Input Code Book Medical Inputs

Total Page:16

File Type:pdf, Size:1020Kb

Input Code Book Medical Inputs ANNEXURE 1 INPUT CODE BOOK MEDICAL INPUTS CODING SYSTEM VERSION 0.2, MARCH 2013 AAROGYASRI HEALTH CARE TRUST HYDERABAD. 0 1 | Page Contents 1.0 Introduction ................................................................................................................................. 5 1.1. Objective ...................................................................................................................................... 5 1.2. Summary of Medical Inputs coding system ................................................................................. 5 2.0 Drug Coding...................................................................................................................................... 6 2.1 General .................................................................................................................................... 6 2.2 Drug Code Format .................................................................................................................. 6 2.2.1.ATC Drug Code ..................................................................................................................... 6 2.2.2 Route & Dosage form code. ................................................................................................... 7 2.2.3 Strength code. ........................................................................................................................ 7 2.2.4 List of Drugs with Drug code . .............................................................................................. 7 3.0 Input coding for Hospital Stay, Lab Investigations, Consumables, Disposables, Implants and Miscellaneous ......................................................................................................................................... 7 3.1 General .................................................................................................................................... 7 3.2 Input code format .................................................................................................................... 7 3.2.1 Hospital Stay ................................................................................................................... 8 3.2.2. Lab investigations & Imageology ................................................................................... 8 3.2.3. Consumables ................................................................................................................... 8 3.2.4. Disposables ..................................................................................................................... 8 3.2.5. Implants ........................................................................................................................... 8 3.2.6. Miscellaneous ................................................................................................................. 9 ANNEXURE 1...................................................................................................................................... 10 DRUGS WITH ATC CODE ................................................................................................................. 10 ANNEXURE 2...................................................................................................................................... 47 DRUG ROUTE AND DOSAGE CODE FORMAT ............................................................................. 47 2.1. Route of administration codes .................................................................................................... 47 2.2. Dosage form codes in Inhalation route ...................................................................................... 47 2.3. Dosage form codes in Oral route ............................................................................................... 47 2.4. Dosage form codes in Parenteral route ...................................................................................... 47 2.5. Dosage form codes in Topical route .......................................................................................... 47 2.6. Dosage form codes in Suppository route ................................................................................... 48 ANNEXURE 3...................................................................................................................................... 48 DRUG STRENGTH CODE FORMAT ................................................................................................ 49 3.1. Drug strength unit codes ............................................................................................................ 49 3.2. Drug strengths codes in grams unit ............................................................................................ 49 3.3. Drug strengths codes in milligrams unit .................................................................................... 49 2 | Page 3.4. Drug strengths codes in micrograms unit .................................................................................. 49 3.5. Drug strengths codes in milli litre unit ....................................................................................... 49 3.6. Drug strengths codes in international unit ................................................................................. 50 3.7. Drug strengths codes in milli mole unit ..................................................................................... 50 ANNEXURE 4...................................................................................................................................... 51 LIST OF DRUGS WITH DRUG CODES ............................................................................................ 51 ANNEXURE 5...................................................................................................................................... 83 CLASS AND CATEGORY CODES FOR INPUTS ............................................................................ 83 1.0 Class Codes ............................................................................................................................... 83 2.0 Category Codes ......................................................................................................................... 83 2.1 In case of Investigations, Consumables, Disposables ,Implants and Miscellaneous the category codes are common and indicate the specialities. ................................................................ 83 2.2 Category codes for hospital stay ........................................................................................... 84 (a). The individual category codes for hospital stay ................................................................ 84 2.3 Category codes for investigations ......................................................................................... 84 The intelligence built into the category codes for investigations ...................................................... 84 (a). The individual category codes for biochemistry investigations ........................................ 84 (b). The individual category codes for microbiology investigations ....................................... 84 (c). The individual category codes for pathology investigations ............................................. 85 (d). The individual category codes for imageology investigations .......................................... 85 2.4 Category codes for consumables ............................................................................................... 85 The intelligence built into the category codes for consumables ....................................................... 85 2.5 Category codes for disposables ................................................................................................. 85 The intelligence built into the category codes for disposables ......................................................... 85 2.6 Category codes for implants ..................................................................................................... 85 The intelligence built into the category codes for implants .............................................................. 85 2.7 Category codes for Miscellaneous ............................................................................................ 85 The intelligence built into the category codes for Miscellaneous ......................................................... 85 ANNEXURE 6...................................................................................................................................... 86 DETAILED INPUT CODES ................................................................................................................ 86 1.0 Item codes for hospital stay ...................................................................................................... 86 1.1 The individual item codes for hospital stay .......................................................................... 86 2.0 Item codes for investigations .................................................................................................... 87 2.1 Item codes for biochemistry .................................................................................................. 87 The individual item codes for biochemistry investigations. ......................................................... 87 2.2 Item codes for microbiology ................................................................................................
Recommended publications
  • Artemisinin Resistance: Current Status and Scenarios for Containment
    REVIEWS Artemisinin resistance: current status and scenarios for containment Arjen M. Dondorp*‡, Shunmay Yeung*§, Lisa White*‡, Chea Nguon§, Nicholas P.J. Day*‡, Duong Socheat§|| and Lorenz von Seidlein*¶ Abstract | Artemisinin combination therapies are the first-line treatments for uncomplicated Plasmodium falciparum malaria in most malaria-endemic countries. Recently, partial artemisinin-resistant P. falciparum malaria has emerged on the Cambodia–Thailand border. Exposure of the parasite population to artemisinin monotherapies in subtherapeutic doses for over 30 years, and the availability of substandard artemisinins, have probably been the main driving force in the selection of the resistant phenotype in the region. A multifaceted containment programme has recently been launched, including early diagnosis and appropriate treatment, decreasing drug pressure, optimising vector control, targeting the mobile population, strengthening management and surveillance systems, and operational research. Mathematical modelling can be a useful tool to evaluate possible strategies for containment. Parenteral In nearly all countries in which malaria is endemic, antimalarial properties (artemisinin) was identified, and Administered by injection. artemisinin combination therapies (ACT) are now the several more potent derivatives were synthesized, includ- recommended first-line therapy for uncomplicated ing artesunate, artemether and dihydroartemisinin11 Plasmodium falciparum malaria, a policy endorsed by (FIG. 1). Artemisinin derivatives have an excellent safety the WHO1. This change in policy followed a period profile in the treatment of malaria, a rapid onset of action of increasing failure rates with chloroquine and later and are active against the broadest range of stages in the sulphadoxine–pyrimethamine treatment, which arose life cycle of Plasmodium spp. compared with other anti- from the development of resistant P.
    [Show full text]
  • Cascade Catalysis–Strategies and Challenges En Route to Preparative
    ChemComm Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/chemcomm Page 1 of 15 ChemComm ChemComm RSCPublishing Feature article Cascade catalysis – strategies and challenges en route to preparative synthetic biology Cite this: DOI: 10.1039/x0xx00000x Jan Muschiol,a,+ Christin Peters,a,+ Nikolin Oberleitner,b Marko D. Mihovilovic,b Uwe T. Bornscheuera and Florian Rudroffb,* Received 00th January 2012, Accepted 00th January 2012 Nature’s smartness and efficiency assembling cascade type reactions inspired biologists and chemists all around the world. Tremendous effort has been put in the understanding and DOI: 10.1039/x0xx00000x mimicking of such networks. In recent years considerable progress has been made in www.rsc.org/ developing multistep one-pot reactions combining either advantage of chemo-, regio-, and stereoselectivity of biocatalysts or promiscuity and productivity of chemocatalysts.
    [Show full text]
  • [Cu2(Mand)2(Hmt)]–MOF: a Synergetic Effect Between Cu(II)
    Article 3 1 [Cu2(mand)2(hmt)]–MOF: A Synergetic Effect between Cu(II) and Hexamethylenetetramine in the Henry Reaction 1 1 1 2 2, Horat, iu Szalad , Natalia Candu , Bogdan Cojocaru , Traian D. Păsătoiu , Marius Andruh * and Vasile I. Pârvulescu 1,* 1 Department of Organic Chemistry, Biochemistry and Catalysis, Catalysis and Catalytic Processes Research Centre, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta nr. 4-12, 020462 Bucharest, Romania; [email protected] (H.S.); [email protected] (N.C.); [email protected] (B.C.) 2 Faculty of Chemistry, University of Bucharest, Department of Inorganic Chemistry, 23 Dumbrava Ro¸sie Street, sector 2, 020462 Bucharest, Romania; [email protected] * Correspondence: [email protected] (M.A.); [email protected] (V.I.P.) Received: 9 January 2020; Accepted: 12 February 2020; Published: 13 February 2020 3 Abstract: [Cu2(mand)2(hmt)] H2O (where mand is totally deprotonated mandelic acid (racemic 1 · mixture) and hmt is hexamethylenetetramine) proved to be a stable metal–organic framework (MOF) structure under thermal activation and catalytic conditions, as confirmed by both the in situ PXRD (Powder X-ray diffraction) and ATR–FTIR (Attenuated total reflection-Fourier-transform infrared spectroscopy) haracterization. The non-activated MOF was completely inert as catalyst for the Henry reaction, as the accessibility of the substrates to the channels was completely blocked by H-bonded water to the mand entities and CO2 adsorbed on the Lewis basic sites of the hmt. Heating at 140 ◦C removed these molecules. Only an insignificant change in the relative ratios of the XRD facets due to the capillary forces associated to the removal of the guest molecules from the network has been observed.
    [Show full text]
  • Sodium Gluconate and Potassium Gluconate As Substitutes for Sodium Chloride in Breadmaking
    Food Sci. Technol. Res., 8 (1), 75–79, 2002 Sodium Gluconate and Potassium Gluconate as Substitutes for Sodium Chloride in Breadmaking Hiroyuki TAKANO1 and Ryouko KONDOU2 1National Food Research Institute, Tsukuba Science City, Ibaraki, 305-8642, Japan 2Fujisawa Pharmaceutical Co., LTD., 5-2-3 Tokodai, Tsukuba, Ibaraki, 300-2698, Japan Received September 5, 2001; Accepted November 30, 2001 Sodium gluconate (Na-gluconate) and potassium gluconate (K-gluconate) were used as NaCl substitutes in bread- making to determine their potential usefulness in preparing reduced-sodium bread and non-sodium bread. Replace- ment of 75% of the NaCl by Na-gluconate and of 50% by K-gluconate had no effect on rheological properties of dough as measured by Brabender Extensograph. Replacement of 100% of the NaCl by either Na-gluconate or K-glu- conate resulted in decreased resistance to extension, but the decreased resistance to extension had no effect on dough handling properties. Expansion of white bread dough (5% sugar, flour weight basis) increased with the proportion of NaCl replaced by Na-gluconate or K-gluconate. The patterns of carbon dioxide production during fermentation of non-sugar bread dough showed that as the proportion of Na-gluconate or K-gluconate increased, the time required to complete fermentation decreased, and the fermentation pattern showed a gradual resemblance to that seen in non- sugar bread dough without NaCl. In white bread, complete replacement of NaCl (2%, flour weight basis) by Na-glu- conate or K-gluconate did not cause a difference in loaf volume, nor did it have any significant effect on overall desir- ability.
    [Show full text]
  • Potassium Gluconate
    POTASSIUM GLUCONATE Cambridge Commodities Chemwatch Hazard Alert Code: 2 Chemwatch: 48667 Issue Date: 27/06/2017 Version No: 5.1.23.11 Print Date: 27/09/2021 Safety data sheet according to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758 S.REACH.GB.EN SECTION 1 Identification of the substance / mixture and of the company / undertaking 1.1. Product Identifier Product name POTASSIUM GLUCONATE Chemical Name potassium gluconate CH2OH.[CH(OH)]4.CO2K; gluconic acid, potassium salt, D-; D-gluconic acid, monopotassium salt; gluconic acid, potassium salt; Synonyms potassium D-gluconate; Gluconsan K Kalium-Beta Kaon Elixir Katorin K-IAO Potalium; Potasoral Potassuril Sirokal Chemical formula C6H12O7.K Other means of P16164 identification CAS number 299-27-4 EC number 206-074-2 REACH registration 01-2119455845-28-XXXX number 1.2. Relevant identified uses of the substance or mixture and uses advised against Because potassium gluconate is almost tasteless it is a convenient for the prevent and treatment of potassium deficiency by oral Relevant identified uses administration. Uses advised against Not Applicable 1.3. Details of the supplier of the safety data sheet Registered company name Cambridge Commodities Address Lancaster Way Business Park, Ely, Cambridgeshire Cambridgeshire CB6 3NX United Kingdom Telephone +44 1353 667258 Fax Not Available Website Not Available Email [email protected] 1.4. Emergency telephone number Association / Organisation Not Available Product code: Version No: 5.1.23.2 Page 1 of 20 S.REACH.GB.EN Lancaster Way Business Park Safety Data Sheet (Conforms to Regulation (EU) No 2020/878) Ely, Cambridgeshire, CB6 3NX, UK.
    [Show full text]
  • Evolution of Plasmodium Falciparum Drug Resistance: Implications for the Development and Containment of Artemisinin Resistance
    Jpn. J. Infect. Dis., 65, 465-475, 2012 Invited Review Evolution of Plasmodium falciparum drug resistance: implications for the development and containment of artemisinin resistance Toshihiro Mita1,2* and Kazuyuki Tanabe3,4 1Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo 113-8421; 2Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, Tokyo 162-8666; and 3Laboratory of Malariology and 4Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan (Received March 15, 2012) CONTENTS: 1. Introduction 5. Artemisinin combination therapies (ACTs) and 2. Life cycle of P. falciparum resistance to artemisinins 3. Mechanisms of P. falciparum resistance to conven- 5–1. Artemisinin derivatives tional antimalarial drugs 5–2. ACTs 3–1. Chloroquine 5–3. Resistance and reduced susceptibility to arte- 3–2. Pyrimethamine and sulfadoxine misinins 4. Geographical spread of resistance to conventional 6. The Thailand-Cambodia border and the contain- antimalarial drugs ment of artemisinin resistance 4–1. Chloroquine 6–1. Thailand-Cambodia border: epicenter of drug 4–2. Pyrimethamine resistance 4–3. Sulfadoxine 6–2. Resistance and the Greater Mekong 6–3. Implications for the containment of artemisi- nin resistance 7. Concluding remarks SUMMARY: Malaria is a protozoan disease transmitted by the bite of the Anopheles mosquito. Among five species that can infect humans, Plasmodium falciparum is responsible for the most severe human malaria. Resistance of P. falciparum to chloroquine and pyrimethamine/sulfadoxine, conventionally used antimalarial drugs, is already widely distributed in many endemic areas. As a result, artemisinin- based combination therapies have been rapidly and widely adopted as first-line antimalarial treatments since the mid-2000s.
    [Show full text]
  • Dietary Supplements Compendium Volume 1
    2015 Dietary Supplements Compendium DSC Volume 1 General Notices and Requirements USP–NF General Chapters USP–NF Dietary Supplement Monographs USP–NF Excipient Monographs FCC General Provisions FCC Monographs FCC Identity Standards FCC Appendices Reagents, Indicators, and Solutions Reference Tables DSC217M_DSCVol1_Title_2015-01_V3.indd 1 2/2/15 12:18 PM 2 Notice and Warning Concerning U.S. Patent or Trademark Rights The inclusion in the USP Dietary Supplements Compendium of a monograph on any dietary supplement in respect to which patent or trademark rights may exist shall not be deemed, and is not intended as, a grant of, or authority to exercise, any right or privilege protected by such patent or trademark. All such rights and privileges are vested in the patent or trademark owner, and no other person may exercise the same without express permission, authority, or license secured from such patent or trademark owner. Concerning Use of the USP Dietary Supplements Compendium Attention is called to the fact that USP Dietary Supplements Compendium text is fully copyrighted. Authors and others wishing to use portions of the text should request permission to do so from the Legal Department of the United States Pharmacopeial Convention. Copyright © 2015 The United States Pharmacopeial Convention ISBN: 978-1-936424-41-2 12601 Twinbrook Parkway, Rockville, MD 20852 All rights reserved. DSC Contents iii Contents USP Dietary Supplements Compendium Volume 1 Volume 2 Members . v. Preface . v Mission and Preface . 1 Dietary Supplements Admission Evaluations . 1. General Notices and Requirements . 9 USP Dietary Supplement Verification Program . .205 USP–NF General Chapters . 25 Dietary Supplements Regulatory USP–NF Dietary Supplement Monographs .
    [Show full text]
  • Malaria Medicines Landscape
    2015 Malaria Medicines Landscape MARCH 2015 UNITAID Secretariat World Health Organization Avenue Appia 20 CH-1211 Geneva 27 Switzerland T +41 22 791 55 03 F +41 22 791 48 90 [email protected] www.unitaid.org UNITAID is hosted and administered by the World Health Organization © 2015 World Health Organization (Acting as the host organization for the Secretariat of UNITAID) The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind either expressed or implied. The responsibility and use of the material lie with the reader. In no event shall the World Health Organization be liable for damages arising from its use. This report was prepared by Katerina Galluzzo and Alexandra Cameron with support from UNITAID. All reasonable precautions have been taken by the author to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader.
    [Show full text]
  • WHO Guidelines for the Treatment of Malaria
    GTMcover-production.pdf 11.1.2006 7:10:05 GUIDELINES FOR THE TREATMENT O F M A L A R I A GUIDELINES FOR THE TREATMENT OF MALARIA Guidelines for the treatment of malaria Guidelines for the treatment of malaria WHO Library Cataloguing-in-Publication Data Guidelines for the treatment of malaria/World Health Organization. Running title: WHO guidelines for the treatment of malaria. 1. Malaria – drug therapy. 2. Malaria – diagnosis. 3. Antimalarials – administration and dosage. 4. Drug therapy, Combination. 5. Guidelines. I. Title. II. Title: WHO guidelines for the treatment of malaria. ISBN 92 4 154694 8 (NLM classification: WC 770) ISBN 978 92 4 154694 2 WHO/HTM/MAL/2006.1108 © World Health Organization, 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20, avenue Appia, 1211 Geneva 27, Switzerland (tel. +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Method of Making 3-(Aminomethyl)-5-Methylhexanoic Acid
    Europäisches Patentamt *EP000830338B1* (19) European Patent Office Office européen des brevets (11) EP 0 830 338 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C07C 229/08, C07C 255/19, of the grant of the patent: C07C 255/22, C07C 227/04 12.12.2001 Bulletin 2001/50 (86) International application number: (21) Application number: 96914618.2 PCT/US96/06819 (22) Date of filing: 13.05.1996 (87) International publication number: WO 96/40617 (19.12.1996 Gazette 1996/55) (54) Method of making 3-(aminomethyl)-5-methylhexanoic acid Verfahren zur Herstellung von 3-(Aminomethyl)-5-Methylhexansäure Procédé de preparation de l’acide 3-(aminométhyl)-5-méthylhexanoique (84) Designated Contracting States: • SOBIERAY, Denis, Martin AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC Holland, MI 49424 (US) NL PT SE • TITUS, Robert, Daniel Designated Extension States: Indianapolis, IN 46227 (US) LT LV SI (74) Representative: Mansmann, Ivo et al (30) Priority: 07.06.1995 US 474874 Warner-Lambert Company, Legal Division, (43) Date of publication of application: Legal Department, 25.03.1998 Bulletin 1998/13 c/o Gödecke AG 79090 Freiburg (DE) (73) Proprietor: WARNER-LAMBERT COMPANY Morris Plains New Jersey 07950 (US) (56) References cited: EP-A- 0 100 019 EP-A- 0 450 577 (72) Inventors: WO-A-93/23383 • GROTE, Todd, Michel Holland, MI 49424 (US) • SYNTHESIS, no. 12, December 1989, NEW • HUCKABEE, Brian, Keith YORK, US, pages 953-5, XP002011378 R. Holland, MI 49424 (US) ANDRUSZKIEWICZ ET. AL.: "A Convenient • MULHERN, Thomas Synthesis of 3-Alkyl-4-Aminobutanioc Acids" Hudsonville, MI 49426 (US) cited in the application Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • Investigation of the Behaviour of Pregabalin Enantiomers Dorottya Fruzsina BÁNHEGYI and Emese PÁLOVICS
    Review Article ISSN 2689-1050 Chemical & Pharmaceutical Research Investigation of The Behaviour of Pregabalin Enantiomers Dorottya Fruzsina BÁNHEGYI and Emese PÁLOVICS *Correspondence: Department of Organic Chemistry and Technology, H-1111 Department of Organic Chemistry and Technology, H-1111 Budapest, Budafoki út 8., Tel.: +36-1-463-2101, Fax: +36-1- Budapest, Budafoki út 8. 463-3648 Received: 30 October 2020; Accepted: 29 November 2020 Citation: Bánhegyi D.F, Pálovics E. Investigation of The Behaviour of Pregabalin Enantiomers. Chem Pharm Res. 2020; 2(1): 1-5. ABSTRACT The behavior of pregabalin enantiomers obtained by resolution of the free γ-amino acid, racemic pregabalin (PGA) was investigated in the process of the resolution via diastereomeric salt formation. Various resolution methods, purification possibilities of the enantiomeric mixtures, the effect of the achiral compound, the crystallization time of the diastereomeric salt, and the effect of the solvent on the resolution were studied. Summarizing our experimental results, we can establish that the resolution of pregabalin is affected by kinetic control, and significant enantiomeric enrichment can be reached with the replenishment of the diastereomeric salt. Keywords agent mixtures to improve resolvability. Resolution, Resolution by formation of diastereomers, Optimization, Enantiomeric purity, Diastereomeric salt Studying the resolution of pregabalin according to the patent [4], replenishment. it was considered, that it would be advisable to replace one mol of (S)-mandelic acid with another aromatic achiral carboxylic acid Introduction due to the high material demand of the reaction (Figure 1) [5]. We There is a growing interest both scientifically and industrially have chosen realted molecular structured achiral additions with the in the economical separation of chiral, enantiomerically pure same chemical character such as benzoic acid (BA), salicylic acid compounds.
    [Show full text]
  • Intracellular Solution
    Recipes for Physiological Recording Sucrose slicing solution Regents MM MW Gram/L Gram/4L KCl 2.5 74.56 0.186 0.746 NaH2PO4 1.25 137.99 0.173 0.692 MgCl2 7 203.3 7ml stock 28ml stock CaCl2 0.5 147.02 0.5ml stock 2ml stock NaHCO3 25 81.01 2.1 8.4 Glucose 11 198.17 2.18 8.72 Sucrose 234 342.3 80.1 320.4 K-gluconate intracellular solution Regents Concentration Molecular To make To make (mM) weight 100ml (mg) 20ml (mg) KCl 20 74.56 149 K-gluconate 120 234.56 2810 MgCl2 2 203.3 40 EGTA 0.2 380.4 7.6 HEPES 10 238.3 238.3 *Na2-ATP 2 551.1 112.2 pH 7.3 mit KOH, ~305mOsm Potassium Intracellular solution for 100ml 1. Potassium Gluconate 120mM 2,810.5mg 2. Potassium Chloride 20 150 3. GTP 0.3 4. EGTA 0.2 (or 0.02) 0.8 (0.08) 5. HEPES 10 24 6. Buffer pH to 7.25 with KOH, and filtered with 0.2μm filter, then add ATP 7. ATP-Mg 4 200 8. Aliquot by 1.5ml Cesium Intracellular solution for 100ml (243mM, modified from Weliky and Katz, J. Neurosci. 1994, 14:7291-7305) @ Regents Concentration Molecular To make To make (mM) weight 100ml (mg) 20ml (mg) D-gluconic acid (free acid, 45- 110 196.2 3.5ml 0.7ml 50% w/w) solution CsOH 110 167.9 1,847 369.4 CsCl2 10 168.4 168.4 33.7 EGTA 1 380.4 38 7.6 CaCl2 1 147.02 14.7 2.94 HEPES 10 238.3 238.3 47.7 *ATP-Mg 1 507.2 51 10.14 *Filtered with 0.2um filter before adding ATP-Mg.
    [Show full text]