The Arboretum Foundation
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Liliaceae S.L. (Lily Family)
Liliaceae s.l. (Lily family) Photo: Ben Legler Photo: Hannah Marx Photo: Hannah Marx Lilium columbianum Xerophyllum tenax Trillium ovatum Liliaceae s.l. (Lily family) Photo: Yaowu Yuan Fritillaria lanceolata Ref.1 Textbook DVD KRR&DLN Erythronium americanum Allium vineale Liliaceae s.l. (Lily family) Herbs; Ref.2 Stems often modified as underground rhizomes, corms, or bulbs; Flowers actinomorphic; 3 sepals and 3 petals or 6 tepals, 6 stamens, 3 carpels, ovary superior (or inferior). Tulipa gesneriana Liliaceae s.l. (Lily family) “Liliaceae” s.l. (sensu lato: “in the broad sense”) - Lily family; 288 genera/4950 species, including Lilium, Allium, Trillium, Tulipa; This family is treated in a very broad sense in this class, as in the Flora of the Pacific Northwest. The “Liliaceae” s.l. taught in this class is not monophyletic. It is apparent now that the family should be treated in a narrower sense and some of the members should form their own families. Judd et al. recognize 15+ families: Agavaceae, Alliaceae, Amarylidaceae, Asparagaceae, Asphodelaceae, Colchicaceae, Dracaenaceae (Nolinaceae), Hyacinthaceae, Liliaceae, Melanthiaceae, Ruscaceae, Smilacaceae, Themidaceae, Trilliaceae, Uvulariaceae and more!!! (see web reading “Consider the Lilies”) Iridaceae (Iris family) Photo: Hannah Marx Photo: Hannah Marx Iris pseudacorus Iridaceae (Iris family) Photo: Yaowu Yuan Photo: Yaowu Yuan Sisyrinchium douglasii Sisyrinchium sp. Iridaceae (Iris family) Iridaceae - 78 genera/1750 species, Including Iris, Gladiolus, Sisyrinchium. Herbs, aquatic or terrestrial; Underground stems as rhizomes, bulbs, or corms; Leaves alternate, 2-ranked and equitant Ref.3 (oriented edgewise to the stem; Gladiolus italicus Flowers actinomorphic or zygomorphic; 3 sepals and 3 petals or 6 tepals; Stamens 3; Ovary of 3 fused carpels, inferior. -
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus. -
Srgc Bulb Log Diary
SRGC ----- Bulb Log Diary ----- Pictures and text © Ian Young BULB LOG 18..................................4th May 2016 Yellow Erythronium grandiflorum and the pure white of Erythronium elegans, growing in the rock garden, are featured on this week’s cover picture. Despite all the extremes that our weather is delivering the flowering of the Erythroniums is at a peak just now. In one of the sand plunge beds a basket of Erythronium hendersonii opens its flowers responding to one of the sunny periods. View across the rock garden bed to one of the sand plunges. Erythronium revolutum hybrids These are two of the Erythronium revolutum hybrids that I lifted for assessment a few years ago. I grew them in pots for a year then transferred them into plunge baskets last summer to allow them more space to increase. They both have well-marked leaves and interesting markings in the flowers so the main thing I am trialling them for is to see how quickly they will increase. Erythronium ‘Joanna’ One of the plants that has suffered a bit in the bad weather is Erythronium ‘Joanna’. The flowers of this group, growing in a plunge basket, have become spotted with some withering at the tips while others planted out under the cover of Rhododendrons are fine. I also notice similar damage on flowers of Erythronium tuloumnense, one of the parents of E. ‘Joanna’. Erythronium ‘Craigton Cover Girl’ There is no doubt that the flowers of some species are more resistent to the cold wet conditions and that resilience is passed on to hybrids. Erythronium ‘Craigton Cover Girl’ has E. -
ERYTHRONIUMS in CULTIVATION © Ian Young Erythronium Californicum
ERYTHRONIUMS IN CULTIVATION © Ian Young ERYTHRONIUMS IN CULTIVATION © Ian Young Erythronium californicum ERYTHRONIUMS IN CULTIVATION © Ian Young Erythronium californicum Erythronium californicum filaments are narrow, ribbon-like with milky white pollen , the flowers are also creamy white with a yellow centre; some forms have dark red zig zag patterns around the centre. Erythronium californicum is another excellent garden plant which is most often seen under the cultivar name of Erythronium ‘White Beauty’ this is readily available. I include ‘White Beauty’ here, rather than under hybrids, as there are no morphological indications that any other species is involved. What makes this form such a good garden plant is its ability to tolerate a wide range of garden types and increase well by division: a healthy well- grown bulb can make two new flowering sized bulbs plus have several smaller offsets every year – it also regularly sets seed. Erythronium ‘White Beauty’ ERYTHRONIUMS IN CULTIVATION © Ian Young Erythronium californicum All forms are free flowering, setting seed most years provided the weather conditions at flowering time are not too cold and wet. Erythronium ‘White Beauty’ has fewer seeds in the capsule compared to other forms; about one third of the number. Erythronium californicum seeds ERYTHRONIUMS IN CULTIVATION © Ian Young Bulb On the left is a group of Erythronium californicum bulbs showing the typical shape – the longer thin ones are younger bulbs still taking themselves down into the ground seeking the best conditions. Most forms will increase by offsets, soon forming clumps – forms such as ‘White Beauty’ form clumps quickly, see below, and are best lifted and divided every three to five years to maintain good flowering. -
Erythronium Revolutum Sm
Erythronium revolutum Sm. pink fawn-lily Liliaceae - lily family status: State Sensitive rank: G4 / S3 General Description: Perennial from elongate underground bulbs. Leaves basal, paired, strongly mottled with irregular patches of pale green, brown, or white on a dark green background, oblong-lanceolate to broadly elliptic, (9) 12-18 (25) cm long. Floral Characteristics: Flowers 1-3, nodding on a leafless peduncle 1.5-4 dm tall. Tepals 6, 3.5-4 (5) cm long, uniformly deep pink with yellow banding at the base, drying to pinkish purple, spreading to reflexed; the inner with 2-4 saclike appendages near the base. Stamens 6, 12-22 mm. Filaments flattened, 2-3 mm wide, white to pink, darkening with age. A nthers yellow; style 12-18 mm. Stigma 3-lobed, lobes recurved, 4-6 mm. Flowers A pril to May. Fruits: Capsules oblong to club-shaped, 3-6 cm. Identif ication Tips: Erythronium revolutum sometimes hybridizes with E. Illustration by Jeanne R. Janish, oregonum, which has white to creamy white tepals (becoming pinkish in ©1969 University of Washington Press age, sometimes with red lines or bands). E. quinaultense has green or faintly mottled leaves, paler flowers than E. revolutum, and flattened filaments 0.8-2 mm wide. E. elegans is endemic to the O R Coast Range and has cream to white tepals, often strongly marked with pink and aging to deeper pink; its leaves have nearly no mottling. E. quinaultens e is endemic to the O lympic Mts. of WA ; all 6 of its tepals are white below, shading to pink at the outer margins and tips. -
Draft SPI Botany Program
Botany Policy A Planning Document for Protecting Sensitive Plant Species on SPI Land By Cajun James Principal Research Scientist Revised January 1, 2003 Botany Research Paper No. 1 Sierra Pacific Industries Post Office Box 496014 Redding, California 96049-6014 a 2003 Sierra Pacific Industries SI ERRA PACI FI C R ESEARCH & MONI T ORI NG SI ERRA PACI FI C I NDU ST RI ES SPI Botany Program Planning Document Contents DOCUMENT SUMMARY .............................................................................................. 1 POLICY OBJECTIVE..................................................................................................... 1 INTRODUCTION............................................................................................................. 3 BACKGROUND ON SPI’S TIMBER HARVEST OPERATIONS ............................ 4 FRESHWATER WETLANDS................................................................................................ 4 ROCK OUTCROPS ............................................................................................................. 5 DESCRIPTION OF BOTANY POLICY........................................................................ 5 BOTANY POLICY PLANT SPECIES AND THE BOTANY POLICY PLANT LIST ................................................................................................................................... 6 GROUPS............................................................................................................................ 6 PLANT PROTECTION MEASURES........................................................................... -
Sierra Nevada Framework FEIS Chapter 3
table of contrents Sierra Nevada Forest Plan Amendment – Part 4.6 4.6. Vascular Plants, Bryophytes, and Fungi4.6. Fungi Introduction Part 3.1 of this chapter describes landscape-scale vegetation patterns. Part 3.2 describes the vegetative structure, function, and composition of old forest ecosystems, while Part 3.3 describes hardwood ecosystems and Part 3.4 describes aquatic, riparian, and meadow ecosystems. This part focuses on botanical diversity in the Sierra Nevada, beginning with an overview of botanical resources and then presenting a more detailed analysis of the rarest elements of the flora, the threatened, endangered, and sensitive (TES) plants. The bryophytes (mosses and liverworts), lichens, and fungi of the Sierra have been little studied in comparison to the vascular flora. In the Pacific Northwest, studies of these groups have received increased attention due to the President’s Northwest Forest Plan. New and valuable scientific data is being revealed, some of which may apply to species in the Sierra Nevada. This section presents an overview of the vascular plant flora, followed by summaries of what is generally known about bryophytes, lichens, and fungi in the Sierra Nevada. Environmental Consequences of the alternatives are only analyzed for the Threatened, Endangered, and Sensitive plants, which include vascular plants, several bryophytes, and one species of lichen. 4.6.1. Vascular plants4.6.1. plants The diversity of topography, geology, and elevation in the Sierra Nevada combine to create a remarkably diverse flora (see Section 3.1 for an overview of landscape patterns and vegetation dynamics in the Sierra Nevada). More than half of the approximately 5,000 native vascular plant species in California occur in the Sierra Nevada, despite the fact that the range contains less than 20 percent of the state’s land base (Shevock 1996). -
SRGC BULB LOG DIARY---Pictures and Text © Ian Young
SRGC ----- Bulb Log Diary ----- Pictures and text © Ian Young BULB LOG 0 1....................................6th January 2016 Erythroniums in Cultivation chapters - Erythronium grandiflorum and Erythronium tuolumnense A very happy and healthy New Year to all my Bulb Log readers, I hope you also have a great gardening year. I would also like to say a big thank you to Len Rhind who has compiled an index to the Bulb log - updating it every year since the very start. Len very generously shares this work with all of us and you can access and download the latest version here- Bulb Log Index Weather wise 2016 has not got off to a very good start in the UK and especially here in the northeast where we have had constant rain for over a week now. The rain has prevented me from getting on with my normal tasks of winter tree pruning along with tidying and mulching the beds before the spring growth emerges. This small setback is trivial compared to the many people who have suffered flooding of both gardens and homes. I do hope that we get a dry period during January so I can achieve the tidy-up and mulching of the beds at least – the tree work can always be done later. Cyclamen coum The persistent rain clouds also bring the gloom at this time of year and we are in almost darkness all the time so it is very difficult to get any pictures taken. It is at times like this that areas near the house with the troughs and bonsai, this week’s cover picture, show their year round decorative qualities. -
(Dr. Sc. Nat.) Vorgelegt Der Mathematisch-Naturwissenschaftl
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 Flowers, sex, and diversity: Reproductive-ecological and macro-evolutionary aspects of floral variation in the Primrose family, Primulaceae de Vos, Jurriaan Michiel Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-88785 Dissertation Originally published at: de Vos, Jurriaan Michiel. Flowers, sex, and diversity: Reproductive-ecological and macro-evolutionary aspects of floral variation in the Primrose family, Primulaceae. 2012, University of Zurich, Facultyof Science. FLOWERS, SEX, AND DIVERSITY. REPRODUCTIVE-ECOLOGICAL AND MACRO-EVOLUTIONARY ASPECTS OF FLORAL VARIATION IN THE PRIMROSE FAMILY, PRIMULACEAE Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftliche Fakultät der Universität Zürich von Jurriaan Michiel de Vos aus den Niederlanden Promotionskomitee Prof. Dr. Elena Conti (Vorsitz) Prof. Dr. Antony B. Wilson Dr. Colin E. Hughes Zürich, 2013 !!"#$"#%! "#$%&$%'! (! )*'+,,&$-+''*$.! /! '0$#1'2'! 3! "4+1%&5!26!!"#"$%&'(#)$*+,-)(*#! 77! "4+1%&5!226!-*#)$%.)(#!'&*#!/'%#+'.0*$)/)"$1'(12%-).'*3'0")"$*.)4&4'*#' "5*&,)(*#%$4'+(5"$.(3(-%)(*#'$%)".'(#'+%$6(#7.'2$(1$*.".! 89! "4+1%&5!2226!.1%&&'%#+',!&48'%'9,%#)()%)(5":'-*12%$%)(5"'"5%&,%)(*#'*3' )0"';."&3(#!'.4#+$*1"<'(#'0")"$*.)4&*,.'%#+'0*1*.)4&*,.'2$(1$*.".! 93! "4+1%&5!2:6!$"2$*+,-)(5"'(12&(-%)(*#.'*3'0"$=*!%14'(#'0*1*.)4&*,.' 2$(1$*.".>'5%$(%)(*#'+,$(#!'%#)0".(.'%#+'$"2$*+,-)(5"'%..,$%#-"'(#' %&2(#"'"#5($*#1"#).! 7;7! "4+1%&5!:6!204&*!"#")(-'%#%&4.(.'*3'!"#$%&''."-)(*#'!"#$%&''$"5"%&.' $%12%#)'#*#/1*#*204&4'%1*#!'1*2$0*&*!(-%&&4'+(.)(#-)'.2"-(".! 773! "4+1%&5!:26!-*#-&,+(#!'$"1%$=.! 7<(! +"=$#>?&@.&,&$%'! 7<9! "*552"*?*,!:2%+&! 7<3! !!"#$$%&'#""!&(! Es ist ein zentrales Ziel in der Evolutionsbiologie, die Muster der Vielfalt und die Prozesse, die sie erzeugen, zu verstehen. -
Community Herbal Monograph on Primula Veris L. And/Or Primula Elatior (L.) Hill, Flos Final
19 September 2012 EMA/HMPC/136582/2012 Committee on Herbal Medicinal Products (HMPC) Community herbal monograph on Primula veris L. and/or Primula elatior (L.) Hill, flos Final Initial assessment Discussion in Working Party on Community monographs and Community March 2007 list (MLWP) Adoption by Committee on Herbal Medicinal Products (HMPC) for release 8 March 2007 for consultation End of consultation (deadline for comments) 15 June 2007 Rediscussion in Working Party on Community monographs and September 2007 Community list (MLWP) Adoption by Committee on Herbal Medicinal Products (HMPC) Monograph (EMEA/HMPC/64684/2007) AR (EMEA/HMPC/64683/2007) List of references (EMEA/HMPC/111633/2007) 7 September 2007 Overview of comments received during the public consultation (EMEA/HMPC/373075/2007) HMPC Opinion (EMEA/HMPC/405544/2007) First systematic review Discussion in Working Party on Community monographs and Community March 2012 list (MLWP) May 2012 Adoption by Committee on Herbal Medicinal Products (HMPC) for release N/A for consultation End of consultation (deadline for comments) N/A Rediscussion in Working Party on Community monographs and N/A Community list (MLWP) Adoption by Committee on Herbal Medicinal Products (HMPC) 19 September 2012 A search for the versions adopted in September 2007 can be made via the EMA document search function, using the documents’ reference number, at: http://www.ema.europa.eu/ema/index.jsp?curl=pages/document_library/landing/document_library_se arch.jsp&mid= 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7418 7051 E -mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2013. -
Bioactive Phenolic Compounds from Primula Veris L.: Influence of the Extraction Conditions and Purification
molecules Article Bioactive Phenolic Compounds from Primula veris L.: Influence of the Extraction Conditions and Purification Maria Tarapatskyy 1,* , Aleksandra Gumienna 1, Patrycja Sowa 1 , Ireneusz Kapusta 2 and Czesław Puchalski 1 1 Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 35-601 Rzeszów, Poland; [email protected] (A.G.); [email protected] (P.S.); [email protected] (C.P.) 2 Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 35-601 Rzeszów, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-17-7854834 Abstract: Our experiments may help to answer the question of whether cowslip (Primula veris L.) is a rich source of bioactive substances that can be obtained by efficient extraction with potential use as a food additive. A hypothesis assumed that the type of solvent used for plant extraction and the individual morphological parts of Primula veris L. used for the preparation of herbal extracts will have key impacts on the efficiency of the extraction of bioactive compounds, and thus, the health- promoting quality of plant concentrates produced. Most analysis of such polyphenolic compound contents in extracts from Primula veris L. has been performed by using chromatography methods such as ultra-performance reverse-phase liquid chromatography (UPLC−PDA−MS/MS). Experiments ◦ demonstrated that the most effective extraction agent for fresh study material was water at 100 C, whereas for dried material it was 70% ethanol. The richest sources of polyphenolic compounds Citation: Tarapatskyy, M.; were found in cowslip primrose flowers and leaves. -
Assessment Report on Primula Veris L. And/Or Primula Elatior (L.) Hill, Radix
19 September 2012 EMA/HMPC/113577/2012 Committee on Herbal Medicinal Products (HMPC) Assessment report on Primula veris L. and/or Primula elatior (L.) Hill, radix Based on Article 16d(1), Article 16f and Article 16h of Directive 2001/83/EC as amended (traditional use) Final Herbal substance(s) (binomial scientific Primula veris L., Primula elatior (L.) Hill, radix name of the plant, including plant part) Herbal preparation(s) A) Dry extract (DER 3-9:1), extraction solvent ethanol 40-50% v/v B) Liquid extract (DER 1:1), extraction solvent ethanol 70% v/v C) Liquid extract (DER 1:2.0-2.5), extraction solvent ethanol 70% v/v D) Tincture (ratio of herbal substance to extraction solvent 1:5), extraction solvent ethanol 70% v/v E) Soft extract (DER 5-10:1), extraction solvent water F) Soft extract (DER 1-4:1), extraction solvent ethanol 20-55% v/v G) Soft extract (DER 6-10:1), extraction solvent methanol, water, ammonia solution 10% (50.0:49.5:0.5) H) Soft extract (DER 6-10:1), extraction solvent methanol 50% I) Comminuted herbal substance Pharmaceutical form(s) Comminuted herbal substance as herbal tea for oral use. Other herbal preparations in liquid and solid dosage forms for oral use. Rapporteur R. Länger Assessor(s) R. Länger 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7523 7051 E -mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2013.