PDF Linkchapter
Total Page:16
File Type:pdf, Size:1020Kb
Index Page numbers in bold denote tables and in italic denote figures. Acritarchs, 264, 318 Holocene palaeoenvironmental reconstruction, 83–84 Ade´lie Land, East Antarctica, 87 Hypsithermal–Neoglacial transition, 87 Adriatic Sea, 93 Late Oligocene–Middle Miocene, 173–174 Aegean Sea, 171 Oligocene and Neogene climate variability, 76 Agulhas leakage, 181 Apectodinium Alabama, USA, 323 cyst-wall chemistry, 239, 255, 256 Albian, Late Apicomplexans, 263–264, 264, 265–266, 272, 273 black shales, Umbria–Marche basin, Italy, 324 Aptian palaeogeography, 98–99, 99 palaeogeography, 98–99, 99 see also Aptian and Late Albian dinocysts Aptian and Late Albian dinocysts Alexandrium climatic belts and biomes, 106–112, 111, 112 cyst–theca relationships, 335–336 palaeotemperature requirements, 114 Gulf of Mexico, 156, 158 significance of distribution, 112–114 resolution of toxic and non-toxic groups, 316–317 stratigraphic ranges, 117–118 Alexandrium affine study sites and authors, 115–117 homothallism, 200 synonymy, 117 Alexandrium andersoni worldwide distribution, 100–106, 102–110 biodiesel, 93 Aquatic invasive species, 90–92 Alexandrium fundyense Canada, 167–168 forecasting blooms, 141–146, 142, 143, 144, 145 China, 246–247 Alexandrium minutum Gymnodinium catenatum, NE Atlantic, 166 biodiesel, 93 Arabian Sea, 179–180 genes, 297, 297 Aral Sea Parvilucifera sinerae infection, 200 Holocene environmental change, 127–130, 128 population dynamics, 191, 192 Archaeperidinium minutum Alexandrium ostenfeldii germination experiments, 92 genetic diversity, 201 phylogenetic position, 336–338, 342, 343–345 genome, 296, 297 Archaeperidinium saanichi Alexandrium pseudogoniaulax incubation experiments, 92 cyst–theca relationships, 335 Arctic Alexandrium tamarense,79–80 Batiacasphaera micropapillata complex, 302, 303, biomarkers for tracking blooms, 179 305–308, 306 genes, 297, 297 cyst assemblages, 65–66 responses to rising carbon dioxide, 77 modern dinocysts and water mass dynamics, 184 toxic and non-toxic groups, Orkney Islands, 215, 217, reconstruction of sea-ice cover, 65–68 218–219, 218 Arpylorus antiquus, 321 Alexandrium tamarense/fundyense/catenella complex, Artificial neural network (ANN) 190, 293–294, 294, 295–296, 296 SW Pacific Ocean and Southern Hemisphere, 75 Alexandrium taylori, 250 workshop, 359, 360, 361, 362 Alkenones, 33 Asexual cysts, 198, 199, 200 Alkenone unsaturation index, 31, 33 see also Pellicle cysts Amazon River Plume, 72 Asexual reproduction see Vegetative reproduction Amber, 242 Athecate condition, evolution of, 268 Amphidinium Atlantic meridional overturning circulation (AMOC), 185 Gulf of Mexico, 157, 157, 234, 236–237 Atlantic Ocean phylogenetic position, 268 opening, 98–99, 99 Amphidoma South and Equatorial, 71–72 new species, 162 subtropical, 74 Amphisolenia tropical SE, 78–79 new records for Mexican Pacific, 174 see also North Atlantic Ocean Anglo-Paris Basin, 164–165 Atlas of modern dinocysts, 187–188 Angola, 78–79 Azadinium cf. poporum, 165 Anoxic conditions Azadinium spinosum, 243 and dinocyst taphonomy, 138 Azadinum, 162 Swedish fjords, 43 Azaspiracid toxins (AZAs), 243 Antarctica Eocene stratigraphy, 315–316 Bahamian Platform, 322–323 genetic diversity, 201 Baker, Henry, 89 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3914719/9781862396500_backmatter.pdf by guest on 02 October 2021 364 INDEX Ballast tanks Canada aquatic invasive species, 90–92 aquatic invasive species, 167–168 sediment and dinocyst accumulation, 167–168 Beaufort Sea, 93, 172–173 Ballast Water Management guidelines, 92 Great Lakes, Ontario, 80, 133–138, 134, 135, 136, 137 Baltic Sea Labrador, 75–76 Biecheleria baltica life cycle, 202 Carbon dioxide comparison of ecological signals, 163 13C fractionation of dinoflagellates as proxy for, cyst assemblages, 77–78 79–80 encystment mechanisms, 200–201 eco-physiological responses of dinoflagellates, 77 genetic diversity, 201 Carbon isotope excursion (CIE) Gotland Deep palynofacies studies, 186–187 Late Silurian, 86 Barrufeta bravensis gen. nov. sp. nov, 245–246 Caspian Sea, 82, 192 Batiacasphaera Holocene environmental change, 127–130, 128 taxonomy, 302–303, 302, 304 Caspidinium rugosum, 128, 129, 129, 130 Batiacasphaera micropapillata complex, 301–302, Cassis-La Be´doule, France, 86–87 303–309, 306, 307, 309–310 Cenomanian–Turonian boundary (CTB), 164–165 Batiacasphaera minuta see Batiacasphaera Cenozoic stable isotope curve, 35 micropapillata complex Centre of Excellence for Dinophyte Taxonomy (CEDiT), Batiacasphaera sphaerica, 302–303, 302, 304 244 Beaufort Sea, Canada, 93, 172–173 Ceratium, 192 Benguela Upwelling System (BUS), 177 Ceratium furca, 171 Benthic mortality, Swedish fjords, 43, 45 Cerodinium superdominance assemblage, 170, 288, Benthic-pelagic coupling, 252 289–291, 291, 292 Benthic seeding, 252 Chattonella, 156 Bering Sea Charlotte Harbor, Florida, 83, 178 Middle Pleistocene Revolution, 182 Chatangiella/Isabelidinium superdominance assemblage, Pliocene–Early Quaternary, 78 170, 288, 289, 289, 291, 292 Biecheleria baltica Chimonodinium, 240 encystment, 200–201 China life cycle, 202 aquatic invasive species, 246–247 Bimodal distributions, 189 Tarim Basin, 175–176 Biodiesel, 92–93 Chromalveolate Biogeographical studies, 194 origins, 264, 265 endemism v. cosmopolitanism, 192 Chromophytes, 263, 264 Biological species concept, 190 Chromosome segregation, 251–252 Biomarker analysis, 83 Ciguatera Fish Poisoning (CFP), 161–162 Biostratigraphy Ciliates, 263–264, 264, 265–266, 268, 272 importance of cyst assemblages, 93 Cladistics, 90 multiproxy studies, 35 Cladopyxoids Black Sea, 192 phylogenetic position, 272 Holocene environmental change, 127–130, 128 Climate variability, natural, 31 Messinian Salinity Crisis, 80–81 cyst assemblages as proxies for, 93 Black shales interglacial North Atlantic, 73 Umbria–Marche basin, Italy, 324 multiproxy studies, 33–34, 34 Blastodiniales Oligocene and Neogene, 76 evolution, 267, 268, 271 postglacial Labrador Sea, 73–74 Blooms CO2 forcing, 33 categorization, 144–145, 144 Coastal lagoons, Mediterranean, 183 dynamics, 191–192, 194, 197, 252 Coastal vegetation and marine productivity, 71 new bloom-forming species, 245–246 Collections, 244 transport prediction, 141 Concatenated ribosomal DNA approach, 316–317 see also Harmful algal blooms (HABs) Conferences see Dino 9 Conference; International Boreal dinocysts Conferences on Modern and Fossil Dinoflagellates Aptian and Late Albian, 101, 104–105, 105, 108, 109, Coral reef, 161–162 113, 115 Corals Brigantedinium, 128, 182, 192, 193 dinoflagellate endosymbionts, 268, 293, 294, 295 inheritance of endosymbionts, 295 Calcareous dinoflagellates Cosmopolitan dinocysts morphological changes in hypoxic zones, 183–184 Aptian, 101, 102, 103 phylogenetic position, 269–272 Late Albian, 105–106 preservation, 253–254 Cosmopolitanism, 192 responses to rising carbon dioxide, 77 Crawford Lake, Ontario Calciodinelloideae Peridinium and eutrophication, 80, 134–138, 134, 135, phylogenetic position, 269–272 136, 137 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3914719/9781862396500_backmatter.pdf by guest on 02 October 2021 INDEX 365 Crenarcheota, 33 Diarrhetic Shellfish Poisoning (DSP), 161 Cretaceous, 33 Diatoms Aptian–Albian palaeogeography, 98–99, 99 algal blooms, 89 Cenomanian–Turonian boundary, 164–165 incubation from sediment archive, Late Albian black shales, 324 149–152, 151 Ocean Anoxic Events, 35 in sea-ice environments, 65 ocean salinity changes, 98 Dinawan Island, Malaysia, 161 sea-surface temperature gradients, 98 Dino 9 Conference, 18, 19, 19 tabulation, 242 Lifetime Achievement Award 2011, 25–28 see also Aptian and Late Albian dinocysts student perspective, 23 Cretaceous, Middle see also Oral presentations; Poster presentations; palaeoenvironmental change, 86–87 Workshops Cretaceous–Palaeogene boundary, 84–85 Dinogymnium superdominance assemblage, Cretaceous, Upper 288, 291 superdominance assemblages, Santos Basin, Brazil, Dinokaryotes 170, 285–292, 286–289, 290, 291 origin and relationships with other protists, Crustaceans 263–264, 264 dinoflagellate parasites of, 241 Dinophysiales Crypthecodinium cohnii evolution, 267, 271 genome, 252 Dinophysioid tabulation, 266, 267 Cryptic species, 55, 61, 165, 193, 293–294 Dinophysis,89 Culturing techniques, 190 Gulf of Mexico, 157, 157 see also Germination experiments new records for Mexican Pacific, 174 Cyanobacteria Dinophysis acuta algal blooms, 89 Orkney Islands, 218, 218, 219, 219 origin of toxin genes, 298 Dinophysoids Cyanobacterial symbionts acquisition of photosynthesis, 213 in dinophysoids, 213 early evolutionary history, 207–213, 212 Cyperaceae, 71 Dinophyta Cyst mapping, 142–143, 142, 143 Orkney Islands, 217, 217, 218 Cysts see Pellicle cysts; Resting cysts Dinosporin, 239, 255 Cyst–theca relationships, 92, 190, 193, 325–345 Distributions historical review of germination experiments, bimodal, 189 326–330, 327–329 inshore–offshore, 97–98 limitations of germination experiments, 330–333, latitudinal, 97–98 330, 331 modern dinocyst atlas, 187–188 linking using single-cell isolation and molecular modern dinocysts, 192–193, 193 typing, 351–358, 353, 357, 357 modern theca, 193 molecular phylogenetic analysis, 329, 333–336, see also Aptian and Late Albian dinocysts 343–345 Diversity, 256 reconstruction of phylogenies, 336–345, 337, Dodge, John, 8 339–342, 344 Dormancy periods see Survival, resting cysts Cyst-wall chemistry Apectodinium, 239, 255, 256 Ebro river delta, 169–170 fossil cysts, 255 Ecdysal cysts see Pellicle cysts Lingulodinium polyedrum,