Integrability and Attractors

Total Page:16

File Type:pdf, Size:1020Kb

Integrability and Attractors Chaos, Solitons & Fractals Vol. 4, No. 11, pp. 1969-I984, 1.994 Elsevier Science Ltd Pergamon Printed in Great Britain. 0960-0779(94)00160-X Integrability and Attractors JOSEPH L. McCAULEY Physics Department, University of Houston, Houston, TX 77204-5506, USA (Received 16 June 1994) Abstract--We discuss global and local integrability and also attractors from a physicist's standpoint. A local Lie method is used to form an analytic and geometric picture of integrability via conservation laws. The starting point is Lie's proof that two-dimensional flows, even dissipative ones, have a conservation law and so are integrable. Through conservation laws, integrable higher-dimensional flows reduce to the two-dimensional case. We consider a class of models defined by the Euler- Lagrange equations for a set of nonintegrable velocities (nonholonomic coordinates). The destruction of the global conservation laws of this conservative system by the inclusion of linear damping and constant external driving leads to self-confinement and attractors in phase space. In particular, the Lorenz model belongs to this class and can be seen as a damped, driven symmetric top. 1. INTEGRABLE FLOWS IN PHASE SPACE We study integrability by following the consequences of an elementary theorem by Sophus Lie. According to Bell [1], Lie showed that every one-parameter infinitesimal transforma- tion acting on two variables defines a one-parameter group, and that any such group has an invariant. This means that two-dimensional flows in phase space, whether conservative or dissipative, have a conservation law. This fact is not pointed out in standard texts on differential equations or mechanics. To understand Lie's theorem, it is only necessary to establish the language of phase flows along with a dictionary to translate back and forth between the language of groups [2] and the language of differential equations [3]. The discussion that follows is heuristic in the spirit of Lie [4] and Klein [5] (and in the spirit of physics) rather than rigorous in the spirit of modern abstract mathematics [6]. By a flow, we mean an autonomous system of n (generally coupled and nonlinear) differential equations dxi -- V/(x1 ..... Xn) (1) dt where the solutions are finite at all finite times (any and all singularities are confined to the imaginary time axis [3]). Phase space is the n-dimensional space indicated by the local coordinates (xl .... , x,). By a conservative flow we mean one that preserves the volume element dff2 = dxa • •. dx, in phase space, so that n ° V" V = z Oxi = O. (2) i=10xi 1970 J.L. McCAuLEV In an arbitrary conservative system, the volume element is the only quantity that is left invariant by the flow. That is, in a completely arbitrary conservative flow there are generally no conservation laws that are point functions. Conservation laws are functions of the phase space variables and the time, Gg(x 1..... x n, t) = constant, that satisfy d Gi 3 G i -- V" VG i -b -- = O. (3) dt ~t By a nonconservative or 'dissipative' system we mean any system where V.V fails to vanish identically over all of phase space. A typical dissipative system has no invariant at all, neither the phase volume element nor a solution of the partial differential equation (3). The integration of the flow (1) studied as a collection of infinitesimal transformations (~Xi ~- V/(X1 ..... Xn)f~t (4) defines a one parameter continuous group of transformations Xi(t ) = lPi(Xl(tO) ..... Xn(to) , t -- to) (5) from coordinates (xl(to) ..... xn(to)) to (xl(t) ..... x~(t)) as the group parameter is varied from to to t. In the language of differential equations, (5) is the solution at a later time t and (x1(to) ..... xn(to)) is the initial condition at to. The time t is a canonical group parameter, which means that it obeys an additive parameter-combination law. Noncanon- ical group parameters obey nonlinear parameter-combination laws. For a one parameter transformation on two variables, a canonical parameter can always be found by integration [7]. In terms of the canonical parameter, the infinitesimal transformations of the group are defined by the differential equations dxl - Vl(xl, x2) dt dx2 - g2(xl, x2) (6) dt which also describe a flow in the (x~, x2) phase space. Lie's theorem is now easy to demonstrate heuristically. By rewriting the flow equations in the form dt = dxl/V 1 = dx2/V2 (7) we can obtain the time-independent differential form V2(x 1, x2)dxl -- VI(X 1, x2)dx2 = 0. (8) Every differential form in only two variables is either integrable or else has an integrating factor M(Xl, x2) that makes it integrable, so that we can integrate the differential form M(V2 dXl - VI dx2) = dG (8b) to obtain G(Xa, x2)= C, which is a conservation law. For example, this means that even two-dimensional Newtonian flows where the mechanical energy E is not constant have a conservation law. Before continuing, we pause to state the condition under which the conservation law for a dissipative system exists, which is simply the condition that an integrating factor M exists. We can rewrite the differential form 1/2 dXl - V1 dx2 = 0 as the one-dimensional equation dx2 V2(Xl, x2) - - F(xl, x2) (9) dXl Vl(xl, x2) Integrability and attractors 1971 whose solution satisfies the integral equation x2 = X2o + f(s, x2(s))ds. (9b) Xlo According to Picard [8], this equation can be solved by the method of successive approximations so long as F satisfies a Lipshitz condition. A sufficient condition is that that ratio of the components of the velocity in phase V2/V1 must be at least once continuously differentiable with respect to the variable x~. This requires that we avoid integrating over regions that contain equilibria or other zeros of Vs. The resulting solution of the integral equation yields x2 as a function of xl. A qualitatively similar result follows from solving the conservation law G(xl, x2) = C to find x2 = f(x~, C), which is just the statement that the conservation law determines x2 as a function of Xl and C. In particular, differentiating the conservation law once yields dG = 3G dx~ + 3G dx2 = 0, (10) 3xl 9x2 and comparison with the differential form V2 dxl - V1 dx2 = 0 then shows that / - 3G/3---G-G = V2/V1. (lla) 3Xl/3X2 This last equation is satisfied only if V 1 : -M 3G and 172 = M olG, (llb) 3x2 ~Xl which guarantees the existence of the integrating factor M. In other words, the existence of the conservation law follows from satisfying Picard's conditions for a unique solution of the differential equation (9). This guarantees, by differentiation, that the integrating factor M exists. Except in a few special cases, there is no systematic way to construct the integrating factor M(x~, x2) even though it is guaranteed formally to exist. Notice that the condition that the flow is phase volume preserving, ~V 2 3V 1 - --, (llc) 9x2 3Xl is just the condition that the differential form V2(xl, x2)dxl- Vl(Xl, x2)dx2 = 0 is exact without any need for an integrating factor. This means that the velocity field of a conservative two-dimensional flow can always be obtained from a stream function G: V = (V1, V2) : ( ~x29G'9~1. (12) By inspection, the conservative system is Hamiltonian with Hamiltonian G and canonically conjugate variables (q, p)= (x2, &), but the collapse of an integrable conservative flow into canonical form is peculiar to two dimensions and generally is not true for integrable conservative flows in higher dimensions: in particular, every three-dimensional integrable flow is noncanonical although it may still be Hamiltonian on a Poisson manifold that is not symplectic [10]. As an example of a conservation law for a dissipative system, consider the damped simple harmonic oscillator de' + /3:~ + wax = 0. (13) 1972 J.L. McCAULEY With x I = X and x 2 -~- dx/dt the corresponding differential form (fix2 + a~zxl)dxa + x2 dx2 = 0 (14) is not exact but is guaranteed to have an integrating factor M that yields a time-independ- ent conservation law G(x, dx/dt) = constant via the condition dG - M((13x2 + O~Xl)~l + x2~2) = 0. (15) dt The conservation law for this specific case was originally discovered and constructed by Palmore et al. [9]. In all cases, the conservation law G(x, dx/dt)= C is simply the equation that describes that family of streamlines: different constants C correspond to different streamlines within the same family. For the damped oscillator, the streamlines are a family of spirals. Lie's result explains qualitatively why two-dimensional dissipative as well as conservative flows have conservation laws: the condition C --- G(Xlo , x2o ) fixes the constant C in terms of the two initial conditions Xio at time t = to and is simply the equation of the family of streamlines of a flow, G(Xl, x2) = C, in the phase plane. Each streamline corresponds to a different value of the constant C. For a dissipative system, the conservation law is singular at a source or sink and this nonanalyticity gives rise to nontrivially different constants C for different streamlines [10]. If we can solve G(Xl, x2) = C to find the streamline equations in the form xz = f2(Xl, C) and/or xl = fl(x2, C), which requires that the implicit function theorem [11] is satisfied, then we can rewrite at least one of the differential equations in the form dG =0 dt = dxi/vi(xi, C). (16) The problem is therefore 'integrable', meaning that the complete solution can be reduced to two independent integrations.
Recommended publications
  • Ordinary Differential Equations
    Ordinary Differential Equations for Engineers and Scientists Gregg Waterman Oregon Institute of Technology c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license is that You are free to: Share copy and redistribute the material in any medium or format • Adapt remix, transform, and build upon the material for any purpose, even commercially. • The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: Attribution You must give appropriate credit, provide a link to the license, and indicate if changes • were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. No additional restrictions You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. Notices: You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation. No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material. For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to the web page below. To view a full copy of this license, visit https://creativecommons.org/licenses/by/4.0/legalcode.
    [Show full text]
  • New Dirac Delta Function Based Methods with Applications To
    New Dirac Delta function based methods with applications to perturbative expansions in quantum field theory Achim Kempf1, David M. Jackson2, Alejandro H. Morales3 1Departments of Applied Mathematics and Physics 2Department of Combinatorics and Optimization University of Waterloo, Ontario N2L 3G1, Canada, 3Laboratoire de Combinatoire et d’Informatique Math´ematique (LaCIM) Universit´edu Qu´ebec `aMontr´eal, Canada Abstract. We derive new all-purpose methods that involve the Dirac Delta distribution. Some of the new methods use derivatives in the argument of the Dirac Delta. We highlight potential avenues for applications to quantum field theory and we also exhibit a connection to the problem of blurring/deblurring in signal processing. We find that blurring, which can be thought of as a result of multi-path evolution, is, in Euclidean quantum field theory without spontaneous symmetry breaking, the strong coupling dual of the usual small coupling expansion in terms of the sum over Feynman graphs. arXiv:1404.0747v3 [math-ph] 23 Sep 2014 2 1. A method for generating new representations of the Dirac Delta The Dirac Delta distribution, see e.g., [1, 2, 3], serves as a useful tool from physics to engineering. Our aim here is to develop new all-purpose methods involving the Dirac Delta distribution and to show possible avenues for applications, in particular, to quantum field theory. We begin by fixing the conventions for the Fourier transform: 1 1 g(y) := g(x) eixy dx, g(x)= g(y) e−ixy dy (1) √2π √2π Z Z To simplify the notation we denote integration over the real line by the absence of e e integration delimiters.
    [Show full text]
  • Role of Nonlinear Dynamics and Chaos in Applied Sciences
    v.;.;.:.:.:.;.;.^ ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Oivisipn 2000 Please be aware that all of the Missing Pages in this document were originally blank pages BARC/2OOO/E/OO3 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Division BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2000 BARC/2000/E/003 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as per IS : 9400 - 1980) 01 Security classification: Unclassified • 02 Distribution: External 03 Report status: New 04 Series: BARC External • 05 Report type: Technical Report 06 Report No. : BARC/2000/E/003 07 Part No. or Volume No. : 08 Contract No.: 10 Title and subtitle: Role of nonlinear dynamics and chaos in applied sciences 11 Collation: 111 p., figs., ills. 13 Project No. : 20 Personal authors): Quissan V. Lawande; Nirupam Maiti 21 Affiliation ofauthor(s): Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 22 Corporate authoifs): Bhabha Atomic Research Centre, Mumbai - 400 085 23 Originating unit : Theoretical Physics Division, BARC, Mumbai 24 Sponsors) Name: Department of Atomic Energy Type: Government Contd...(ii) -l- 30 Date of submission: January 2000 31 Publication/Issue date: February 2000 40 Publisher/Distributor: Head, Library and Information Services Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution: Hard copy 50 Language of text: English 51 Language of summary: English 52 No. of references: 40 refs. 53 Gives data on: Abstract: Nonlinear dynamics manifests itself in a number of phenomena in both laboratory and day to day dealings.
    [Show full text]
  • Arxiv:0705.0033V3 [Math.DS]
    ERGODIC THEORY: RECURRENCE NIKOS FRANTZIKINAKIS AND RANDALL MCCUTCHEON Contents 1. Definition of the Subject and its Importance 3 2. Introduction 3 3. Quantitative Poincaré Recurrence 5 4. Subsequence Recurrence 7 5. Multiple Recurrence 11 6. Connections with Combinatorics and Number Theory 14 7. Future Directions 17 References 19 Almost every, essentially: Given a Lebesgue measure space (X, ,µ), a property P (x) predicated of elements of X is said to hold for almostB every x X, if the set X x: P (x) holds has zero measure. Two sets A, B are∈ essentially disjoint\ { if µ(A B) =} 0. ∈B Conservative system: Is an∩ infinite measure preserving system such that for no set A with positive measure are A, T −1A, T −2A, . pairwise essentially disjoint.∈ B (cn)-conservative system: If (cn)n∈N is a decreasing sequence of posi- tive real numbers, a conservative ergodic measure preserving transforma- 1 tion T is (cn)-conservative if for some non-negative function f L (µ), ∞ n ∈ n=1 cnf(T x)= a.e. arXiv:0705.0033v3 [math.DS] 4 Nov 2019 ∞ PDoubling map: If T is the interval [0, 1] with its endpoints identified and addition performed modulo 1, the (non-invertible) transformation T : T T, defined by Tx = 2x mod 1, preserves Lebesgue measure, hence induces→ a measure preserving system on T. Ergodic system: Is a measure preserving system (X, ,µ,T ) (finite or infinite) such that every A that is T -invariant (i.e. T −B1A = A) satisfies ∈B either µ(A) = 0 or µ(X A) = 0. (One can check that the rotation Rα is ergodic if and only if α is\ irrational, and that the doubling map is ergodic.) Ergodic decomposition: Every measure preserving system (X, ,µ,T ) can be expressed as an integral of ergodic systems; for example,X one can 2000 Mathematics Subject Classification.
    [Show full text]
  • Dissipative Dynamical Systems and Their Attractors
    Dissipative dynamical systems and their attractors Grzegorz ukaszewicz, University of Warsaw MIM Qolloquium, 05.11.2020 Plan of the talk Context: conservative and dissipative systems 3 Basic notions 10 Important problems of the theory. G.ukaszewicz Dissipative dynamical systems and their attractors Qolloquium 2 / 14 Newtonian mechanics ∼ conservative system of ODEs in Rn system reversible in time ∼ groups ∼ deterministic chaos From P. S. de Laplace to H. Poincaré, and ... Evolution of a conservative system Example 1. Motivation: Is our solar system stable? (physical system) G.ukaszewicz Dissipative dynamical systems and their attractors Qolloquium 3 / 14 Evolution of a conservative system Example 1. Motivation: Is our solar system stable? (physical system) Newtonian mechanics ∼ conservative system of ODEs in Rn system reversible in time ∼ groups ∼ deterministic chaos From P. S. de Laplace to H. Poincaré, and ... G.ukaszewicz Dissipative dynamical systems and their attractors Qolloquium 3 / 14 Mech. of continuous media ∼ dissipative system of PDEs in a Hilbert phase space system irreversible in time ∼ semigroups ∼ innite dimensional dynamical systems ∼ deterministic chaos Since O. Ladyzhenskaya's papers on the NSEs (∼ 1970) Evolution of a dissipative system Example 2. Motivation: How does turbulence in uids develop? G.ukaszewicz Dissipative dynamical systems and their attractors Qolloquium 4 / 14 Evolution of a dissipative system Example 2. Motivation: How does turbulence in uids develop? Mech. of continuous media ∼ dissipative system of PDEs in a Hilbert phase space system irreversible in time ∼ semigroups ∼ innite dimensional dynamical systems ∼ deterministic chaos Since O. Ladyzhenskaya's papers on the NSEs (∼ 1970) G.ukaszewicz Dissipative dynamical systems and their attractors Qolloquium 4 / 14 Let us compare the above problems Example 1.
    [Show full text]
  • Energy Cycle for the Lorenz Attractor
    Energy cycle for the Lorenz attractor Vinicio Pelino, Filippo Maimone Italian Air Force, CNMCA Aeroporto “De Bernardi”, Via di Pratica Di Mare, I-00040 Pratica di Mare (Roma) Italy In this note we study energetics of Lorenz-63 system through its Lie-Poisson structure. I. INTRODUCTION In 1955 E. Lorenz [1] introduced the concept of energy cycle as a powerful instrument to understand the nature of atmospheric circulation. In that context conversions between potential, kinetic and internal energy of a fluid were studied using atmospheric equations of motion under the action of an external radiative forcing and internal dissipative processes. Following these ideas, in this paper we will illustrate that chaotic dynamics governing Lorenz-63 model can be described introducing an appropriate energy cycle whose components are kinetic, potential energy and Casimir function derived from Lie-Poisson structure hidden in the system; Casimir functions, like enstrophy or potential vorticity in fluid dynamical context, are very useful in analysing stability conditions and global description of a dynamical system. A typical equation describing dissipative-forced dynamical systems can be written in Einstein notation as: x&ii=−Λ+{xH, } ijji x f i = 1,2...n (1) Equations (1) have been written by Kolmogorov, as reported in [2], in a fluid dynamical context, but they are very common in simulating natural processes as useful in chaos synchronization [3]. Here, antisymmetric brackets represent the algebraic structure of Hamiltonian part of a system described by function H , and a cosymplectic matrix J [4], {}F,G = J ik ∂ i F∂ k G . (2) Positive definite diagonal matrix Λ represents dissipation and the last term f represents external forcing.
    [Show full text]
  • Second Order Linear Differential Equations Y
    Second Order Linear Differential Equations Second order linear equations with constant coefficients; Fundamental solutions; Wronskian; Existence and Uniqueness of solutions; the characteristic equation; solutions of homogeneous linear equations; reduction of order; Euler equations In this chapter we will study ordinary differential equations of the standard form below, known as the second order linear equations : y″ + p(t) y′ + q(t) y = g(t). Homogeneous Equations : If g(t) = 0, then the equation above becomes y″ + p(t) y′ + q(t) y = 0. It is called a homogeneous equation. Otherwise, the equation is nonhomogeneous (or inhomogeneous ). Trivial Solution : For the homogeneous equation above, note that the function y(t) = 0 always satisfies the given equation, regardless what p(t) and q(t) are. This constant zero solution is called the trivial solution of such an equation. © 2008, 2016 Zachary S Tseng B-1 - 1 Second Order Linear Homogeneous Differential Equations with Constant Coefficients For the most part, we will only learn how to solve second order linear equation with constant coefficients (that is, when p(t) and q(t) are constants). Since a homogeneous equation is easier to solve compares to its nonhomogeneous counterpart, we start with second order linear homogeneous equations that contain constant coefficients only: a y″ + b y′ + c y = 0. Where a, b, and c are constants, a ≠ 0. A very simple instance of such type of equations is y″ − y = 0 . The equation’s solution is any function satisfying the equality t y″ = y. Obviously y1 = e is a solution, and so is any constant multiple t −t of it, C1 e .
    [Show full text]
  • Transformations)
    TRANSFORMACJE (TRANSFORMATIONS) Transformacje (Transformations) is an interdisciplinary refereed, reviewed journal, published since 1992. The journal is devoted to i.a.: civilizational and cultural transformations, information (knowledge) societies, global problematique, sustainable development, political philosophy and values, future studies. The journal's quasi-paradigm is TRANSFORMATION - as a present stage and form of development of technology, society, culture, civilization, values, mindsets etc. Impacts and potentialities of change and transition need new methodological tools, new visions and innovation for theoretical and practical capacity-building. The journal aims to promote inter-, multi- and transdisci- plinary approach, future orientation and strategic and global thinking. Transformacje (Transformations) are internationally available – since 2012 we have a licence agrement with the global database: EBSCO Publishing (Ipswich, MA, USA) We are listed by INDEX COPERNICUS since 2013 I TRANSFORMACJE(TRANSFORMATIONS) 3-4 (78-79) 2013 ISSN 1230-0292 Reviewed journal Published twice a year (double issues) in Polish and English (separate papers) Editorial Staff: Prof. Lech W. ZACHER, Center of Impact Assessment Studies and Forecasting, Kozminski University, Warsaw, Poland ([email protected]) – Editor-in-Chief Prof. Dora MARINOVA, Sustainability Policy Institute, Curtin University, Perth, Australia ([email protected]) – Deputy Editor-in-Chief Prof. Tadeusz MICZKA, Institute of Cultural and Interdisciplinary Studies, University of Silesia, Katowice, Poland ([email protected]) – Deputy Editor-in-Chief Dr Małgorzata SKÓRZEWSKA-AMBERG, School of Law, Kozminski University, Warsaw, Poland ([email protected]) – Coordinator Dr Alina BETLEJ, Institute of Sociology, John Paul II Catholic University of Lublin, Poland Dr Mirosław GEISE, Institute of Political Sciences, Kazimierz Wielki University, Bydgoszcz, Poland (also statistical editor) Prof.
    [Show full text]
  • 5 Mar 2009 a Survey on the Inverse Integrating Factor
    A survey on the inverse integrating factor.∗ Isaac A. Garc´ıa (1) & Maite Grau (1) Abstract The relation between limit cycles of planar differential systems and the inverse integrating factor was first shown in an article of Giacomini, Llibre and Viano appeared in 1996. From that moment on, many research articles are devoted to the study of the properties of the inverse integrating factor and its relation with limit cycles and their bifurcations. This paper is a summary of all the results about this topic. We include a list of references together with the corresponding related results aiming at being as much exhaustive as possible. The paper is, nonetheless, self-contained in such a way that all the main results on the inverse integrating factor are stated and a complete overview of the subject is given. Each section contains a different issue to which the inverse integrating factor plays a role: the integrability problem, relation with Lie symmetries, the center problem, vanishing set of an inverse integrating factor, bifurcation of limit cycles from either a period annulus or from a monodromic ω-limit set and some generalizations. 2000 AMS Subject Classification: 34C07, 37G15, 34-02. Key words and phrases: inverse integrating factor, bifurcation, Poincar´emap, limit cycle, Lie symmetry, integrability, monodromic graphic. arXiv:0903.0941v1 [math.DS] 5 Mar 2009 1 The Euler integrating factor The method of integrating factors is, in principle, a means for solving ordinary differential equations of first order and it is theoretically important. The use of integrating factors goes back to Leonhard Euler. Let us consider a first order differential equation and write the equation in the Pfaffian form ω = P (x, y) dy Q(x, y) dx =0 .
    [Show full text]
  • Handbook of Mathematics, Physics and Astronomy Data
    Handbook of Mathematics, Physics and Astronomy Data School of Chemical and Physical Sciences c 2017 Contents 1 Reference Data 1 1.1 PhysicalConstants ............................... .... 2 1.2 AstrophysicalQuantities. ....... 3 1.3 PeriodicTable ................................... 4 1.4 ElectronConfigurationsoftheElements . ......... 5 1.5 GreekAlphabetandSIPrefixes. ..... 6 2 Mathematics 7 2.1 MathematicalConstantsandNotation . ........ 8 2.2 Algebra ......................................... 9 2.3 TrigonometricalIdentities . ........ 10 2.4 HyperbolicFunctions. ..... 12 2.5 Differentiation .................................. 13 2.6 StandardDerivatives. ..... 14 2.7 Integration ..................................... 15 2.8 StandardIndefiniteIntegrals . ....... 16 2.9 DefiniteIntegrals ................................ 18 2.10 CurvilinearCoordinateSystems. ......... 19 2.11 VectorsandVectorAlgebra . ...... 22 2.12ComplexNumbers ................................. 25 2.13Series ......................................... 27 2.14 OrdinaryDifferentialEquations . ......... 30 2.15 PartialDifferentiation . ....... 33 2.16 PartialDifferentialEquations . ......... 35 2.17 DeterminantsandMatrices . ...... 36 2.18VectorCalculus................................. 39 2.19FourierSeries .................................. 42 2.20Statistics ..................................... 45 3 Selected Physics Formulae 47 3.1 EquationsofElectromagnetism . ....... 48 3.2 Equations of Relativistic Kinematics and Mechanics . ............. 49 3.3 Thermodynamics and Statistical Physics
    [Show full text]
  • FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS III: Numerical and More Analytic Methods
    FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS III: Numerical and More Analytic Methods David Levermore Department of Mathematics University of Maryland 30 September 2012 Because the presentation of this material in lecture will differ from that in the book, I felt that notes that closely follow the lecture presentation might be appreciated. Contents 8. First-Order Equations: Numerical Methods 8.1. Numerical Approximations 2 8.2. Explicit and Implicit Euler Methods 3 8.3. Explicit One-Step Methods Based on Taylor Approximation 4 8.3.1. Explicit Euler Method Revisited 4 8.3.2. Local and Global Errors 4 8.3.3. Higher-Order Taylor-Based Methods (not covered) 5 8.4. Explicit One-Step Methods Based on Quadrature 6 8.4.1. Explicit Euler Method Revisited Again 6 8.4.2. Runge-Trapezoidal Method 7 8.4.3. Runge-Midpoint Method 9 8.4.4. Runge-Kutta Method 10 8.4.5. General Runge-Kutta Methods (not covered) 12 9. Exact Differential Forms and Integrating Factors 9.1. Implicit General Solutions 15 9.2. Exact Differential Forms 16 9.3. Integrating Factors 20 10. Special First-Order Equations and Substitution 10.1. Linear Argument Equations (not covered) 25 10.2. Dilation Invariant Equations (not covered) 26 10.3. Bernoulli Equations (not covered) 27 10.4. Substitution (not covered) 29 1 2 8. First-Order Equations: Numerical Methods 8.1. Numerical Approximations. Analytic methods are either difficult or impossible to apply to many first-order differential equations. In such cases direction fields might be the only graphical method that we have covered that can be applied.
    [Show full text]
  • Phase-Space Matrix Representation of Differential Equations for Obtaining the Energy Spectrum of Model Quantum Systems
    Phase-space matrix representation of differential equations for obtaining the energy spectrum of model quantum systems Juan C. Morales, Carlos A. Arango1, a) Department of Chemical Sciences, Universidad Icesi, Cali, Colombia (Dated: 27 August 2021) Employing the phase-space representation of second order ordinary differential equa- tions we developed a method to find the eigenvalues and eigenfunctions of the 1- dimensional time independent Schr¨odinger equation for quantum model systems. The method presented simplifies some approaches shown in textbooks, based on asymptotic analyses of the time-independent Schr¨odinger equation, and power series methods with recurrence relations. In addition, the method presented here facilitates the understanding of the relationship between the ordinary differential equations of the mathematical physics and the time independent Schr¨odinger equation of physical models as the harmonic oscillator, the rigid rotor, the Hydrogen atom, and the Morse oscillator. Keywords: phase-space, model quantum systems, energy spectrum arXiv:2108.11487v1 [quant-ph] 25 Aug 2021 a)Electronic mail: [email protected] 1 I. INTRODUCTION The 1-dimensional time independent Schr¨odinger equation (TISE) can be solved analyt- ically for few physical models. The harmonic oscillator, the rigid rotor, the Hydrogen atom, and the Morse oscillator are examples of physical models with known analytical solution of the TISE (1). The analytical solution of the TISE for a physical model is usually obtained by using the ansatz of a wavefunction as a product of two functions, one of these functions acts as an integrating factor (2), the other function produces a differential equation solv- able either by Frobenius series method or by directly comparing with a template ordinary differential equation (ODE) with known solution (3).
    [Show full text]