Spontaneous Breakdown of the Time Reversal Symmetry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Implications for a Future Information Theory Based on Vacuum 1 Microtopology
Getting Something Out of Nothing: Implications for a Future Information Theory Based on Vacuum 1 Microtopology William Michael Kallfelz 2 Committee for Philosophy and the Sciences University of Maryland at College Park Abstract (word count: 194) Submitted October 3, 2005 Published in IANANO Conference Proceedings : October 31-November 4, 2005 3 Contemporary theoretical physicists H. S. Green and David R. Finkelstein have recently advanced theories depicting space-time as a singular limit, or condensate, formed from fundamentally quantum micro topological units of information, or process (denoted respectively by ‘qubits,’ or ‘chronons.’) H. S. Green (2000) characterizes the manifold of space-time as a parafermionic statistical algebra generated fundamentally by qubits. David Finkelstein (2004a-c) models the space-time manifold as singular limit of a regular structure represented by a Clifford algebra, whose generators γ α represent ‘chronons,’ i.e., elementary quantum processes. Both of these theories are in principle experimentally testable. Green writes that his parafermionic embeddings “hav[e] an important advantage over their classical counterparts [in] that they have a direct physical interpretation and their parameters are in principle observable.” (166) David Finkelstein discusses in detail unique empirical ramifications of his theory in (2004b,c) which most notably include the removal of quantum field-theoretic divergences. Since the work of Shannon and Hawking, associations with entropy, information, and gravity emerged in the study of Hawking radiation. Nowadays, the theories of Green and Finkelstein suggest that the study of space-time lies in the development of technologies better able to probe its microtopology in controlled laboratory conditions. 1 Total word count, including abstract & footnotes: 3,509. -
Supervised Language Modeling for Temporal Resolution of Texts
Supervised Language Modeling for Temporal Resolution of Texts Abhimanu Kumar Matthew Lease Jason Baldridge Dept. of Computer Science School of Information Department of Linguistics University of Texas at Austin University of Texas at Austin University of Texas at Austin [email protected] [email protected] [email protected] ABSTRACT describe any form of communication without cables (e.g. internet We investigate temporal resolution of documents, such as deter- access). As such, the word wireless embodies implicit time cues, mining the date of publication of a story based on its text. We a notion we might generalize by inferring its complete temporal describe and evaluate a model that build histograms encoding the distribution as well as that of all other words. By harnessing many probability of different temporal periods for a document. We con- such implicit cues in combination across a document, we might fur- struct histograms based on the Kullback-Leibler Divergence be- ther infer a unique temporal distribution for the overall document. tween the language model for a test document and supervised lan- As in prior document dating studies, we partition the timeline guage models for each interval. Initial results indicate this language (and document collection) to infer an unique language model (LM) modeling approach is effective for predicting the dates of publica- underlying each time period [10, 14]. While prior work consid- tion of short stories, which contain few explicit mentions of years. ered texts from the past 10-20 years, our work is more historically- oriented, predicting publication dates for historical works of fiction. -
Role of Nonlinear Dynamics and Chaos in Applied Sciences
v.;.;.:.:.:.;.;.^ ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Oivisipn 2000 Please be aware that all of the Missing Pages in this document were originally blank pages BARC/2OOO/E/OO3 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Division BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2000 BARC/2000/E/003 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as per IS : 9400 - 1980) 01 Security classification: Unclassified • 02 Distribution: External 03 Report status: New 04 Series: BARC External • 05 Report type: Technical Report 06 Report No. : BARC/2000/E/003 07 Part No. or Volume No. : 08 Contract No.: 10 Title and subtitle: Role of nonlinear dynamics and chaos in applied sciences 11 Collation: 111 p., figs., ills. 13 Project No. : 20 Personal authors): Quissan V. Lawande; Nirupam Maiti 21 Affiliation ofauthor(s): Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 22 Corporate authoifs): Bhabha Atomic Research Centre, Mumbai - 400 085 23 Originating unit : Theoretical Physics Division, BARC, Mumbai 24 Sponsors) Name: Department of Atomic Energy Type: Government Contd...(ii) -l- 30 Date of submission: January 2000 31 Publication/Issue date: February 2000 40 Publisher/Distributor: Head, Library and Information Services Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution: Hard copy 50 Language of text: English 51 Language of summary: English 52 No. of references: 40 refs. 53 Gives data on: Abstract: Nonlinear dynamics manifests itself in a number of phenomena in both laboratory and day to day dealings. -
Arxiv:0705.0033V3 [Math.DS]
ERGODIC THEORY: RECURRENCE NIKOS FRANTZIKINAKIS AND RANDALL MCCUTCHEON Contents 1. Definition of the Subject and its Importance 3 2. Introduction 3 3. Quantitative Poincaré Recurrence 5 4. Subsequence Recurrence 7 5. Multiple Recurrence 11 6. Connections with Combinatorics and Number Theory 14 7. Future Directions 17 References 19 Almost every, essentially: Given a Lebesgue measure space (X, ,µ), a property P (x) predicated of elements of X is said to hold for almostB every x X, if the set X x: P (x) holds has zero measure. Two sets A, B are∈ essentially disjoint\ { if µ(A B) =} 0. ∈B Conservative system: Is an∩ infinite measure preserving system such that for no set A with positive measure are A, T −1A, T −2A, . pairwise essentially disjoint.∈ B (cn)-conservative system: If (cn)n∈N is a decreasing sequence of posi- tive real numbers, a conservative ergodic measure preserving transforma- 1 tion T is (cn)-conservative if for some non-negative function f L (µ), ∞ n ∈ n=1 cnf(T x)= a.e. arXiv:0705.0033v3 [math.DS] 4 Nov 2019 ∞ PDoubling map: If T is the interval [0, 1] with its endpoints identified and addition performed modulo 1, the (non-invertible) transformation T : T T, defined by Tx = 2x mod 1, preserves Lebesgue measure, hence induces→ a measure preserving system on T. Ergodic system: Is a measure preserving system (X, ,µ,T ) (finite or infinite) such that every A that is T -invariant (i.e. T −B1A = A) satisfies ∈B either µ(A) = 0 or µ(X A) = 0. (One can check that the rotation Rα is ergodic if and only if α is\ irrational, and that the doubling map is ergodic.) Ergodic decomposition: Every measure preserving system (X, ,µ,T ) can be expressed as an integral of ergodic systems; for example,X one can 2000 Mathematics Subject Classification. -
Dissipative Dynamical Systems and Their Attractors
Dissipative dynamical systems and their attractors Grzegorz ukaszewicz, University of Warsaw MIM Qolloquium, 05.11.2020 Plan of the talk Context: conservative and dissipative systems 3 Basic notions 10 Important problems of the theory. G.ukaszewicz Dissipative dynamical systems and their attractors Qolloquium 2 / 14 Newtonian mechanics ∼ conservative system of ODEs in Rn system reversible in time ∼ groups ∼ deterministic chaos From P. S. de Laplace to H. Poincaré, and ... Evolution of a conservative system Example 1. Motivation: Is our solar system stable? (physical system) G.ukaszewicz Dissipative dynamical systems and their attractors Qolloquium 3 / 14 Evolution of a conservative system Example 1. Motivation: Is our solar system stable? (physical system) Newtonian mechanics ∼ conservative system of ODEs in Rn system reversible in time ∼ groups ∼ deterministic chaos From P. S. de Laplace to H. Poincaré, and ... G.ukaszewicz Dissipative dynamical systems and their attractors Qolloquium 3 / 14 Mech. of continuous media ∼ dissipative system of PDEs in a Hilbert phase space system irreversible in time ∼ semigroups ∼ innite dimensional dynamical systems ∼ deterministic chaos Since O. Ladyzhenskaya's papers on the NSEs (∼ 1970) Evolution of a dissipative system Example 2. Motivation: How does turbulence in uids develop? G.ukaszewicz Dissipative dynamical systems and their attractors Qolloquium 4 / 14 Evolution of a dissipative system Example 2. Motivation: How does turbulence in uids develop? Mech. of continuous media ∼ dissipative system of PDEs in a Hilbert phase space system irreversible in time ∼ semigroups ∼ innite dimensional dynamical systems ∼ deterministic chaos Since O. Ladyzhenskaya's papers on the NSEs (∼ 1970) G.ukaszewicz Dissipative dynamical systems and their attractors Qolloquium 4 / 14 Let us compare the above problems Example 1. -
Energy Cycle for the Lorenz Attractor
Energy cycle for the Lorenz attractor Vinicio Pelino, Filippo Maimone Italian Air Force, CNMCA Aeroporto “De Bernardi”, Via di Pratica Di Mare, I-00040 Pratica di Mare (Roma) Italy In this note we study energetics of Lorenz-63 system through its Lie-Poisson structure. I. INTRODUCTION In 1955 E. Lorenz [1] introduced the concept of energy cycle as a powerful instrument to understand the nature of atmospheric circulation. In that context conversions between potential, kinetic and internal energy of a fluid were studied using atmospheric equations of motion under the action of an external radiative forcing and internal dissipative processes. Following these ideas, in this paper we will illustrate that chaotic dynamics governing Lorenz-63 model can be described introducing an appropriate energy cycle whose components are kinetic, potential energy and Casimir function derived from Lie-Poisson structure hidden in the system; Casimir functions, like enstrophy or potential vorticity in fluid dynamical context, are very useful in analysing stability conditions and global description of a dynamical system. A typical equation describing dissipative-forced dynamical systems can be written in Einstein notation as: x&ii=−Λ+{xH, } ijji x f i = 1,2...n (1) Equations (1) have been written by Kolmogorov, as reported in [2], in a fluid dynamical context, but they are very common in simulating natural processes as useful in chaos synchronization [3]. Here, antisymmetric brackets represent the algebraic structure of Hamiltonian part of a system described by function H , and a cosymplectic matrix J [4], {}F,G = J ik ∂ i F∂ k G . (2) Positive definite diagonal matrix Λ represents dissipation and the last term f represents external forcing. -
Arxiv:Quant-Ph/0206117V3 1 Sep 2002
Preprint NSF-ITP-02-62 A SIMPLE QUANTUM EQUATION FOR DECOHERENCE AND DISSIPATION (†) Erasmo Recami Facolt`adi Ingegneria, Universit`astatale di Bergamo, Dalmine (BG), Italy; INFN—Sezione di Milano, Milan, Italy; and Kavli Institute for Theoretical Physics, UCSB, CA 93106, USA. Ruy H. A. Farias LNLS - Synchrotron Light National Laboratory; Campinas, S.P.; Brazil. [email protected] Abstract – Within the density matrix formalism, it is shown that a simple way to get decoherence is through the introduction of a “quantum” of time (chronon): which implies replacing the differential Liouville–von Neumann equation with a finite-difference version of it. In this way, one is given the possibility of using a rather simple quantum equation to describe the decoherence effects due to dissipation. Namely, the mere introduction (not of a “time-lattice”, but simply) of a “chronon” allows us to go on from differential to finite-difference equations; and in particular to write down the quantum-theoretical equations (Schroedinger equation, Liouville–von Neumann equation,...) in three different ways: “retarded”, “symmetrical”, and “advanced”. One of such three formulations —the arXiv:quant-ph/0206117v3 1 Sep 2002 retarded one— describes in an elementary way a system which is exchanging (and losing) energy with the environment; and in its density-matrix version, indeed, it can be easily shown that all non-diagonal terms go to zero very rapidly. keywords: quantum decoherence, interaction with the environment, dissipation, quan- tum measurement theory, finite-difference equations, chronon, Caldirola, density-matrix formalism, Liouville–von Neumann equation (†) This reasearch was supported in part by the N.S.F. under Grant No.PHY99-07949; and by INFN and Murst/Miur (Italy). -
Transformations)
TRANSFORMACJE (TRANSFORMATIONS) Transformacje (Transformations) is an interdisciplinary refereed, reviewed journal, published since 1992. The journal is devoted to i.a.: civilizational and cultural transformations, information (knowledge) societies, global problematique, sustainable development, political philosophy and values, future studies. The journal's quasi-paradigm is TRANSFORMATION - as a present stage and form of development of technology, society, culture, civilization, values, mindsets etc. Impacts and potentialities of change and transition need new methodological tools, new visions and innovation for theoretical and practical capacity-building. The journal aims to promote inter-, multi- and transdisci- plinary approach, future orientation and strategic and global thinking. Transformacje (Transformations) are internationally available – since 2012 we have a licence agrement with the global database: EBSCO Publishing (Ipswich, MA, USA) We are listed by INDEX COPERNICUS since 2013 I TRANSFORMACJE(TRANSFORMATIONS) 3-4 (78-79) 2013 ISSN 1230-0292 Reviewed journal Published twice a year (double issues) in Polish and English (separate papers) Editorial Staff: Prof. Lech W. ZACHER, Center of Impact Assessment Studies and Forecasting, Kozminski University, Warsaw, Poland ([email protected]) – Editor-in-Chief Prof. Dora MARINOVA, Sustainability Policy Institute, Curtin University, Perth, Australia ([email protected]) – Deputy Editor-in-Chief Prof. Tadeusz MICZKA, Institute of Cultural and Interdisciplinary Studies, University of Silesia, Katowice, Poland ([email protected]) – Deputy Editor-in-Chief Dr Małgorzata SKÓRZEWSKA-AMBERG, School of Law, Kozminski University, Warsaw, Poland ([email protected]) – Coordinator Dr Alina BETLEJ, Institute of Sociology, John Paul II Catholic University of Lublin, Poland Dr Mirosław GEISE, Institute of Political Sciences, Kazimierz Wielki University, Bydgoszcz, Poland (also statistical editor) Prof. -
Electro-Gravity Via Geometric Chronon Field
Physical Science International Journal 7(3): 152-185, 2015, Article no.PSIJ.2015.066 ISSN: 2348-0130 SCIENCEDOMAIN international www.sciencedomain.org Electro-Gravity via Geometric Chronon Field Eytan H. Suchard1* 1Geometry and Algorithms, Applied Neural Biometrics, Israel. Author’s contribution The sole author designed, analyzed and interpreted and prepared the manuscript. Article Information DOI: 10.9734/PSIJ/2015/18291 Editor(s): (1) Shi-Hai Dong, Department of Physics School of Physics and Mathematics National Polytechnic Institute, Mexico. (2) David F. Mota, Institute of Theoretical Astrophysics, University of Oslo, Norway. Reviewers: (1) Auffray Jean-Paul, New York University, New York, USA. (2) Anonymous, Sãopaulo State University, Brazil. (3) Anonymous, Neijiang Normal University, China. (4) Anonymous, Italy. (5) Anonymous, Hebei University, China. Complete Peer review History: http://sciencedomain.org/review-history/9858 Received 13th April 2015 th Original Research Article Accepted 9 June 2015 Published 19th June 2015 ABSTRACT Aim: To develop a model of matter that will account for electro-gravity. Interacting particles with non-gravitational fields can be seen as clocks whose trajectory is not Minkowsky geodesic. A field, in which each such small enough clock is not geodesic, can be described by a scalar field of time, whose gradient has non-zero curvature. This way the scalar field adds information to space-time, which is not anticipated by the metric tensor alone. The scalar field can’t be realized as a coordinate because it can be measured from a reference sub-manifold along different curves. In a “Big Bang” manifold, the field is simply an upper limit on measurable time by interacting clocks, backwards from each event to the big bang singularity as a limit only. -
DISCRETE SPACETIME QUANTUM FIELD THEORY Arxiv:1704.01639V1
DISCRETE SPACETIME QUANTUM FIELD THEORY S. Gudder Department of Mathematics University of Denver Denver, Colorado 80208, U.S.A. [email protected] Abstract This paper begins with a theoretical explanation of why space- time is discrete. The derivation shows that there exists an elementary length which is essentially Planck's length. We then show how the ex- istence of this length affects time dilation in special relativity. We next consider the symmetry group for discrete spacetime. This symmetry group gives a discrete version of the usual Lorentz group. However, it is much simpler and is actually a discrete version of the rotation group. From the form of the symmetry group we deduce a possible explanation for the structure of elementary particle classes. Energy- momentum space is introduced and mass operators are defined. Dis- crete versions of the Klein-Gordon and Dirac equations are derived. The final section concerns discrete quantum field theory. Interaction Hamiltonians and scattering operators are considered. In particular, we study the scalar spin 0 and spin 1 bosons as well as the spin 1=2 fermion cases arXiv:1704.01639v1 [physics.gen-ph] 5 Apr 2017 1 1 Why Is Spacetime Discrete? Discreteness of spacetime would follow from the existence of an elementary length. Such a length, which we call a hodon [2] would be the smallest nonzero measurable length and all measurable lengths would be integer mul- tiplies of a hodon [1, 2]. Applying dimensional analysis, Max Planck discov- ered a fundamental length r G ` = ~ ≈ 1:616 × 10−33cm p c3 that is the only combination of the three universal physical constants ~, G and c with the dimension of length. -
Strong Chaos Without Butter Y E Ect in Dynamical Systems with Feedback
Strong Chaos without Buttery Eect in Dynamical Systems with Feedback 1 2 3 Guido Boetta Giovanni Paladin and Angelo Vulpiani 1 Istituto di Fisica Generale Universita di Torino Via PGiuria I Torino Italy 2 Dipartimento di Fisica Universita del lAquila Via Vetoio I Coppito LAquila Italy 3 Dipartimento di Fisica Universita di Roma La Sapienza Ple AMoro I Roma Italy ABSTRACT We discuss the predictability of a conservative system that drives a chaotic system with p ositive maximum Lyapunov exp onent such as the erratic motion of an asteroid 0 in the gravitational eld of two b o dies of much larger mass We consider the case where in absence of feedback restricted mo del the driving system is regular and completely predictable A small feedback of strength still allows a go o d forecasting in the driving system up to a very long time T where dep ends on the details of the system p The most interesting situation happ ens when the Lyapunov exp onent of the total system is strongly chaotic with practically indep endent of Therefore an exp onential tot 0 amplication of a small incertitude on the initial conditions in the driving system for any co exists with very long predictability times The paradox stems from saturation eects in the evolution for the growth of the incertitude as illustrated in a simple mo del of coupled maps and in a system of three p oint vortices in a disk PACS NUMBERS b It is commonly b elieved that a sensible dep endence on initial condition makes foreca sting imp ossible even in systems with few degrees -
Cellular Timekeeping: It's Redox O'clock
Downloaded from http://cshperspectives.cshlp.org/ on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press Cellular Timekeeping: It’s Redox o’Clock Nikolay B. Milev,1 Sue-Goo Rhee,2 and Akhilesh B. Reddy1,3 1The Francis Crick Institute, London NW1 1AT, United Kingdom 2Yonsei University College of Medicine, Seodaemun-gu, Seoul 120-752, Korea 3UCL Institute of Neurology, London WC1N 3BG, United Kingdom Correspondence: [email protected] Mounting evidence in recent years supports the extensive interaction between the circadian and redox systems. The existence of such a relationship is not surprising because most organisms, be they diurnal or nocturnal, display daily oscillations in energy intake, locomo- tor activity,and exposure to exogenous and internally generated oxidants. The transcriptional clock controls the levels of many antioxidant proteins and redox-active cofactors, and, conversely, the cellular redox poise has been shown to feed back to the transcriptional oscillator via redox-sensitive transcription factors and enzymes. However, the circadian cycles in the S-sulfinylation of the peroxiredoxin (PRDX) proteins constituted the first example of an autonomous circadian redox oscillation, which occurred independently of the transcriptional clock. Importantly, the high phylogenetic conservation of these rhythms suggests that they might predate the evolution of the transcriptional oscillator, and therefore could be a part of a primordial circadian redox/metabolic oscillator. This discovery forced the reappraisal of the dogmatic transcription-centered view of the clockwork and opened a new avenue of research. Indeed, the investigation into the links between the circadian and redox systems is still in its infancy, and many important questions remain to be addressed.