycle and oestrus. Numerous advances in the use of ART have also been recently developed in the Vombatidae but despite this research, practical methods of manipulating wombat reproduction for the purposes of obtaining research material or for artificial breeding are not yet available. Improvement of the propagation, genetic diversity and management of wombat populations requires a thorough understanding of Vombatidae reproduction. While semen collection and cryopreservation in wombats is fairly straightforward there is currently an inability to detect, induce or synchronise oestrus/ovulation and this is an impeding progress in the development of artificial insemination in this taxon. -
Ba3444 MAMMAL BOOKLET FINAL.Indd
Intot Obliv i The disappearing native mammals of northern Australia Compiled by James Fitzsimons Sarah Legge Barry Traill John Woinarski Into Oblivion? The disappearing native mammals of northern Australia 1 SUMMARY Since European settlement, the deepest loss of Australian biodiversity has been the spate of extinctions of endemic mammals. Historically, these losses occurred mostly in inland and in temperate parts of the country, and largely between 1890 and 1950. A new wave of extinctions is now threatening Australian mammals, this time in northern Australia. Many mammal species are in sharp decline across the north, even in extensive natural areas managed primarily for conservation. The main evidence of this decline comes consistently from two contrasting sources: robust scientifi c monitoring programs and more broad-scale Indigenous knowledge. The main drivers of the mammal decline in northern Australia include inappropriate fi re regimes (too much fi re) and predation by feral cats. Cane Toads are also implicated, particularly to the recent catastrophic decline of the Northern Quoll. Furthermore, some impacts are due to vegetation changes associated with the pastoral industry. Disease could also be a factor, but to date there is little evidence for or against it. Based on current trends, many native mammals will become extinct in northern Australia in the next 10-20 years, and even the largest and most iconic national parks in northern Australia will lose native mammal species. This problem needs to be solved. The fi rst step towards a solution is to recognise the problem, and this publication seeks to alert the Australian community and decision makers to this urgent issue. -
Current Status of the Mammals of Balochistan Author(S)
Pakistan J. Zool., vol. 39(2), pp. 117-122, 2007. Current Status of the Mammals of Balochistan SYED ALI GHALIB, ABDUL JABBAR, ABDUR RAZZAQ KHAN AND AFSHEEN ZEHRA Department of Zoology (Wildlife and Fisheries),University of Karachi, Karachi (SAG, AZ), Forest and Wildlife Department, Government of Balochistan, Uthal (AJ) and Halcrow Pakistan (Pvt) Ltd, Karachi (ARK) Abstract.- Ninety species of mammals of Balochistan have been recorded so far belonging to 9 orders and 27 families; of these, 2lspecies are threatened,4species are endemic to Balochistan, 14 species are of special conservation interest,8 sites are important for mammals. Special efforts are being made to conserve the important mammals particularly in the protected areas specially in Chiltan Hazarganji National Park and the Hingol National Park. Key words: Biodiversity, threatened species, Balochistan, protected areas. INTRODUCTION 0030-9923/2007/0002-0117 $ 8.00/0 Copyright 2007 Zoological Society of Pakistan. al. (2002), Shafiq and Barkati (2002), Khan et al. (2004), Javed and Azam (2005), Khan and Siddiqui Balochistan is the largest province of (2005), Roberts (2005) and Roberts (2005a). Pakistan extending over an area of 350,000 sq.km As many as 2 National Parks, 14 Wildlife and the smallest number of inhabitants about 0.7 Sanctuaries and 8 Game Reserves have been million only. The province lies between 24°32’N established in the Province (Table I).At present, and 60°70’E.The-coast line is about 770 km long. detailed baseline studies on the biodiversity of The east-central and northern part of the province Hingol National Park are being undertaken under has high mountains of which considerable parts the GEF funded project on the Management of reach an elevation of above 2,300 m (7000feet) and Hingol National Park w.e.f. -
New Species of Three-Toed Jerboa (Dipodidae, Rodentia) from the Deserts of Khorasan Province, Iran
Iranian Journal of Animal Biosystematics (IJAB) Vol. 1, No. 1, 29-44, 2005 ISSN: 1735-434X New species of three-toed jerboa (Dipodidae, Rodentia) from the deserts of Khorasan province, Iran 1* 2 JAMSHID DARVISH AND FARAMARZ HOSSEINIE 1. Rodentology Research Department (RRD), Ferdowsi University, Mashhad, Iran 2. Department of Biology, College of Sciences, Shiraz University, Shiraz 71454, Iran The present study introduces, for the first time, the black tail tip three-toed jerboa from the east of the Iranian Plateau. This new species is different from its sympatric species, Jaculus blanfordi, considering the clear black color of the hairs of its tail tip and the two large styles on the glans of the penis. Key words: Three- toed jerboa, new species, Khorasan, Iran, Iranian Plateau. INTRODUCTION Among the rodents collected for the research projects on rodents fauna of east of Iran (years 1996- 2000) - sponsored by National Science Council of Iran, three specimens of three-toed jerboa were found form Kavir-e-Namak, near Kashmar and Bandan in Khorasan Province, which had not been seen nor reported thus far. The specimens were then taken under detailed conventional studies and were found to belong to a new speciesof the genus Jaculus. The three-toed jerboa, Jaculus, is a large– sized jerboa found in desert biotopes. It has two subgenera, Jaculus with one species, J.(J.) jaculus which is without style on glans penis (Didier et Petter , 1960) and Haltomys with three species, J. (H.) lichtensteini, J. (H.) orientalis, and J. (H.) blanfordi (Corbet, 1978), with two styles on glans penis (Shenbrot, 1995) which so far are reported from Turkistan to Western Sahara. -
(Allactaginae, Dipodidae, Rodentia): a Geometric Morphometric Study
ZOOLOGICAL RESEARCH Cranial variation in allactagine jerboas (Allactaginae, Dipodidae, Rodentia): a geometric morphometric study Bader H. Alhajeri1,* 1 Department of Biological Sciences, Kuwait University, Safat 13060, Kuwait ABSTRACT rostra) from A. major+A. severtzovi+O. sibirica (with Allactaginae is a subfamily of dipodids consisting of converse patterns), while PC2 differentiated four- and five-toed jerboas (Allactaga, Allactodipus, Orientallactaga (with enlarged cranial bases and Orientallactaga, Pygeretmus, Scarturus) found in rostra along with reduced zygomatic arches and open habitats of Asia and North Africa. Recent foramina magna) from Scarturus+Pygeretmus (with molecular phylogenies have upended our the opposite patterns). Clustering based on the understanding of this group’s systematics across unweighted pair group method with arithmetic mean taxonomic scales. Here, I used cranial geometric (UPGMA) contained the four genera, but S. hotsoni morphometrics to examine variation across 219 clustered with O. bullata+O. balikunica and O. specimens of 14 allactagine species (Allactaga sibirica clustered with A. major+A. severtzovi, likely major, A. severtzovi, Orientallactaga balikunica, O. due to convergence and allometry, respectively. bullata, O. sibirica, Pygeretmus platyurus, P. pumilio, Keywords: Allactaga; Cranial morphometrics; P. shitkovi, Scarturus aralychensis, S. euphraticus, Five-toed jerboas; Orientallactaga; Pygeretmus; S. hotsoni, S. indicus, S. tetradactylus, S. williamsi) Scarturus in light of their revised taxonomy. Results showed no significant sexual size or shape dimorphism. Species INTRODUCTION significantly differed in cranial size and shape both Allactaginae Vinogradov, 1925 is a subfamily of four- and five- overall and as species pairs. Species identity had a toed jerboas and is currently divided into five genera strong effect on both cranial size and shape. -
Hairy-Nosed Wombat (Lasiorhinus Latifrons)
Understanding the causes of human–wombat conflict and exploring non-lethal damage mitigation strategies for the southern hairy-nosed wombat (Lasiorhinus latifrons) Casey O’Brien Submitted for the Degree of Doctor of Philosophy School of Biological Sciences University of Adelaide April 2019 Page | 1 Page | 2 Table of Contents Table of Contents ...................................................................................................................... 3 List of Figures ........................................................................................................................... 6 List of Tables ............................................................................................................................. 9 Declaration .............................................................................................................................. 12 Acknowledgements .................................................................................................................. 13 Abstract .................................................................................................................................... 16 Chapter 1. General Introduction ............................................................................................ 18 1.1 Human–wildlife conflict ........................................................................................................... 19 1.2 Conflicts with agriculture ........................................................................................................ -
A New Family of Diprotodontian Marsupials from the Latest Oligocene of Australia and the Evolution of Wombats, Koalas, and Their Relatives (Vombatiformes) Robin M
www.nature.com/scientificreports OPEN A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Robin M. D. Beck1,2 ✉ , Julien Louys3, Philippa Brewer4, Michael Archer2, Karen H. Black2 & Richard H. Tedford5,6 We describe the partial cranium and skeleton of a new diprotodontian marsupial from the late Oligocene (~26–25 Ma) Namba Formation of South Australia. This is one of the oldest Australian marsupial fossils known from an associated skeleton and it reveals previously unsuspected morphological diversity within Vombatiformes, the clade that includes wombats (Vombatidae), koalas (Phascolarctidae) and several extinct families. Several aspects of the skull and teeth of the new taxon, which we refer to a new family, are intermediate between members of the fossil family Wynyardiidae and wombats. Its postcranial skeleton exhibits features associated with scratch-digging, but it is unlikely to have been a true burrower. Body mass estimates based on postcranial dimensions range between 143 and 171 kg, suggesting that it was ~5 times larger than living wombats. Phylogenetic analysis based on 79 craniodental and 20 postcranial characters places the new taxon as sister to vombatids, with which it forms the superfamily Vombatoidea as defned here. It suggests that the highly derived vombatids evolved from wynyardiid-like ancestors, and that scratch-digging adaptations evolved in vombatoids prior to the appearance of the ever-growing (hypselodont) molars that are a characteristic feature of all post-Miocene vombatids. Ancestral state reconstructions on our preferred phylogeny suggest that bunolophodont molars are plesiomorphic for vombatiforms, with full lophodonty (characteristic of diprotodontoids) evolving from a selenodont morphology that was retained by phascolarctids and ilariids, and wynyardiids and vombatoids retaining an intermediate selenolophodont condition. -
List of 28 Orders, 129 Families, 598 Genera and 1121 Species in Mammal Images Library 31 December 2013
What the American Society of Mammalogists has in the images library LIST OF 28 ORDERS, 129 FAMILIES, 598 GENERA AND 1121 SPECIES IN MAMMAL IMAGES LIBRARY 31 DECEMBER 2013 AFROSORICIDA (5 genera, 5 species) – golden moles and tenrecs CHRYSOCHLORIDAE - golden moles Chrysospalax villosus - Rough-haired Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus – Lowland Streaked Tenrec 3. Microgale dobsoni - Dobson’s Shrew Tenrec 4. Tenrec ecaudatus – Tailless Tenrec ARTIODACTYLA (83 genera, 142 species) – paraxonic (mostly even-toed) ungulates ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BOVIDAE (46 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Impala 3. Alcelaphus buselaphus - Hartebeest 4. Alcelaphus caama – Red Hartebeest 5. Ammotragus lervia - Barbary Sheep 6. Antidorcas marsupialis - Springbok 7. Antilope cervicapra – Blackbuck 8. Beatragus hunter – Hunter’s Hartebeest 9. Bison bison - American Bison 10. Bison bonasus - European Bison 11. Bos frontalis - Gaur 12. Bos javanicus - Banteng 13. Bos taurus -Auroch 14. Boselaphus tragocamelus - Nilgai 15. Bubalus bubalis - Water Buffalo 16. Bubalus depressicornis - Anoa 17. Bubalus quarlesi - Mountain Anoa 18. Budorcas taxicolor - Takin 19. Capra caucasica - Tur 20. Capra falconeri - Markhor 21. Capra hircus - Goat 22. Capra nubiana – Nubian Ibex 23. Capra pyrenaica – Spanish Ibex 24. Capricornis crispus – Japanese Serow 25. Cephalophus jentinki - Jentink's Duiker 26. Cephalophus natalensis – Red Duiker 1 What the American Society of Mammalogists has in the images library 27. Cephalophus niger – Black Duiker 28. Cephalophus rufilatus – Red-flanked Duiker 29. Cephalophus silvicultor - Yellow-backed Duiker 30. Cephalophus zebra - Zebra Duiker 31. Connochaetes gnou - Black Wildebeest 32. Connochaetes taurinus - Blue Wildebeest 33. Damaliscus korrigum – Topi 34. -
Mammals of Jord a N
Mammals of Jord a n Z . A M R , M . A B U B A K E R & L . R I F A I Abstract: A total of 79 species of mammals belonging to seven orders (Insectivora, Chiroptera, Carn i- vora, Hyracoidea, Art i odactyla, Lagomorpha and Rodentia) have been re c o rde d from Jordan. Bats and rodents re p res ent exhibit the highest diversity of re c o rde d species. Notes on systematics and ecology for the re c o rded species were given. Key words: mammals, Jordan, ecology, sytematics, zoogeography, arid enviro n m e n t . Introduction species, while lagomorphs and hyracoids are the lowest. The mammalian diversity of Jordan is remarkable considering its location at the In this account we list the surv i v i n g meeting point of three diff e rent faunal ele- mammals of Jordan, including some re i n t ro- ments; the African, Oriental and Palaearc- duced species. tic. This diversity is a combination of these Table 1: Summary to the mammalian taxa occurring elements in addition to the occurrence of in Jordan few endemic forms. Jord a n ’s location re s u l t- O rd e r No. of Families No. of Species ed in a huge faunal diversity compared to I n s e c t i v o r a 2 5 the surrounding countries, hetero g e n e i t y C h i ro p t e r a 8 2 4 and range expansion of diff e rent species. -
AMERICAN MUSEUM NOVITATES Published by Number 161 the American Museum Op NATURAL Historay March 31, 1925 New York City
AMERICAN MUSEUM NOVITATES Published by Number 161 THE AMERIcAN MusEuM oP NATURAL HISToRaY March 31, 1925 New York City 59.9,32(51.7) JERBOAS FROM MONGOLIA' BY GLOVER M. ALLEN A very beautiful series of jerboas from several localities in the Gobi Desert was secured by the Asiatic Expeditions of The American Museum of Natural History under the leadership of Mr. Roy Chapman Andrews. Although the species represented are few, they are of unusual interest, for they include a very interesting new Allactaga, the five-toed jerboa, and a striking new genus related to Dipus, the three-toed jerboa. The series of Allactaga mongolica may be considered as typical and shows, on comparison with specimens of the species from Chili, China, that the latter is subspecifically distinct and may bear the name annulata given many years ago by Milne-Edwards, but latterly placed in synonymy. Allactaga mongolica (Radde) Dipus jaculus mongolica RADDE, 1862, 'Reisen im Suden von Ost-Sibirien,' I, p. 170, P1. viii, figs. 3a-3b. A five-toed, long-eared jerboa, buffy gray above, clear white below; the tail-tip with a flattened tuft, white at its base, black in its middle three-fourths, and white terminally. This characteristic desert species was found in abundance by the Expeditions of 1922 and 1923, and a fine series was secured at localities in the central Gobi, namely, Turin, Artsa Bogdo, Tsagan Nor, Hurum Tui, Gun Burte, Sain Noin Khan, Ussuk, Loh, near Tze-Tsen Wang, twenty miles southwest of Urga, and on the Tola River, eighty miles west of that city, as well as in the vicinity of Erhlien, Sair Usu, and east as far as Iren Dabasu. -
Species of the Day: Northern Hairy-Nosed Wombat
© Queensland DERM Species of the Day: Northern Hairy-nosed Wombat The Northern Hairy-nosed Wombat, Lasiorhinus krefftii, is listed as ‘Critically Endangered’ on the IUCN Red List of Threatened SpeciesTM. One of the world’s rarest mammals, it is now only found at a single location in Queensland, Australia, and the total population numbers only around 115 individuals. This species may have already been uncommon before European settlers arrived, but due Geographical range to a combination of drought and competition with grazing livestock, the population decline www.iucnredlist.org accelerated. Its small colony is further threatened by unpredictable environmental effects, loss Help Save Species of genetic diversity and exotic buffel grass taking over its natural habitat. www.arkive.org The entire range of the Northern Hairy-nosed Wombat is encompassed by the Epping Forest National Park. A recovery plan has been implemented and, as a result, a 20 km long Dingo and cattle exclusion fence has been built, its habitat is managed, and kangaroo numbers are monitored. A second colony in the wild has recently been established, with the transfer of a small number of wombats to a reserve in south-central Queensland, with promising results so far. There are also plans to develop a captive breeding programme. The production of the IUCN Red List of Threatened Species™ is made possible through the IUCN Red List Partnership: Species of the Day IUCN (including the Species Survival Commission), BirdLife is sponsored by International, Conservation International, NatureServe and Zoological Society of London..