A Near-Infrared Interferometric Survey of Debris-Disk Stars: VII
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Interstellar Medium Sculpting of the HD 32297 Disk
DRAFT VERSION MAY 31, 2018 Preprint typeset using LATEX style emulateapj v. 7/15/03 INTERSTELLAR MEDIUM SCULPTING OF THE HD 32297 DEBRIS DISK JOHN H. DEBES1,2,ALYCIA J. WEINBERGER3, MARC J. KUCHNER1 Draft version May 31, 2018 ABSTRACT We detect the HD 32297 debris disk in scattered light at 1.6 and 2.05 µm. We use these new observations together with a previous scattered light image of the disk at 1.1 µm to examine the structure and scattering efficiency of the disk as a function of wavelength. In addition to surface brightness asymmetries and a warped morphology beyond ∼1.′′5 for one lobe of the disk, we find that there exists an asymmetry in the spectral features of the grains between the northeastern and southwestern lobes. The mostly neutral color of the disk lobes imply roughly 1 µm-sized grains are responsible for the scattering. We find that the asymmetries in color and morphology can plausibly be explained by HD 32297’s motion into a dense ISM cloud at a relative velocity of15kms−1. We modeltheinteractionofdustgrainswith HIgasin thecloud. We argue that supersonic ballistic drag can explain the morphology of the debris disks of HD 32297, HD 15115, and HD 61005. Subject headings: stars:individual(HD 32297)—stars:individual(HD 15115)—stars:individual(HD 61005)— circumstellar disks—methods:n-body simulations—ISM ′′ 1. INTRODUCTION distances >0. 75 the disk is brighter on the NE side, i.e. re- Debris disks are created by the outgassing and collisions of versed from the asymmetry seen in scattered light images planetesimals that may resemble analogues to the comets, as- (Moerchen et al. -
New M, L, and T Dwarf Companions to Nearby Stars from the Wide-Field Infrared Survey Explorer∗
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors The Astrophysical Journal, 760:152 (9pp), 2012 December 1 doi:10.1088/0004-637X/760/2/152 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. NEW M, L, AND T DWARF COMPANIONS TO NEARBY STARS FROM THE WIDE-FIELD INFRARED SURVEY EXPLORER∗ Kevin L. Luhman1,2, Nicholas P. Loutrel1, Nicholas S. McCurdy1, Gregory N. Mace3, Nicole D. Melso1, Kimberly M. Star1, Michael D. Young4, Ryan C. Terrien1, Ian S. McLean3, J. Davy Kirkpatrick5, and Katherine L. Rhode4 1 Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA; [email protected] 2 Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802, USA 3 UCLA Division of Astronomy and Astrophysics, Los Angeles, CA 90095, USA 4 Department of Astronomy, Indiana University, Swain West 319, 727 East Third Street, Bloomington, IN 47405, USA 5 Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125, USA Received 2012 August 24; accepted 2012 October 15; published 2012 November 16 ABSTRACT We present 11 candidate late-type companions to nearby stars identified with data from the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All Sky Survey (2MASS). Eight of the candidates are likely to be companions based on their common proper motions with the primaries. The remaining three objects are rejected as companions, one of which is a free-floating T7 dwarf. -
Arxiv:1811.01508V1 [Astro-Ph.SR] 5 Nov 2018 the Nearby, Young, Argus Association: Membership, Age, and Dusty Debris Disks 2
The Nearby, Young, Argus Association: Membership, Age, and Dusty Debris Disks B. Zuckerman1 1Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA E-mail: [email protected] Abstract. The reality of a field Argus Association has been doubted in some papers in the literature. We apply Gaia DR2 data to stars previously suggested to be Argus members and conclude that a true association exists with age 40-50 Myr and containing many stars within 100 pc of Earth; β Leo and 49 Cet are two especially interesting members. Based on youth and proximity to Earth, Argus is one of the better nearby moving groups to target in direct imaging programs for dusty debris disks and young planets. PACS numbers: 97.10.Tk arXiv:1811.01508v1 [astro-ph.SR] 5 Nov 2018 The Nearby, Young, Argus Association: Membership, Age, and Dusty Debris Disks 2 1. Introduction The solar vicinity is blessed with an assortment of youthful stars with ages that span the range 10 to 200 Myr. Within 100 pc of Earth a dozen or so coeval, co-moving groups were identified (Mamajek 2016) prior to the release of the Gaia DR2 catalog (Gaia Colaboration et al 2018; Lindegren et al 2018). Many nearby stars exist that appear to be youthful but have not been placed into any of these groups. With the help of Gaia, new kinematic groups can be identified. As recently as 20 years ago only a handful of youthful stars with reasonably reliable ages were known within 100 pc of Earth. With Gaia and appropriate follow-up observations, it now appears likely that a few 1000 will ultimately be identified. -
Redox DAS Artist List for Period: 01.10.2017
Page: 1 Redox D.A.S. Artist List for period: 01.10.2017 - 31.10.2017 Date time: Number: Title: Artist: Publisher Lang: 01.10.2017 00:02:40 HD 60753 TWO GHOSTS HARRY STYLES ANG 01.10.2017 00:06:22 HD 05631 BANKS OF THE OHIO OLIVIA NEWTON JOHN ANG 01.10.2017 00:09:34 HD 60294 BITE MY TONGUE THE BEACH ANG 01.10.2017 00:13:16 HD 26897 BORN TO RUN SUZY QUATRO ANG 01.10.2017 00:18:12 HD 56309 CIAO CIAO KATARINA MALA SLO 01.10.2017 00:20:55 HD 34821 OCEAN DRIVE LIGHTHOUSE FAMILY ANG 01.10.2017 00:24:41 HD 08562 NISEM JAZ SLAVKO IVANCIC SLO 01.10.2017 00:28:29 HD 59945 LEPE BESEDE PROTEUS SLO 01.10.2017 00:31:20 HD 03206 BLAME IT ON THE WEATHERMAN B WITCHED ANG 01.10.2017 00:34:52 HD 16013 OD TU NAPREJ NAVDIH TABU SLO 01.10.2017 00:38:14 HD 06982 I´M EVERY WOMAN WHITNEY HOUSTON ANG 01.10.2017 00:43:05 HD 05890 CRAZY LITTLE THING CALLED LOVE QUEEN ANG 01.10.2017 00:45:37 HD 57523 WHEN I WAS A BOY JEFF LYNNE (ELO) ANG 01.10.2017 00:48:46 HD 60269 MESTO (FEAT. VESNA ZORNIK) BREST SLO 01.10.2017 00:52:21 HD 06008 DEEPLY DIPPY RIGHT SAID FRED ANG 01.10.2017 00:55:35 HD 06012 UNCHAINED MELODY RIGHTEOUS BROTHERS ANG 01.10.2017 00:59:10 HD 60959 OKNA ORLEK SLO 01.10.2017 01:03:56 HD 59941 SAY SOMETHING LOVING THE XX ANG 01.10.2017 01:07:51 HD 15174 REAL GOOD LOOKING BOY THE WHO ANG 01.10.2017 01:13:37 HD 59654 RECI MI DA MANOUCHE SLO 01.10.2017 01:16:47 HD 60502 SE PREPOZNAS SHEBY SLO 01.10.2017 01:20:35 HD 06413 MARGUERITA TIME STATUS QUO ANG 01.10.2017 01:23:52 HD 06388 MAMA SPICE GIRLS ANG 01.10.2017 01:27:25 HD 02680 HIGHER GROUND ERIC CLAPTON ANG 01.10.2017 01:31:20 HD 59929 NE POZABI, DA SI LEPA LUKA SESEK & PROPER SLO 01.10.2017 01:34:57 HD 02131 BONNIE & CLYDE JAY-Z FEAT. -
Planet Formation in Dense Star Clusters
Planet Formation in Dense Star Clusters Henry Throop Department of Space Studies Southwest Research Institute (SwRI), Boulder, Colorado Collaborators: John Bally (U. Colorado) Nickolas Moeckel (Cambridge) Universidad de Guanajuato 23 de octubre 2009 HBT 28-Jun-2005 3 Orion Constellation (visible light) Orion constellation H-alpha Orion constellation H-alpha Orion Molecular Clouds >105 Msol 100 pc long Orion core (visible light) Orion core (visible light) Orion Star Forming Region • Closest bright star-forming region to Earth • Distance ~ 1500 ly • Age ~ 10 Myr • Radius ~ few ly • Mean separation ~ 104 AU Orion Trapezium cluster Massive stars Low mass stars; Disks with tails • LargestLargest Orion Orion disk: disk: 114-426, 114-426, D ~ 1200 diameterAU 1200 AU • Dust grains in disk are grey, and do not redden light as they extinct it • Dust grains have grown to a few microns or greater in < 1 Myr Star Formation 1961 view: “Whether we've ever seen a star form or not is still debated. The next slide is the one piece of evidence that suggests that we have. Here's a picture taken in 1947 of a region of gas, with some stars in it. And here's, only two years later, we see two new bright spots. The idea is that what happened is that gravity has...” Richard Feynman, Lectures on Physics HBT 1628-Jun-2005 Star Formation 1961 view: “Whether we've ever seen a star form or not is still debated. The next slide is the one piece of evidence that suggests that we have. Here's a picture taken in 1947 of a region of gas, with some stars in it. -
A PLANET-SCULPTING SCENARIO for the HD 61005 DEBRIS DISK
UCLA UCLA Previously Published Works Title BRINGING "tHE MOTH" to LIGHT: A PLANET-SCULPTING SCENARIO for the HD 61005 DEBRIS DISK Permalink https://escholarship.org/uc/item/1h77k16g Journal Astronomical Journal, 152(4) ISSN 0004-6256 Authors Esposito, TM Fitzgerald, MP Graham, JR et al. Publication Date 2016-10-01 DOI 10.3847/0004-6256/152/4/85 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The Astronomical Journal, 152:85 (16pp), 2016 October doi:10.3847/0004-6256/152/4/85 © 2016. The American Astronomical Society. All rights reserved. BRINGING “THE MOTH” TO LIGHT: A PLANET-SCULPTING SCENARIO FOR THE HD 61005 DEBRIS DISK Thomas M. Esposito1,2, Michael P. Fitzgerald1, James R. Graham2, Paul Kalas2,3, Eve J. Lee2, Eugene Chiang2, Gaspard Duchêne2,4, Jason Wang2, Maxwell A. Millar-Blanchaer5,6, Eric Nielsen3,7, S. Mark Ammons8, Sebastian Bruzzone9, Robert J. De Rosa2, Zachary H. Draper10,11, Bruce Macintosh7, Franck Marchis3, Stanimir A. Metchev9,12, Marshall Perrin13, Laurent Pueyo13, Abhijith Rajan14, Fredrik T. Rantakyrö15, David Vega3, and Schuyler Wolff16 1 Department of Physics and Astronomy, 430 Portola Plaza, University of California, Los Angeles, CA 90095-1547, USA; [email protected] 2 Department of Astronomy, University of California, Berkeley, CA 94720, USA 3 SETI Institute, Carl Sagan Center, 189 Bernardo Avenue, Mountain View, CA 94043, USA 4 Université Grenoble Alpes/CNRS, Institut de Planétologie et d’Astrophysique de Grenoble, F-38000 Grenoble, France 5 Department of -
Dissecting the Moth: Discovery of an Off-Centered Ring in the HD 61005
Astronomy & Astrophysics manuscript no. moth˙ebuenzli c ESO 2018 August 15, 2018 Letter to the Editor Dissecting the Moth: Discovery of an off-centered ring in the HD 61005 debris disk with high-resolution imaging⋆ E. Buenzli1, C. Thalmann2, A. Vigan3, A. Boccaletti4, G. Chauvin5, J.C. Augereau5, M.R. Meyer1, F. M´enard5, S. Desidera6, S. Messina7, T. Henning2, J. Carson8,2, G. Montagnier9, J.L. Beuzit5, M. Bonavita10, A. Eggenberger5, A.M. Lagrange5, D. Mesa6, D. Mouillet5, and S. P. Quanz1 1 Institute for Astronomy, ETH Zurich, 8093 Zurich, Switzerland e-mail: [email protected] 2 Max Planck Institute for Astronomy, Heidelberg, Germany 3 Laboratoire d’Astrophysique de Marseille, UMR 6110, CNRS, Universit´ede Provence, 13388 Marseille, France 4 LESIA, Observatoire de Paris-Meudon, 92195 Meudon, France 5 Laboratoire d’Astrophysique de Grenoble, UMR 5571, CNRS, Universit´eJoseph Fourier, 38041 Grenoble, France 6 INAF - Osservatorio Astronomico di Padova, Padova, Italy 7 INAF - Osservatorio Astrofisico di Catania, Italy 8 College of Charleston, Department of Physics & Astronomy, Charleston, South Carolina, USA 9 European Southern Observatory: Casilla 19001, Santiago 19, Chile 10 University of Toronto, Toronto, Canada received 22 September 2010 / accepted 09 November 2010 ABSTRACT The debris disk known as “The Moth” is named after its unusually asymmetric surface brightness distribution. It is located around the ∼90 Myr old G8V star HD 61005 at 34.5 pc and has previously been imaged by the HST at 1.1 and 0.6 µm. Polarimetric observations suggested that the circumstellar material consists of two distinct components, a nearly edge-on disk or ring, and a swept-back feature, the result of interaction with the interstellar medium. -
Arxiv:1107.2657V1 [Astro-Ph.GA] 13 Jul 2011 S-L Nu82mtlsoea Aaa,Porme386.D-01 Programme Paranal, at Ca Telescope E
10 Astronomy (DOI: will be inserted by hand later) & c ESO 2021 Astrophysics The Galactic evolution of phosphorus ⋆ E. Caffau⋆⋆,1,2 P. Bonifacio,2 R. Faraggiana,3 M. Steffen4,2 1 Zentrum f¨ur Astronomie der Universit¨at Heidelberg, Landessternwarte, K¨onigstuhl 12, 69117 Heidelberg, Germany 2 GEPI, Observatoire de Paris, CNRS, Universit´eParis Diderot, Place Jules Janssen, 92190 Meudon, France 3 Universit`adegli Studi di Trieste, via G.B. Tiepolo 11, 34143 Trieste, Italy 4 Leibniz-Institut f¨ur Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany Received ...; Accepted ... ABSTRACT Context. As a galaxy evolves, its chemical composition changes and the abundance ratios of different elements are powerful probes of the underlying evolutionary processes. Phosphorous is an element whose evolution has remained quite elusive until now, because it is difficult to detect in cool stars. The infrared weak P i lines of the multiplet 1, at 1050-1082 nm, are the most reliable indicators of the presence of phosphorus. The availability of CRIRES at VLT has permitted access to this wavelength range in stellar spectra. Aims. We attempt to measure the phosphorus abundance of twenty cool stars in the Galactic disk. Methods. The spectra are analysed with one-dimensional model-atmospheres computed in Local Thermodynamic Equilibrium (LTE). The line formation computations are performed assuming LTE. Results. The ratio of phosphorus to iron behaves similarly to sulphur, increasing towards lower metallicity stars. Its ratio with respect to sulphur is roughly constant and slightly larger than solar, [P/S]=0.10 0.10. Conclusions. We succeed in taking an important step towards the understan± ding of the chemical evolution of phosphorus in the Galaxy. -