ARTICLE Received 19 Feb 2014 | Accepted 24 Jun 2014 | Published 29 Jul 2014 DOI: 10.1038/ncomms5510 Functionally diverse dendritic mRNAs rapidly associate with ribosomes following a novel experience Joshua A. Ainsley1, Laurel Drane1, Jonathan Jacobs1, Kara A. Kittelberger1,w & Leon G. Reijmers1 The subcellular localization and translation of messenger RNA (mRNA) supports functional differentiation between cellular compartments. In neuronal dendrites, local translation of mRNA provides a rapid and specific mechanism for synaptic plasticity and memory forma- tion, and might be involved in the pathophysiology of certain brain disorders. Despite the importance of dendritic mRNA translation, little is known about which mRNAs can be translated in dendrites in vivo and when their translation occurs. Here we collect ribosome- bound mRNA from the dendrites of CA1 pyramidal neurons in the adult mouse hippocampus. We find that dendritic mRNA rapidly associates with ribosomes following a novel experience consisting of a contextual fear conditioning trial. High throughput RNA sequencing followed by machine learning classification reveals an unexpected breadth of ribosome-bound den- dritic mRNAs, including mRNAs expected to be entirely somatic. Our findings are in agree- ment with a mechanism of synaptic plasticity that engages the acute local translation of functionally diverse dendritic mRNAs. 1 Department of Neuroscience, Tufts University, Boston, Massachusetts 02111, USA. w Present address: Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30322, USA. Correspondence and requests for materials should be addressed to L.R. (email:
[email protected]). NATURE COMMUNICATIONS | 5:4510 | DOI: 10.1038/ncomms5510 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited.