Bioimage Informatics for Systems Pharmacology

Total Page:16

File Type:pdf, Size:1020Kb

Bioimage Informatics for Systems Pharmacology Education Chapter 17: Bioimage Informatics for Systems Pharmacology Fuhai Li, Zheng Yin, Guangxu Jin, Hong Zhao, Stephen T. C. Wong* NCI Center for Modeling Cancer Development, Department of Systems Medicine and Bioengineering, The Methodist Hospital Research Institute, Weil Medical College of Cornell University, Houston, Texas, United States of America Abstract: Recent advances in auto- 1. Introduction es on extracting and analyzing quantita- mated high-resolution fluorescence tive phenotypic data automatically from The old adage that a picture is worth a microscopy and robotic handling large amounts of cell images with ap- thousand words certainly applies to the have made the systematic and cost proaches in image analysis, computation effective study of diverse morpho- identification of phenotypic variations in vision and machine learning [3,4]. Appli- logical changes within a large pop- biomedical studies. Bright field microsco- cations of HCA for screening drugs and ulation of cells possible under a py, by detecting light transmitted through targets are referred to as High Content variety of perturbations, e.g., drugs, thin and transparent specimens, has been Screening (HCS), which focuses on iden- compounds, metal catalysts, RNA widely used to investigate cell size, shape, tifying compounds or genes that cause interference (RNAi). Cell population- and movement. The recent development desired phenotypic changes [5–7]. The of fluorescent proteins, e.g., green fluores- based studies deviate from conven- image data contain rich information cent protein and its derivatives [1], tional microscopy studies on a few content for understanding biological pro- cells, and could provide stronger enabled the investigation of the phenotyp- cesses and drug effects, indicate diverse statistical power for drawing exper- ic changes of subcellular protein struc- and heterogeneous behaviors of individual imental observations and conclu- tures, e.g., chromosomes and microtu- cells, and provide stronger statistical power sions. However, it is challenging to bules, revolutionizing optical imaging in in drawing experimental observations and manually extract and quantify phe- biomedical studies. Fluorescent proteins conclusions, compared to conventional notypic changes from the large are bound to specific proteins that are microscopy studies on a few cells. Howev- amounts of complex image data uniformly located in relevant cellular generated. Thus, bioimage informat- structures, e.g., chromosomes, and emit er, extracting and mining the phenotypic ics approaches are needed to rapidly longer wavelength light, e.g., green light, changes from the large scale, complex and objectively quantify and analyze after exposure to shorter wavelength light, image data is daunting. It is not feasible to the image data. This paper provides e.g., blue light. Thus, the spatial morphol- manually analyze these data. Hence, bio- an overview of the bioimage infor- ogy and temporal dynamic activities of image informatics approaches were need- matics challenges and approaches in subcellular protein structures can be ed to automatically and objectively ana- image-based studies for drug and lyze large scale image data, extract and target discovery. The concepts and imaged with a fluorescence microscope - an optical microscope that can specifically quantify the phenotypic changes to profile capabilities of image-based screen- the effects of drugs and targets. ing are first illustrated by a few detect emitted fluorescence of a specific Bioimage informatics in image-based practical examples investigating dif- wavelength [2]. In current image-based ferent kinds of phenotypic changes studies, five-dimensional (5D) image data studies usually consists of multiple analysis caused by drugs, compounds, or of thousands of cells (cell populations) can modules [3,8,9], as shown in Figure 1. RNAi. The bioimage analysis ap- be acquired: spatial (3D), time lapse (1D), Each of the analysis tasks is challenging, proaches, including object detection, and multiple fluorescent probes (1D). and different approaches are often re- segmentation, and tracking, are then With advances to automated high- quired for the analysis of different types of described. Subsequently, the quanti- resolution microscopy, fluorescent label- images. To facilitate image-based screen- tative features, phenotype identifica- ing, and robotic handling, image-based ing studies, a number of bioimage infor- tion, and multidimensional profile studies have become popular in drug and matics software packages have been de- analysis for profiling the effects of target discovery. These image-based stud- veloped and are publicly available [9]. drugsandtargetsaresummarized. ies are often referred to as the High This chapter provides an overview of the Moreover, a number of publicly Content Analysis (HCA) [3], which focus- bioimage informatics approaches in im- available software packages for bio- image informatics are listed for further reference. It is expected that Citation: Li F, Yin Z, Jin G, Zhao H, Wong STC (2013) Chapter 17: Bioimage Informatics for Systems this review will help readers, includ- Pharmacology. PLoS Comput Biol 9(4): e1003043. doi:10.1371/journal.pcbi.1003043 ing those without bioimage infor- Editors: Fran Lewitter, Whitehead Institute, United States of America and Maricel Kann, University of matics expertise, understand the Marylan Baltimore d, United County States , of America capabilities, approaches, and tools Published April 25, 2013 of bioimage informatics and apply Copyright: ß 2013 Li et al. This is an open-access article distributed under the terms of the Creative them to advance their own studies. Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: The research is supported by NIH R01 LM008696, NIH R01 CA121225, NIH R01 LM009161, NIH R01 This article is part of the ‘‘Transla- A G028928 , NIH U54CA 1491 69 and CPRIT RP110532 . The funders had no role in the preparation of the manuscript. tional Bioinformatics’’ collection for Competing Interests: The authors have declared that no competing interests exist. PLOS Computational Biology. * E-mail: [email protected] PLOS Computational Biology | www.ploscompbiol.org 1 April 2013 | Volume 9 | Issue 4 | e1003043 What to Learn in This Chapter research. For example, the effects of hundreds of compounds were profiled for N What automated approaches are necessary for analysis of phenotypic changes, phenotypic changes using multicolor cell especially for drug and target discovery? images in [10–12]. Hundreds of quantita- tive features were extracted to indicate the N What quantitative features and machine learning approaches are commonly phenotypic changes caused by these com- used for quantifying phenotypic changes? pounds, and then computational ap- N What resources are available for bioimage informatics studies? proaches were proposed to identify the effective compounds, categorize them, age-based studies for drug and target analysis, and finally, a brief summary is characterize their dose-dependent re- discovery to help readers, including those provided in Section 7. sponse, and suggest novel targets and without bioimage informatics expertise, mechanisms for these compounds [10– understand the capabilities, approaches, 2. Example Image-based 12]. Moreover, phenotypic heterogeneity and tools of bioimage informatics and Studies for Drug and Target was investigated by using a subpopulation based approach to characterize drug apply them to advance their own studies. Discovery The remainder of this chapter is organized effects in [13], and distinguish cell popu- as follows. Section 2 introduces a number There are a variety of image-based lations with distinct drug sensitivities in of practical screening applications for studies for discovery of drugs, targets, and [14]. Also in [15,16], the phenotypic discovery of potential drugs and targets. mechanisms of biological processes. A good changes of proteins inside individual Section 3 describes the challenges and starting point for learning about bioimage Drosophila Kc167 cells treated with RNAi approaches for quantitative image analy- informatics approaches is to study practical libraries were investigated by using high sis, e.g., object detection, segmentation, image-based studies, and a number of resolution fluorescent microscopy, and and tracking. Section 4 introduces tech- examples are summarized below. bioimage informatics analysis was applied niques for quantification of segmented to quantify these images to identify genes objectives, including feature extraction, regulating the phenotypic changes of phenotype classification, and clustering. 2.1 Multicolor Cell Imaging-based interest. Figure 2 shows an image of Section 5 reviews a number of prevalent Studies for Drug and Target Drosophila Kc167 cells, which were treated approaches for profiling drug effects based Discovery with RNAi and stained to visualize the on the quantitative phenotypic data. Fixed cell images with multiple fluores- nuclear DNA (red), F-actin (green), and a- Section 6 lists major, publicly available cent markers have been widely used for tubulin (blue). Freely available software software packages of bioimage informatics drug and target screening in scientific packages, such as CellProfiler [17], Fiji Figure 1. The flowchart of bioimage informatics for drug and target discovery. doi:10.1371/journal.pcbi.1003043.g001 PLOS
Recommended publications
  • Management of Large Sets of Image Data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak
    Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak Download free books at Karol Kozak Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Download free eBooks at bookboon.com 2 Management of large sets of image data: Capture, Databases, Image Processing, Storage, Visualization 1st edition © 2014 Karol Kozak & bookboon.com ISBN 978-87-403-0726-9 Download free eBooks at bookboon.com 3 Management of large sets of image data Contents Contents 1 Digital image 6 2 History of digital imaging 10 3 Amount of produced images – is it danger? 18 4 Digital image and privacy 20 5 Digital cameras 27 5.1 Methods of image capture 31 6 Image formats 33 7 Image Metadata – data about data 39 8 Interactive visualization (IV) 44 9 Basic of image processing 49 Download free eBooks at bookboon.com 4 Click on the ad to read more Management of large sets of image data Contents 10 Image Processing software 62 11 Image management and image databases 79 12 Operating system (os) and images 97 13 Graphics processing unit (GPU) 100 14 Storage and archive 101 15 Images in different disciplines 109 15.1 Microscopy 109 360° 15.2 Medical imaging 114 15.3 Astronomical images 117 15.4 Industrial imaging 360° 118 thinking. 16 Selection of best digital images 120 References: thinking. 124 360° thinking . 360° thinking. Discover the truth at www.deloitte.ca/careers Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities. Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities.
    [Show full text]
  • Bioimage Analysis Tools
    Bioimage Analysis Tools Kota Miura, Sébastien Tosi, Christoph Möhl, Chong Zhang, Perrine Paul-Gilloteaux, Ulrike Schulze, Simon Norrelykke, Christian Tischer, Thomas Pengo To cite this version: Kota Miura, Sébastien Tosi, Christoph Möhl, Chong Zhang, Perrine Paul-Gilloteaux, et al.. Bioimage Analysis Tools. Kota Miura. Bioimage Data Analysis, Wiley-VCH, 2016, 978-3-527-80092-6. hal- 02910986 HAL Id: hal-02910986 https://hal.archives-ouvertes.fr/hal-02910986 Submitted on 3 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 2 Bioimage Analysis Tools 1 2 3 4 5 6 Kota Miura, Sébastien Tosi, Christoph Möhl, Chong Zhang, Perrine Pau/-Gilloteaux, - Ulrike Schulze,7 Simon F. Nerrelykke,8 Christian Tischer,9 and Thomas Penqo'" 1 European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany National Institute of Basic Biology, Okazaki, 444-8585, Japan 2/nstitute for Research in Biomedicine ORB Barcelona), Advanced Digital Microscopy, Parc Científic de Barcelona, dBaldiri Reixac 1 O, 08028 Barcelona, Spain 3German Center of Neurodegenerative
    [Show full text]
  • Other Departments and Institutes Courses 1
    Other Departments and Institutes Courses 1 Other Departments and Institutes Courses About Course Numbers: 02-250 Introduction to Computational Biology Each Carnegie Mellon course number begins with a two-digit prefix that Spring: 12 units designates the department offering the course (i.e., 76-xxx courses are This class provides a general introduction to computational tools for biology. offered by the Department of English). Although each department maintains The course is divided into two halves. The first half covers computational its own course numbering practices, typically, the first digit after the prefix molecular biology and genomics. It examines important sources of biological indicates the class level: xx-1xx courses are freshmen-level, xx-2xx courses data, how they are archived and made available to researchers, and what are sophomore level, etc. Depending on the department, xx-6xx courses computational tools are available to use them effectively in research. may be either undergraduate senior-level or graduate-level, and xx-7xx In the process, it covers basic concepts in statistics, mathematics, and courses and higher are graduate-level. Consult the Schedule of Classes computer science needed to effectively use these resources and understand (https://enr-apps.as.cmu.edu/open/SOC/SOCServlet/) each semester for their results. Specific topics covered include sequence data, searching course offerings and for any necessary pre-requisites or co-requisites. and alignment, structural data, genome sequencing, genome analysis, genetic variation, gene and protein expression, and biological networks and pathways. The second half covers computational cell biology, including biological modeling and image analysis. It includes homework requiring Computational Biology Courses modification of scripts to perform computational analyses.
    [Show full text]
  • Cellanimation: an Open Source MATLAB Framework for Microscopy Assays Walter Georgescu1,2,3,∗, John P
    Vol. 28 no. 1 2012, pages 138–139 BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btr633 Systems biology Advance Access publication November 24, 2011 CellAnimation: an open source MATLAB framework for microscopy assays Walter Georgescu1,2,3,∗, John P. Wikswo1,2,3,4,5 and Vito Quaranta1,3,6 1Vanderbilt Institute for Integrative Biosystems Research and Education, 2Department of Biomedical Engineering, Vanderbilt University, 3Center for Cancer Systems Biology at Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, USA, 4Department of Molecular Physiology and Biophysics, 5Department of Physics and Astronomy, Vanderbilt University and 6Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA Associate Editor: Jonathan Wren ABSTRACT 1 INTRODUCTION Motivation: Advances in microscopy technology have led to At present there are a number of microscopy applications on the the creation of high-throughput microscopes that are capable of market, both open-source and commercial, and addressing both generating several hundred gigabytes of images in a few days. very specific and broader microscopy needs. In general, commercial Analyzing such wealth of data manually is nearly impossible and software packages such as Imaris® and MetaMorph® tend to requires an automated approach. There are at present a number include more complete sets of algorithms, covering different kinds of open-source and commercial software packages that allow the of experimental setups, at the cost of ease of customization and user
    [Show full text]
  • Titel Untertitel
    KNIME Image Processing Nycomed Chair for Bioinformatics and Information Mining Department of Computer and Information Science Konstanz University, Germany Why Image Processing with KNIME? KNIME UGM 2013 2 The “Zoo” of Image Processing Tools Development Processing UI Handling ImgLib2 ImageJ OMERO OpenCV ImageJ2 BioFormats MatLab Fiji … NumPy CellProfiler VTK Ilastik VIGRA CellCognition … Icy Photoshop … = Single, individual, case specific, incompatible solutions KNIME UGM 2013 3 The “Zoo” of Image Processing Tools Development Processing UI Handling ImgLib2 ImageJ OMERO OpenCV ImageJ2 BioFormats MatLab Fiji … NumPy CellProfiler VTK Ilastik VIGRA CellCognition … Icy Photoshop … → Integration! KNIME UGM 2013 4 KNIME as integration platform KNIME UGM 2013 5 Integration: What and How? KNIME UGM 2013 6 Integration ImgLib2 • Developed at MPI-CBG Dresden • Generic framework for data (image) processing algoritms and data-structures • Generic design of algorithms for n-dimensional images and labelings • http://fiji.sc/wiki/index.php/ImgLib2 → KNIME: used as image representation (within the data cells); basis for algorithms KNIME UGM 2013 7 Integration ImageJ/Fiji • Popular, highly interactive image processing tool • Huge base of available plugins • Fiji: Extension of ImageJ1 with plugin-update mechanism and plugins • http://rsb.info.nih.gov/ij/ & http://fiji.sc/ → KNIME: ImageJ Macro Node KNIME UGM 2013 8 Integration ImageJ2 • Next-generation version of ImageJ • Complete re-design of ImageJ while maintaining backwards compatibility • Based on ImgLib2
    [Show full text]
  • Bioimage Informatics
    Bioimage Informatics Lecture 22, Spring 2012 Empirical Performance Evaluation of Bioimage Informatics Algorithms Image Database; Content Based Image Retrieval Emerging Applications: Molecular Imaging Lecture 22 April 23, 2012 1 Outline • Empirical performance evaluation of bioimage Informatics algorithm • Image database; content-based image retrieval • Introduction to molecular imaging 2 • Empirical performance evaluation of bioimage Informatics algorithm • Image database; content-based image retrieval • Introduction to molecular imaging 3 Overview of Algorithm Evaluation (I) • Two sets of data are required - Input data - Corresponding correct output (ground truth) • Sources of input data - Actual/experimental data, often from experiments - Synthetic data, often from computer simulation • Actual/experimental data - Essential for performance evaluation - May be costly to acquire - May not be representative - Ground truth often is unknown Overview of Algorithm Evaluation (II) • What exactly is ground truth? Ground truth is a term used in cartography, meteorology, analysis of aerial photographs, satellite imagery and a range of other remote sensing techniques in which data are gathered at a distance. Ground truth refers to information that is collected "on location." - http://en.wikipedia.org/wiki/Ground_truth • Synthetic (simulated) data Advantages - Ground truth is known - Usually low-cost Disadvantages - Difficult to fully represent the original data 5 Overview of Algorithm Evaluation (III) • Simulated data Advantages - Ground truth is known - Usually low-cost Disadvantages - Difficult to fully represent the original data • Realistic synthetic data - To use as much information from real experimental data as possible • Quality control of manual analysis Test Protocol Development (I) • Implementation - Source codes are not always available and often are on different platforms. • Parameter setting - This is one of the most challenging issues.
    [Show full text]
  • A Computational Framework to Study Sub-Cellular RNA Localization
    ARTICLE DOI: 10.1038/s41467-018-06868-w OPEN A computational framework to study sub-cellular RNA localization Aubin Samacoits1,2, Racha Chouaib3,4, Adham Safieddine3,4, Abdel-Meneem Traboulsi3,4, Wei Ouyang 1,2, Christophe Zimmer 1,2, Marion Peter3,4, Edouard Bertrand3,4, Thomas Walter 5,6,7 & Florian Mueller 1,2 RNA localization is a crucial process for cellular function and can be quantitatively studied by single molecule FISH (smFISH). Here, we present an integrated analysis framework to ana- 1234567890():,; lyze sub-cellular RNA localization. Using simulated images, we design and validate a set of features describing different RNA localization patterns including polarized distribution, accumulation in cell extensions or foci, at the cell membrane or nuclear envelope. These features are largely invariant to RNA levels, work in multiple cell lines, and can measure localization strength in perturbation experiments. Most importantly, they allow classification by supervised and unsupervised learning at unprecedented accuracy. We successfully vali- date our approach on representative experimental data. This analysis reveals a surprisingly high degree of localization heterogeneity at the single cell level, indicating a dynamic and plastic nature of RNA localization. 1 Unité Imagerie et Modélisation, Institut Pasteur and CNRS UMR 3691, 28 rue du Docteur Roux, 75015 Paris, France. 2 C3BI, USR 3756 IP CNRS, 28 rue du Docteur Roux, 75015 Paris, France. 3 Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France. 4 Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France. 5 MINES ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, 75006 Paris, France. 6 Institut Curie, PSL Research University, 75005 Paris, France.
    [Show full text]
  • Bioimage Informatics 2019
    BioImage Informatics 2019 Co-hosted by: October 2-4, 2019 Allen Institute 615 Westlake Avenue N Seattle, WA 98109 alleninstitute.org/bioimage-informatics twitter #bioimage19 THANKS TO OUR SPONSORS BioImage Informatics 2019 Wednesday, October 2 8:00-9:00am Registration and continental breakfast 9:00-9:15am Welcome and introductory remarks, BioImage Informatics Local Planning Committee • Michael Hawrylycz, Ph.D., Allen Institute for Brain Science (co-chair) • Winfried Wiegraebe, Ph.D., Allen Institute for Cell Science (co-chair) • Forrest Collman, Ph.D., Allen Institute for Brain Science • Greg Johnson, Ph.D., Allen Institute for Cell Science • Lydia Ng, Ph.D., Allen Institute for Brain Science • Kaitlyn Casimo, Ph.D., Allen Institute 9:15-10:15am Opening keynote Gaudenz Danuser, UT Southwestern Medical Center “Inference of causality in molecular pathways from live cell images” Defining cause-effect relations among molecular components is the holy grail of every cell biological study. It turns out that for many of the molecular pathways this task is far from trivial. Many of the pathways are characterized by functional overlap and nonlinear interactions between components. In this configuration, perturbation of one component may result in a measureable shift of the pathway output – commonly referred to as a phenotype – but it is strictly impossible to interpret the phenotype in terms of the roles the targeted component plays in the unperturbed system. This caveat of perturbation approaches applies equally to genetic perturbations, which lead to long-term adaptation, and more acute pharmacological and optogenetic approaches, which often induce short-term adaptation. For nearly two decades my lab has been devoted to circumventing this problem by exploiting basal fluctuations of unperturbed systems to establish cause-and-effect cascades between pathway components.
    [Show full text]
  • A Bioimage Informatics Platform for High-Throughput Embryo Phenotyping James M
    Briefings in Bioinformatics, 19(1), 2018, 41–51 doi: 10.1093/bib/bbw101 Advance Access Publication Date: 14 October 2016 Paper A bioimage informatics platform for high-throughput embryo phenotyping James M. Brown, Neil R. Horner, Thomas N. Lawson, Tanja Fiegel, Simon Greenaway, Hugh Morgan, Natalie Ring, Luis Santos, Duncan Sneddon, Lydia Teboul, Jennifer Vibert, Gagarine Yaikhom, Henrik Westerberg and Ann-Marie Mallon Corresponding author: James Brown, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD. Tel. þ44-0-1235-841237; Fax: +44-0-1235-841172; E-mail: [email protected] Abstract High-throughput phenotyping is a cornerstone of numerous functional genomics projects. In recent years, imaging screens have become increasingly important in understanding gene–phenotype relationships in studies of cells, tissues and whole organisms. Three-dimensional (3D) imaging has risen to prominence in the field of developmental biology for its ability to capture whole embryo morphology and gene expression, as exemplified by the International Mouse Phenotyping Consortium (IMPC). Large volumes of image data are being acquired by multiple institutions around the world that encom- pass a range of modalities, proprietary software and metadata. To facilitate robust downstream analysis, images and metadata must be standardized to account for these differences. As an open scientific enterprise, making the data readily accessible is essential so that members of biomedical and clinical research communities can study the images for them- selves without the need for highly specialized software or technical expertise. In this article, we present a platform of soft- ware tools that facilitate the upload, analysis and dissemination of 3D images for the IMPC.
    [Show full text]
  • View of Above Observations and Arguments, the Fol- Scopy Environment) [9]
    Loyek et al. BMC Bioinformatics 2011, 12:297 http://www.biomedcentral.com/1471-2105/12/297 SOFTWARE Open Access BioIMAX: A Web 2.0 approach for easy exploratory and collaborative access to multivariate bioimage data Christian Loyek1*, Nasir M Rajpoot2, Michael Khan3 and Tim W Nattkemper1 Abstract Background: Innovations in biological and biomedical imaging produce complex high-content and multivariate image data. For decision-making and generation of hypotheses, scientists need novel information technology tools that enable them to visually explore and analyze the data and to discuss and communicate results or findings with collaborating experts from various places. Results: In this paper, we present a novel Web2.0 approach, BioIMAX, for the collaborative exploration and analysis of multivariate image data by combining the webs collaboration and distribution architecture with the interface interactivity and computation power of desktop applications, recently called rich internet application. Conclusions: BioIMAX allows scientists to discuss and share data or results with collaborating experts and to visualize, annotate, and explore multivariate image data within one web-based platform from any location via a standard web browser requiring only a username and a password. BioIMAX can be accessed at http://ani.cebitec. uni-bielefeld.de/BioIMAX with the username “test” and the password “test1” for testing purposes. Background key challenge of bioimage informatics is to present the In the last two decades, innovative biological and biome- large amount of image data in a way that enables them dical imaging technologies greatly improved our under- to be browsed, analyzed, queried or compared with standing of structures of molecules, cells and tissue and other resources [2].
    [Show full text]
  • Principles of Bioimage Informatics: Focus on Machine Learning of Cell Patterns
    Principles of Bioimage Informatics: Focus on Machine Learning of Cell Patterns Luis Pedro Coelho1,2,3, Estelle Glory-Afshar3,6, Joshua Kangas1,2,3, Shannon Quinn2,3,4, Aabid Shariff1,2,3, and Robert F. Murphy1,2,3,4,5,6 1 Joint Carnegie Mellon University–University of Pittsburgh Ph.D. Program in Computational Biology 2 Lane Center for Computational Biology, Carnegie Mellon University 3 Center for Bioimage Informatics, Carnegie Mellon University 4 Department of Biological Sciences, Carnegie Mellon University 5 Machine Learning Department, Carnegie Mellon University 6 Department of Biomedical Engineering, Carnegie Mellon University Abstract. The field of bioimage informatics concerns the development and use of methods for computational analysis of biological images. Tra- ditionally, analysis of such images has been done manually. Manual an- notation is, however, slow, expensive, and often highly variable from one expert to another. Furthermore, with modern automated microscopes, hundreds to thousands of images can be collected per hour, making man- ual analysis infeasible. This field borrows from the pattern recognition and computer vi- sion literature (which contain many techniques for image processing and recognition), but has its own unique challenges and tradeoffs. Fluorescence microscopy images represent perhaps the largest class of biological images for which automation is needed. For this modality, typical problems include cell segmentation, classification of phenotypical response, or decisions regarding differentiated responses (treatment vs. control setting). This overview focuses on the problem of subcellular lo- cation determination as a running example, but the techniques discussed are often applicable to other problems. 1 Introduction Bioimage informatics employs computational and statistical techniques to ana- lyze images and related metadata.
    [Show full text]
  • Introduction to Bio(Medical)- Informatics
    Introduction to Bio(medical)- Informatics Kun Huang, PhD Raghu Machiraju, PhD Department of Biomedical Informatics Department of Computer Science and Engineering The Ohio State University Outline • Overview of bioinformatics • Other people’s (public) data • Basic biology review • Basic bioinformatics techniques • Logistics 2 Technical areas of bioinformatics IMMPORT https://immport.niaid.nih.gov/immportWeb/home/home.do?loginType=full# Databases and Query Databases and Query 547 5 Visualization 6 Visualization http://supramap.osu.edu 7 Network 8 Visualization and Visual Analytics § Visualizing genome data annotation 9 Network Mining Hopkins 2007, Nature Biotechnology, Network pharmacology 10 Role of Bioinformatics – Hypothesis Generation Hypothesis generation Bioinformatics Hypothesis testing 11 Training for Bioinformatics § Biology / medicine § Computing – programming, algorithm, pattern recognition, machine learning, data mining, network analysis, visualization, software engineering, database, etc § Statistics – hypothesis testing, permutation method, multivariate analysis, Bayesian method, etc Beyond Bioinformatics • Translational Bioinformatics • Biomedical Informatics • Medical Informatics • Nursing Informatics • Imaging Informatics • Bioimage Informatics • Clinical Research Informatics • Pathology Informatics • … • Health Analytics • … • Legal Informatics • Business Informatics Source: Department of Biomedical Informatics 13 Beyond Bioinformatics Basic Science Clinical Research Informatics Biomedical Informatics Theories & Methods
    [Show full text]