A Model Study of the First Ventilated Regime of the Arctic Ocean During

Total Page:16

File Type:pdf, Size:1020Kb

A Model Study of the First Ventilated Regime of the Arctic Ocean During RESEARCH/REVIEW ARTICLE A model study of the first ventilated regime of the Arctic Ocean during the early Miocene Bijoy Thompson,1 Martin Jakobsson,1 Johan Nilsson,2 Jonas Nycander2 & Kristofer Do¨ o¨ s2 1 Department of Geological Sciences, Stockholm University, Stockholm SE-10691, Sweden 2 Department of Meteorology, Stockholm University, Stockholm SE-10691, Sweden Keywords Abstract Ocean modelling; Miocene Arctic Ocean; palaeoceanography; ocean ventilation; The tectonic opening of Fram Strait during the Neogene was a significant age tracer. geological event that transferred the Arctic Ocean from a poorly ventilated enclosed basin, with weak exchange with the North Atlantic, to a fully Correspondence ventilated ‘‘ocean stage’’. Previous tectonic and physical oceanographic Bijoy Thompson, Department of Geological analyses suggest that the early Miocene Fram Strait was likely several times Sciences, Stockholm University, Stockholm narrower and less than half as deep as the present-day 400 km wide and 2550 SE-10691, Sweden. E-mail: [email protected] m deep strait. Here we use an ocean general circulation model with a passive age tracer included to further address the effect of the Fram Strait opening on the early Miocene Arctic Ocean circulation. The model tracer age exhibits strong spatial gradient between the two major Arctic Ocean deep basins: the Eurasian and Amerasian basins. There is a two-layer stratification and the exchange flow through Fram Strait shows a bi-layer structure with a low salinity outflow from the Arctic confined to a relatively thin upper layer and a saline inflow from the North Atlantic below. Our study suggests that although Fram Strait was significantly narrower and shallower during early Miocene, and the ventilation mechanism quite different in our model, the estimated ventilation rates are comparable to the chemical tracer estimates in the present-day Arctic Ocean. Since we achieved ventilation of the Arctic Ocean with a prescribed Fram Strait width of 100 km and sill depth of 1000 m, ventilation may have preceded the timing of a full ocean depth connection between the Arctic Ocean and North Atlantic established through seafloor spreading and the development of the Lena Trough. The components influencing the global climate system widely known examples in palaeoceanography is the over timescales of 104Á106 years include the variations in Mediterranean Sea’s isolation from Atlantic Ocean the Earth’s orbital geometry, the continental geography 5.6 million years ago (Mya) which resulted in a following and topography, the configuration of oceanic basins period of severe evaporation referred to as the Messinian and gateways, and the concentrations of the atmos- salinity crisis (Krijgsman et al. 1999). The spectacular pheric greenhouse gases. The complex dynamics of these flooding 5.33 Mya, called the Zanclean flood event and components have driven Earth’s climate through the caused by the tectonic subsidence of Gibraltar Strait, Cenozoic transition from what commonly is referred to as changed the palaeoceanographic conditions in the Med- a Greenhouse to an Icehouse World (Zachos et al. 2001). iterranean Sea (Garcia-Castellanos et al. 2009). Much Of the tectonic boundary conditions, the variations in like the late Miocene Mediterranean Sea, the Arctic ocean gateways have in particular imposed significant Ocean was landlocked during most of the Cenozoic, changes to the global ocean circulation and physical implying that its palaeoceanographic evolution was for properties of sea water in different basins (Zachos et al. long periods disconnected from the rest of the World 2001; von der Heydt & Dijkstra 2006). One of the most Oceans (O’Regan et al. 2011). However, a comprehensive Polar Research 2012. # 2012 B. Thompson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 1 Unported License (http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Citation: Polar Research 2012, 31, 10859, http://dx.doi.org/10.3402/polar.v31i0.10859 (page number not for citation purpose) Modelling the first ventilated regime of the Arctic Ocean B. Thompson et al. investigation of the Arctic Ocean Cenozoic palaeo- 2006; Jakobsson et al. 2007; Haley et al. 2008; Backman environmental history has been restrained by the scarcity & Moran 2009). One of these results suggests that the of continuous geological records. It was only in 2004, Arctic Ocean transformed from a poorly oxygenated when the Integrated Ocean Drilling Program (IODP) ‘‘lake stage’’ to a fully oxygenated ‘‘ocean stage’’ during Expedition 302, the Arctic Coring Expedition (ACEX), late early Miocene (17.5 Mya; Jakobsson et al. 2007). The retrieved the first long drill core from the central Arctic authors link this ventilation change to the tectonic Ocean, that proposed tectonic models with palaeoceano- opening of Fram Strait; the major ocean gateway graphic implications could be compared with geological between the Arctic and Atlantic oceans located between ground truth (Backman et al. 2006). The 428 m long Greenland and Svalbard (Fig. 1). Furthermore, from sediment record retrieved from the Lomonosov Ridge a two-layer analytical model the transition to a fully unveiled a range of novel results (e.g., Brinkhuis et al. oxygenated Arctic Ocean regime is estimated to have 2006; Moran et al. 2006; Pagani et al. 2006; Sluijs et al. happened when Fram Strait first reached a width of Fig. 1 (a) The present Arctic Ocean portrayed by the International Bathymetric Chart of the Arctic Ocean (IBCAO; Jakobsson et al. 2008). The two major present-day surface circulation features, the Transpolar Drift and Beaufort Gyre, are shown. The Beaufort Gyre has generally two predominant regimes; one anticyclonic (black: SeptemberÁMay) and one cyclonic (grey: JuneÁAugust) (Proshutinsky et al. 2002). (b) The reconstructed palaeo-bathymetry representing the early Miocene Arctic Ocean. The IBCAO grid shown in (a) was used as base data for this reconstruction (see text for further information). (c) The palaeo-bathymetric grid was translated so that the geographic position 788N08E, located in the centre of Fram Strait, was moved to 308N08E in order to avoid problems associated with having the North Pole included in the simulations. 2 Citation: Polar Research 2012, 31, 10859, http://dx.doi.org/10.3402/polar.v31i0.10859 (page number not for citation purpose) B. Thompson et al. Modelling the first ventilated regime of the Arctic Ocean about 40Á50 km. They also estimated that with an inflow about 200Á300 years (Schlosser et al. 1997; Timmermans of 1.5 Sv (1 Sv106 m3/s) from the Atlantic Ocean, the et al. 2005; Tanuha et al. 2009). The deep waters in the ventilation time may be less than 250 years. Canada Basin are older, with a mean age estimate of 450 Here we use an ocean general circulation model years (Schlosser et al. 1997). From using CFC inventories, (OGCM) specifically configured for the late early Mio- the present-day upper limit of ventilation timescale in cene Arctic Ocean basin to further address the Arctic the deep Arctic Ocean waters is approximated to 500Á600 Ocean’s initial stage as a ventilated ocean with a years (Tanuha et al. 2009). However, the ventilation rate connection to the North Atlantic Ocean through Fram can vary substantially within a basin. Such spatial varia- Strait. Our diagnostics of the OGCM results are aimed at tion can be studied by using OGCMs instead of analysing examining the spatial variation of the ventilation in the discrete samples of tracers. One approach for this is the early Miocene Arctic Ocean. There are some specific Lagrangian dispersion, where Lagrangian trajectories are questions that we want to study qualitatively. First, how computed from the velocity fields of an ocean circulation representative are palaeoceanographic proxies of the model (Johnson et al. 2004; Do¨ o¨ s et al. 2008). Another oxygen content at the ACEX coring sites for the ventila- approach involves integrating the numerical ocean cir- tion state of the early Miocene Arctic Ocean? More culation model with passive tracers (Cox 1989; England specifically, can strong spatial gradients in ventilation 1995; Deleersnijder et al. 2001; Deleersnijder et al. 2002). be expected near the ACEX sites, making the relation The prognostic passive age tracer is integrated using the between local ventilation and the Fram Strait flow advectionÁdiffusion equation, similar to that used for the sensitive to the palaeo-depths and locations of the sites active tracers (temperature and salt). on the Lomonosov Ridge? In addition, we follow up a Thompson et al. (2010) carried out a study of the few open question of principle nature that arose in a ventilation timescale using the Geophysical Fluid Dy- related study by Thompson et al. (2010), which was namics Laboratory Modular Ocean Model 4 (MOM4p1; based on highly idealized model simulations of the early Griffies 2007) and an idealized ocean basin. In this Miocene Arctic Ocean physiographic setting. In particu- present work we use MOM4p1, and build our diagnostics lar, Thompson et al. (2010) made simulations for a basin of the ventilation time and its spatial distribution on the with a volume approximately 10 times smaller than that experience gained from the Thompson et al. (2010) of the Arctic Ocean in the relevant geological period. The study. Their model bathymetry was an idealized repre- present numerical experiment allows testing the volume sentation of the North AtlanticÁFram StraitÁArctic Ocean dependence of the ventilation proposed by Thompson system, and consisted of two semi-enclosed basins con- et al. (2010). nected with a strait over a sill. A series of model ex- periments were performed for different strait widths (96 km or 325 km), sill depths (1000 m or 250 m) Methods and boundary conditions and freshwater fluxes (0.16 Sv or 0.2 Sv), with and without wind stress.
Recommended publications
  • An Improved Bathymetric Portrayal of the Arctic Ocean
    GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L07602, doi:10.1029/2008GL033520, 2008 An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses Martin Jakobsson,1 Ron Macnab,2,3 Larry Mayer,4 Robert Anderson,5 Margo Edwards,6 Jo¨rn Hatzky,7 Hans Werner Schenke,7 and Paul Johnson6 Received 3 February 2008; revised 28 February 2008; accepted 5 March 2008; published 3 April 2008. [1] A digital representation of ocean floor topography is icebreaker cruises conducted by Sweden and Germany at the essential for a broad variety of geological, geophysical and end of the twentieth century. oceanographic analyses and modeling. In this paper we [3] Despite all the bathymetric soundings that became present a new version of the International Bathymetric available in 1999, there were still large areas of the Arctic Chart of the Arctic Ocean (IBCAO) in the form of a digital Ocean where publicly accessible depth measurements were grid on a Polar Stereographic projection with grid cell completely absent. Some of these areas had been mapped by spacing of 2 Â 2 km. The new IBCAO, which has been agencies of the former Soviet Union, but their soundings derived from an accumulated database of available were classified and thus not available to IBCAO. Depth bathymetric data including the recent years of multibeam information in these areas was acquired by digitizing the mapping, significantly improves our portrayal of the Arctic isobaths that appeared on a bathymetric map which was Ocean seafloor. Citation: Jakobsson, M., R. Macnab, L. Mayer, derived from the classified Russian mapping missions, and R.
    [Show full text]
  • Bathymetry and Deep-Water Exchange Across the Central Lomonosov Ridge at 88–891N
    ARTICLE IN PRESS Deep-Sea Research I 54 (2007) 1197–1208 www.elsevier.com/locate/dsri Bathymetry and deep-water exchange across the central Lomonosov Ridge at 88–891N Go¨ran Bjo¨rka,Ã, Martin Jakobssonb, Bert Rudelsc, James H. Swiftd, Leif Andersone, Dennis A. Darbyf, Jan Backmanb, Bernard Coakleyg, Peter Winsorh, Leonid Polyaki, Margo Edwardsj aGo¨teborg University, Earth Sciences Center, Box 460, SE-405 30 Go¨teborg, Sweden bDepartment of Geology and Geochemistry, Stockholm University, Stockholm, Sweden cFinnish Institute for Marine Research, Helsinki, Finland dScripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA eDepartment of Chemistry, Go¨teborg University, Go¨teborg, Sweden fDepartment of Ocean, Earth, & Atmospheric Sciences, Old Dominion University, Norfolk, USA gDepartment of Geology and Geophysics, University of Alaska, Fairbanks, USA hPhysical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA iByrd Polar Research Center, Ohio State University, Columbus, OH, USA jHawaii Institute of Geophysics and Planetology, University of Hawaii, HI, USA Received 23 October 2006; received in revised form 9 May 2007; accepted 18 May 2007 Available online 2 June 2007 Abstract Seafloor mapping of the central Lomonosov Ridge using a multibeam echo-sounder during the Beringia/Healy–Oden Trans-Arctic Expedition (HOTRAX) 2005 shows that a channel across the ridge has a substantially shallower sill depth than the 2500 m indicated in present bathymetric maps. The multibeam survey along the ridge crest shows a maximum sill depth of about 1870 m. A previously hypothesized exchange of deep water from the Amundsen Basin to the Makarov Basin in this area is not confirmed.
    [Show full text]
  • New Constraints on the Age, Geochemistry
    New constraints on the age, geochemistry, and environmental impact of High Arctic Large Igneous Province magmatism: Tracing the extension of the Alpha Ridge onto Ellesmere Island, Canada T.V. Naber1,2, S.E. Grasby1,2, J.P. Cuthbertson2, N. Rayner3, and C. Tegner4,† 1 Geological Survey of Canada–Calgary, Natural Resources Canada, Calgary, Canada 2 Department of Geoscience, University of Calgary, Calgary, Canada 3 Geological Survey of Canada–Northern, Natural Resources Canada, Ottawa, Canada 4 Centre of Earth System Petrology, Department of Geoscience, Aarhus University, Aarhus, Denmark ABSTRACT Island, Nunavut, Canada. In contrast, a new Province (HALIP), is one of the least studied U-Pb age for an alkaline syenite at Audhild of all LIPs due to its remote geographic lo- The High Arctic Large Igneous Province Bay is significantly younger at 79.5 ± 0.5 Ma, cation, and with many exposures underlying (HALIP) represents extensive Cretaceous and correlative to alkaline basalts and rhyo- perennial arctic sea ice. Nevertheless, HALIP magmatism throughout the circum-Arctic lites from other locations of northern Elles- eruptions have been commonly invoked as a borderlands and within the Arctic Ocean mere Island (Audhild Bay, Philips Inlet, and potential driver of major Cretaceous Ocean (e.g., the Alpha-Mendeleev Ridge). Recent Yelverton Bay West; 83–73 Ma). We propose anoxic events (OAEs). Refining the age, geo- aeromagnetic data shows anomalies that ex- these volcanic occurrences be referred to col- chemistry, and nature of these volcanic rocks tend from the Alpha Ridge onto the northern lectively as the Audhild Bay alkaline suite becomes critical then to elucidate how they coast of Ellesmere Island, Nunavut, Canada.
    [Show full text]
  • New Hydrographic Measurements of the Upper Arctic Western Eurasian
    New Hydrographic Measurements of the Upper Arctic Western Eurasian Basin in 2017 Reveal Fresher Mixed Layer and Shallower Warm Layer Than 2005–2012 Climatology Marylou Athanase, Nathalie Sennéchael, Gilles Garric, Zoé Koenig, Elisabeth Boles, Christine Provost To cite this version: Marylou Athanase, Nathalie Sennéchael, Gilles Garric, Zoé Koenig, Elisabeth Boles, et al.. New Hy- drographic Measurements of the Upper Arctic Western Eurasian Basin in 2017 Reveal Fresher Mixed Layer and Shallower Warm Layer Than 2005–2012 Climatology. Journal of Geophysical Research. Oceans, Wiley-Blackwell, 2019, 124 (2), pp.1091-1114. 10.1029/2018JC014701. hal-03015373 HAL Id: hal-03015373 https://hal.archives-ouvertes.fr/hal-03015373 Submitted on 19 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE New Hydrographic Measurements of the Upper Arctic 10.1029/2018JC014701 Western Eurasian Basin in 2017 Reveal Fresher Mixed Key Points: – • Autonomous profilers provide an Layer and Shallower Warm Layer Than 2005 extensive physical and biogeochemical
    [Show full text]
  • Hot Rocks from Cold Places: a Field, Geochemical and Geochronological Study from the High Arctic Large Igneous P Rovince (HALIP) at Axel Heiberg Island, Nunavut
    ! !"#$%"&'($)*"+$,"-.$/-0&1(2$3$451-.6$71"&81+5&0-$09.$ 71"&8*"9"-":5&0-$;#<.=$)*"+$#81$!5:8$3*&#5&$>0*:1$ ?:91"<($/*"@59&1$A!3>?/B$0#$3C1-$!15D1*:$?(-09.6$ E<90@<#$ $ $ by Cole Girard Kingsbury A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Earth Sciences Ottawa – Carleton Geoscience Centre and Carleton University Ottawa, Ontario © 2016 Cole Girard Kingsbury ! ! !"#$%&'$() ) ) ) ) ) ) ) ) ) ) The geology of the Arctic is greatly influenced by a period of widespread Cretaceous magmatic activity, the High Arctic Large Igneous Province (HALIP). Two major tholeiitic magmatic pulses characterize HALIP: an initial 120 -130 Ma pulse that affected Arctic Canada and formally adjacent regions of Svalbard (Norway) and Franz Josef Land (Russia). In Canada, this pulse fed lava flows of the Isachsen Formation. A second 90-100 Ma pulse that apparently only affected the Canadian side of the Arctic, fed flood basalts of the Strand Fiord Formation. The goal of this thesis is to improve understanding of Arctic magmatism of the enigmatic HALIP through field, remote sensing, geochemical and geochronology investigations of mafic intrusive rocks collected in the South Fiord area of Axel Heiberg Island, Nunavut, and comparison with mafic lavas of the Isachsen and Strand Fiord Formations collected from other localities on the Island. Ground-based and remote sensing observations of the South Fiord area reveal a complex network of mafic sills and mainly SSE-trending dykes. Two new U-Pb baddeleyite ages of 95.18 ± 0.35 Ma and 95.56 ± 0.24 Ma from South Fiord intrusions along with geochemical similarity confirm these intrusions (including the SSE-trending dykes) are feeders for the Strand Fiord Formation lavas.
    [Show full text]
  • Evidence for Slab Material Under Greenland and Links to Cretaceous
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Evidence for slab material under Greenland 10.1002/2016GL068424 and links to Cretaceous High Key Points: Arctic magmatism • Mid-mantle seismic and gravity anomaly under Greenland identified G. E. Shephard1, R. G. Trønnes1,2, W. Spakman1,3, I. Panet4, and C. Gaina1 • Jurassic-Cretaceous slab linked to paleo-Arctic ocean closure, prior to 1Centre for Earth Evolution and Dynamics (CEED), Department of Geosciences, University of Oslo, Oslo, Norway, 2Natural Amerasia Basin opening 3 • Possible arc-mantle signature in History Museum, University of Oslo, Oslo, Norway, Department of Earth Sciences, Utrecht University, Utrecht, Netherlands, 4 Cretaceous High Arctic LIP volcanism Institut National de l’Information Géographique et Forestière, Laboratoire LAREG, Université Paris Diderot, Paris, France Supporting Information: Abstract Understanding the evolution of extinct ocean basins through time and space demands the • Supporting Information S1 integration of surface kinematics and mantle dynamics. We explore the existence, origin, and implications Correspondence to: of a proposed oceanic slab burial ground under Greenland through a comparison of seismic tomography, G. E. Shephard, slab sinking rates, regional plate reconstructions, and satellite-derived gravity gradients. Our preferred [email protected] interpretation stipulates that anomalous, fast seismic velocities at 1000–1600 km depth imaged in independent global tomographic models, coupled with gravity gradient perturbations, represent paleo-Arctic oceanic slabs Citation: that subducted in the Mesozoic. We suggest a novel connection between slab-related arc mantle and Shephard, G. E., R. G. Trønnes, geochemical signatures in some of the tholeiitic and mildly alkaline magmas of the Cretaceous High Arctic W.
    [Show full text]
  • Building and Breaking a Large Igneous Province: an Example from The
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Building and breaking a large igneous province: An 10.1002/2016GL072420 example from the High Arctic Key Points: Arne Døssing1 , Carmen Gaina2 , and John M. Brozena3 • An early Aptian giant High-Arctic LIP dyke swarm, >2000 km long, formed 1DTU Space, Lyngby, Denmark, 2Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway, 3United States as part of early rifting of the Amerasia Basin Naval Research Laboratory, Washington, District of Columbia, USA • Middle-to-Late Cretaceous HALIP flood basalts subsequently covered the northern Amerasia Basin, centered Abstract The genesis of the Amerasia Basin in the Arctic Ocean has been difficult to discern due to over the proto-Alpha Ridge overprint of the Cretaceous High-Arctic Large Igneous Province (HALIP). Based on detailed analysis of • Latest Cretaceous to middle Paleocene rifting and seafloor bathymetry data, new Arctic magnetic and gravity compilations, and recently published radiometric and spreading within the Makarov Basin seismic data, we present a revised plate kinematic model of the northernmost Amerasia Basin. We show broke apart the proto-Alpha Ridge that the smaller Makarov Basin is formed by rifting and seafloor spreading during the latest Cretaceous (to middle Paleocene). The opening progressively migrated into the Alpha Ridge structure, which was the Supporting Information: focus of Early-to-Middle Cretaceous HALIP formation, causing breakup of the proto-Alpha Ridge into the • Supporting Information S1 present-day Alpha Ridge and Alpha Ridge West Plateau. We propose that breakup of the Makarov Basin was triggered by extension between the North America and Eurasian plates and possibly North Pacific Correspondence to: A.
    [Show full text]
  • Arctic Policy &
    Arctic Policy & Law References to Selected Documents Edited by Wolfgang E. Burhenne Prepared by Jennifer Kelleher and Aaron Laur Published by the International Council of Environmental Law – toward sustainable development – (ICEL) for the Arctic Task Force of the IUCN Commission on Environmental Law (IUCN-CEL) Arctic Policy & Law References to Selected Documents Edited by Wolfgang E. Burhenne Prepared by Jennifer Kelleher and Aaron Laur Published by The International Council of Environmental Law – toward sustainable development – (ICEL) for the Arctic Task Force of the IUCN Commission on Environmental Law The designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of ICEL or the Arctic Task Force of the IUCN Commission on Environmental Law concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers and boundaries. The views expressed in this publication do not necessarily reflect those of ICEL or the Arctic Task Force. The preparation of Arctic Policy & Law: References to Selected Documents was a project of ICEL with the support of the Elizabeth Haub Foundations (Germany, USA, Canada). Published by: International Council of Environmental Law (ICEL), Bonn, Germany Copyright: © 2011 International Council of Environmental Law (ICEL) Reproduction of this publication for educational or other non- commercial purposes is authorized without prior permission from the copyright holder provided the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without the prior written permission of the copyright holder. Citation: International Council of Environmental Law (ICEL) (2011).
    [Show full text]
  • Geophysical Studies Bearing on the Origin of the Arctic Basin
    ONTHE !"!! #$%#"$#& '"#"%%&"#"& ()( (( *"##% !"###$##% & % %'& &()& * + &( , -. /("##( &0 1 &2 %&1 ( ( !"3(!3 ( (.01/3!4-3-556-!!!-6( & %&1 %&7 * % %&+&8 (0 %& (9&7& / * & & %&()&& %&, : * % & % &+ & 9 ; < %&+ 1 = (: <9+>= & % & ( *& & %& && % ( 0 & *& % &+-0 ' 7 7 & : & %* 7% & %&+&()& %& &()& &&+0 6#7&7? & "#7 * &' 7 1 ()& & & %&' 7 1 & : && * && & &&% &7< "4@A"7= & && %&& ()&&7 & 7 1 % 47 57( :% % %&& &7 %& < 9 ; ; = & & && &(' & & %& <( 0 = % % % %%&, : <*& % 9 ; =?& * & & &<( 7 1 =( :% &2):> "##5 & %&, : & & %&: ()& *&&9+> ()&B % & % & & && * && * *& %()& % % &&, : *& % & %? *& <(6@57C=&& % *- ( % % 2 1 ( !"# $ % $& $'()*$ $%"+,-.* $ D/ , -. "## .00/5-"6 .01/3!4-3-556-!!!-6 $ $$$ -"!5!<& $CC (7(C E F $ $$$ -"!5!= Dedicated to: My dear daughter Irina List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Langinen A.E., Gee D.G., Lebedeva-Ivanova N.N. and Zamansky Yu.Ya. (2006). Velocity Structure and Correlation of the Sedimentary Cover on the Lomonosov Ridge and in the Amerasian Basin, Arctic Ocean. in R.A. Scott and D.K. Thurston (eds.) Proceedings of the Fourth International confer- ence on Arctic margins, OCS study MMS 2006-003, U.S. De- partment of the Interior,
    [Show full text]
  • Southeastern Eurasian Basin Termination: Structure and Key Episodes of Teetonic History
    Polarforschung 69,251- 257, 1999 (erschienen 2001) Southeastern Eurasian Basin Termination: Structure and Key Episodes of Teetonic History By Sergey B. Sekretov'> THEME 15: Geodynamics of the Arctic Region an area of 50-100 km between the oldest identified spreading anoma1y (Chron 24) and the morphological borders of the Summary: Multiehannel seismie refleetion data, obtained by MAGE in 1990, basin (KARASIK 1968,1980, VOGT et al. 1979, KRISTOFFERSEN reveal the geologieal strueture of the Aretie region between 77-80 "N and 115­ 1990). The analysis of the magnetic anomaly pattern shows 133 "E, where the Eurasian Basin joins the Laptev Sea eontinental margin. that Gakke1 Ridge is one of the slowest spreading ridges in the South of 80 "N the oeeanie basement of the Eurasian Basin and the conti­ nental basement of the Laptev Sea deep margin are covered by sediments world. As asymmetry in spreading rates has persisted throug­ varying from 1.5 km to 8 km in thickness, The seismie velocities range from hout most of Cenozoie, the Nansen Basin has formed faster 1,75 kmJs in the upper unit to 4,5 km/s in the lower part of the section. Sedi­ than the Amundsen Basin. The lowest spreading rates, less mentary basin development in the area of the Laptev Sea deep margin started than 0.3 cm/yr, occur at the southeastern end of Gakkel Ridge from eontinental rifting between the present Barents-Kara margin and the Lomonosov Ridge in Late Cretaceous time, Sinee 56 Ma the Eurasian Basin in the vicinity of the sediment source areas.
    [Show full text]
  • Chukchi Arctic Continental Margins: Tectonic Evolution, Link to the Opening of the Amerasia Basin
    Chukchi arctic continental margins: tectonic evolution, link to the opening of the Amerasia Basin Sokolov S.D., Ledneva G.V., Tuchkova M.I., Luchitskaya M.V., Ganelin A.V., and Verzhbitsky V.E. ABSTRACT characterized by termination of spreading in the The Arctic margin of Chukotka (Chukotka ProtoArctic Ocean and transformation of the latter fold belt) comprises two tectonic units, namely into the closing South Anyui turbidite basin. The the Anyui-Chukotka fold system (the ACh) and Chukotka microcontinent was subducted beneath the South Anyui suture (the SAS). In terms of the the Siberian active margin (the Oloy volcanic belt) paleotectonic reconstructions, the ACh represents until the Valanginian. In the Hauterivian-Barremian, the Chukotka microcontinent whereas the SAS is an oblique collision was initiated simultaneously the suture, which is the result of collision of the with spreading in the Canada Basin. This collision Chukotka microcontinent with the Siberian active resulted in formation of the South Anyui suture. margin (the Verkhoyansk-Kolyma fold system). As both subduction and collision was terminated, Tectono-stratigraphic units of the South Anyui suture formation of an oceanic crust within the Amerasia were thrust northward over the passive margin of the Basin ceased. microcontinent during the collision. The tectonic evolution of the continental margin INTRODUCTION of Chukotka can be divided into four main tectonic The origin of the Amerasia Basin is broadly stages corresponding to the Late Precambrian-Early debated in discussions of Arctic region tectonics. Paleozoic, the Late Paleozoic- Early Mesozoic, Different viewpoints exist on its origin but the the Middle Jurassic- Early Cretaceous and the rotational hypothesis (Carey, 1955) and its various Aptian-Albian.
    [Show full text]
  • Crustal Architecture of the East Siberian Arctic Shelf and Adjacent Arctic Ocean Constrained by Seismic Data and Gravity Modeling Results
    This is a repository copy of Crustal architecture of the East Siberian Arctic Shelf and adjacent Arctic Ocean constrained by seismic data and gravity modeling results. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/129730/ Version: Accepted Version Article: Drachev, SS, Mazur, S, Campbell, S et al. (2 more authors) (2018) Crustal architecture of the East Siberian Arctic Shelf and adjacent Arctic Ocean constrained by seismic data and gravity modeling results. Journal of Geodynamics, 119. pp. 123-148. ISSN 0264-3707 https://doi.org/10.1016/j.jog.2018.03.005 Crown Copyright © 2018 Published by Elsevier Ltd. This is an author produced version of a paper published in Journal of Geodynamics. Uploaded in accordance with the publisher's self-archiving policy. This manuscript version is made available under the Creative Commons CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.
    [Show full text]