PHANGS CO Kinematics: Disk Orientations and Rotation Curves at 150 Pc Resolution

Total Page:16

File Type:pdf, Size:1020Kb

PHANGS CO Kinematics: Disk Orientations and Rotation Curves at 150 Pc Resolution Draft version May 26, 2020 Typeset using LATEX twocolumn style in AASTeX63 PHANGS CO kinematics: disk orientations and rotation curves at 150 pc resolution Philipp Lang,1 Sharon E. Meidt,2 Erik Rosolowsky,3 Joseph Nofech,3 Eva Schinnerer,1 Adam K. Leroy,4 Eric Emsellem,5, 6 Ismael Pessa,1 Simon C. O. Glover,7 Brent Groves,8, 9 Annie Hughes,10, 11 J. M. Diederik Kruijssen,12 Miguel Querejeta,13 Andreas Schruba,14 Frank Bigiel,15 Guillermo A. Blanc,16, 17 Melanie´ Chevance,12 Dario Colombo,18 Christopher Faesi,1 Jonathan D. Henshaw,1 Cinthya N. Herrera,19 Daizhong Liu,1 Jer´ ome^ Pety,19, 20 Johannes Puschnig,15 Toshiki Saito,1 Jiayi Sun,4 and Antonio Usero13 1Max-Planck-Institut f¨urAstronomie, K¨onigstuhl17 D-69117 Heidelberg, Germany 2Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent, Belgium 3Department of Physics, University of Alberta, Edmonton, AB, Canada 4Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, Ohio 43210, USA 5European Southern Observatory, Karl-Schwarzschild Straße 2, D-85748 Garching bei M¨unchen,Germany 6Univ Lyon, Univ Lyon1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69230 Saint-Genis-Laval France 7Instit¨utf¨urTheoretische Astrophysik, Zentrum f¨urAstronomie der Universit¨atHeidelberg, Albert-Ueberle-Strasse 2, 69120 Heidelberg, Germany 8Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia 9International Centre for Radio Astronomy Research, The University of Western Australia, Crawley, WA 6009 Australia 10Universit´ede Toulouse, UPS-OMP, 31028 Toulouse, France 11CNRS, IRAP, Av. du Colonel Roche BP 44346, 31028 Toulouse cedex 4, France 12Astronomisches Rechen-Institut, Zentrum f¨urAstronomie der Universit¨atHeidelberg, M¨onchhofstraße 12-14, 69120 Heidelberg, Germany 13Observatorio Astron´omico Nacional (IGN), C/Alfonso XII 3, Madrid E-28014, Spain 14Max-Planck-Institut f¨urExtraterrestrische Physik, Giessenbachstraße 1, D-85748 Garching bei M¨unchen,Germany 15Argelander-Institut f¨urAstronomie, Universit¨atBonn, Auf dem H¨ugel71, 53121 Bonn, Germany 16The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA, 91101 17Departamento de Astronom´ıa,Universidad de Chile, Camino del Observatorio 1515, Las Condes, Santiago, Chile 18Max-Planck-Institut f¨urRadioastronomie, Auf dem H¨ugel9, D-53121 Bonn, Germany 19Institut de Radioastronomie Millim´etrique, 300 rue de la Piscine, 38406 Saint-Martin-d'H`eres Cedex 20Sorbonne Universit´e,Observatoire de Paris, Universit´ePSL, CNRS, LERMA, 75014, Paris, France ABSTRACT We present kinematic orientations and high resolution (150 pc) rotation curves for 67 main sequence star-forming galaxies surveyed in CO (2-1) emission by PHANGS-ALMA. Our measurements are based on the application of a new fitting method tailored to CO velocity fields. Our approach identifies an optimal global orientation as a way to reduce the impact of non-axisymmetric (bar and spiral) features and the uneven spatial sampling characteristic of CO emission in the inner regions of nearby galaxies. The method performs especially well when applied to the large number of independent lines-of-sight contained in the PHANGS CO velocity fields mapped at 100 resolution. The high resolution rotation curves fitted to these data are sensitive probes of mass distribution in the inner regions of these galaxies. We use the inner slope as well as the amplitude of our fitted rotation curves to demonstrate that CO arXiv:2005.11709v1 [astro-ph.GA] 24 May 2020 is a reliable global dynamical mass tracer. From the consistency between photometric orientations from the literature and kinematic orientations determined with our method, we infer that the shapes of stellar disks in the mass range of log(M?(M ))=9.0-10.9 probed by our sample are very close to circular and have uniform thickness. Keywords: galaxies: ISM | ISM: kinematics and dynamics | ISM: clouds 1. INTRODUCTION high completeness across large areas (e.g., Schinnerer et Modern extragalactic CO surveys measure the prop- al. 2013; Freeman et al. 2017; Leroy et al. 2017; Sun et erties of molecular gas at cloud (50−100 pc) scales with al. 2018). This makes it possible to place cloud-scale molecular gas properties in the context of the global 2 kinematic response to the galactic potential, offering a ognizable deviations from their true values. In these view of the factors that influence the organization of the cases, rotational velocities also reflect the added contri- molecular gas and the star formation that occurs within bution from non-circular motions, leading to systematic it. One of the strengths of this approach is the ability to offsets in the inferred rotation curve (e.g., Fathi et al. use one data set to characterize the density distribution, 2005; van de Ven & Fathi 2010; Chemin et al. 2015, the local gas motions, and the galaxy dynamical mass 2016). for any single galaxy over a range of spatial scales. In this paper, we present global disk orientations and There are several factors that make the cold molecular rotation curves from ∼ 100 PHANGS-ALMA1 CO data phase of the interstellar medium (ISM) a good tracer of extending on average out to ∼ 0:7 R25 for 67 local star- the global dynamics of a galaxy. For nearby galaxies, in- forming galaxies. This is the largest such compilation of formation about the molecular gas kinematics can typi- CO rotation curves to date (c.f., Sofue & Rubin 2001) cally be obtained out to the edge of the optical disk (e.g., and complements the rich kinematics constraints offered Schruba et al. 2011, report extents in the range ∼ 0:3 by a growing number of stellar and multi-phase gas kine- to 1.3 R25). They reveal a projection of motion that matics surveys in the local universe (de Blok et al. 2008; can be used to infer the orientation of the galaxy with Epinat et al. 2008; Chung et al. 2009; Lelli et al. 2016; respect to the line-of-sight, as well as the speed at which Kalinova et al. 2017; Levy et al. 2018; Korsaga et al. material orbits around the galaxy center. The projected 2018). velocities in this case are an almost direct probe of the We use an approach that is optimized for kinematic galaxy's underlying mass distribution given the dissipa- tracers with low spatial filling factor that probe the cen- tive nature of molecular gas, which results in character- tral regions of galaxies at high spatial resolution. This istically low velocity dispersions (1−20 km s−1) in the makes it ideally suited for the wide-field CO data now disks of typical nearby galaxies (e.g., Combes & Bec- regularly produced by ALMA and NOEMA. Our tech- quaert 1997; Helfer et al. 2003; Colombo et al. 2014; nique incorporates many of the same elements imple- Sun et al. 2018; Boizelle et al. 2019). This feature has mented in the wealth of existing algorithms that fit 2D prompted the use of high resolution kinematic maps of and 3D kinematic data (van Albada et al. 1985; Bege- the inner portions of CO disks observed with the At- man 1987; Schoenmakers 1999; Simon et al. 2003; Kra- acama Large Millimeter/submillimeter Array (ALMA) jnovi´cet al. 2006; J´ozsaet al. 2007; Spekkens & Sellwood to reconstruct the masses of supermassive black holes in 2007; Bouche et al. 2015; Di Teodoro & Fraternali 2015; the centers of nearby galaxies (e.g., Davis & McDermid Kamphuis et al. 2015; Peters et al. 2017; Oh et al. 2018). 2017; Onishi et al. 2017; Davis et al. 2018). To overcome the complications of fitting CO velocity The dissipative quality of the gas also leads to a dis- fields, we introduce a new element that involves fitting tinctly strong response to underlying non-axisymmetric orientations to all lines-of-sight at once. This maximizes components in the gravitational potential (e.g., Roberts constraints from regions that provide an unbiased probe & Stewart 1987; Kim & Ostriker 2006; Dobbs & Pringle of circular motion. 2009). Bar and spiral arm features yield recognizable This paper is structured as follows: We discuss the deviations from circular motions in velocity field maps observational data used as well as our sample selection that provide powerful constraints on the structure of the in Section2. This is followed by a description of our ISM and its organization by the local galactic environ- fitting technique in Section3. Our results are presented ment. in Section4, followed by a discussion of our findings in Yet, as a global dynamics tracer, molecular gas kine- Section5. Finally, we present our conclusions in Sec- matics are confronted with issues that become more ob- tion6. vious at high spatial resolutions: Because the molecular phase traces the material at densities where gas begins 2. OBSERVATIONS AND SAMPLE to decouple from the background potential, thus forming 2.1. ALMA CO (2-1) observations and sample weakly self-gravitating clouds (e.g., Meidt et al. 2018), selection molecular gas emission is primarily confined to spiral arms, bars, or collections of individual clouds. The gas This work exploits observations of the PHANGS- in these regions reveals a strong contribution from non- ALMA sample of nearby galaxies with CO (2-1) emis- 00 circular streaming motions, more evident at higher spa- sion mapped with ALMA at high (∼ 1 ) angular res- tial resolution (e.g., Meidt et al. 2013; Colombo et al. olution. Details of the sample selection, ALMA obser- 2014). Without additional modelling, measurements of disk orientation based on velocity maps thus exhibit rec- 1 www.phangs.org 3 vations, and data processing are described in detail by tion of the pixels for each spectrum, iteratively rejecting A. K. Leroy et al. (in prep). In short, PHANGS-ALMA positive outliers associated with signal. We then smooth is designed to target 74 massive (log (M?=M ) > 9:75), the spatial noise estimate over ∼ 3 beam FWHM.
Recommended publications
  • Distances to PHANGS Galaxies: New Tip of the Red Giant Branch Measurements and Adopted Distances
    MNRAS 501, 3621–3639 (2021) doi:10.1093/mnras/staa3668 Advance Access publication 2020 November 25 Distances to PHANGS galaxies: New tip of the red giant branch measurements and adopted distances Gagandeep S. Anand ,1,2‹† Janice C. Lee,1 Schuyler D. Van Dyk ,1 Adam K. Leroy,3 Erik Rosolowsky ,4 Eva Schinnerer,5 Kirsten Larson,1 Ehsan Kourkchi,2 Kathryn Kreckel ,6 Downloaded from https://academic.oup.com/mnras/article/501/3/3621/6006291 by California Institute of Technology user on 25 January 2021 Fabian Scheuermann,6 Luca Rizzi,7 David Thilker ,8 R. Brent Tully,2 Frank Bigiel,9 Guillermo A. Blanc,10,11 Med´ eric´ Boquien,12 Rupali Chandar,13 Daniel Dale,14 Eric Emsellem,15,16 Sinan Deger,1 Simon C. O. Glover ,17 Kathryn Grasha ,18 Brent Groves,18,19 Ralf S. Klessen ,17,20 J. M. Diederik Kruijssen ,21 Miguel Querejeta,22 Patricia Sanchez-Bl´ azquez,´ 23 Andreas Schruba,24 Jordan Turner ,14 Leonardo Ubeda,25 Thomas G. Williams 5 and Brad Whitmore25 Affiliations are listed at the end of the paper Accepted 2020 November 20. Received 2020 November 13; in original form 2020 August 24 ABSTRACT PHANGS-HST is an ultraviolet-optical imaging survey of 38 spiral galaxies within ∼20 Mpc. Combined with the PHANGS- ALMA, PHANGS-MUSE surveys and other multiwavelength data, the data set will provide an unprecedented look into the connections between young stars, H II regions, and cold molecular gas in these nearby star-forming galaxies. Accurate distances are needed to transform measured observables into physical parameters (e.g.
    [Show full text]
  • New Lessons from the HI Size–Mass Relation of Galaxies
    University of Groningen New lessons from the H i size-mass relation of galaxies Wang, Jing; Koribalski, Barbel S.; Serra, Paolo; van der Hulst, Thijs; Roychowdhury, Sambit; Kamphuis, Peter; Chengalur, Jayaram N. Published in: Monthly Notices of the Royal Astronomical Society DOI: 10.1093/mnras/stw1099 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2016 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Wang, J., Koribalski, B. S., Serra, P., van der Hulst, T., Roychowdhury, S., Kamphuis, P., & Chengalur, J. N. (2016). New lessons from the H i size-mass relation of galaxies. Monthly Notices of the Royal Astronomical Society, 460(2), 2143-2151. https://doi.org/10.1093/mnras/stw1099 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Kinematics of Globular Cluster Systems of Elliptical Galaxies Tom
    Kinematics of Globular Cluster Systems of elliptical galaxies Tom Richtler Universidad de Concepción Collaborators Lilia Bassino, Universidad de La Plata Boris Dirsch, Friedrich-Ebert Gymnasium Bonn Matias Gómez, Universidad Andres Bello, Santiago Michael Hilker, ESO Garching Brijesh Kumar, Aryabhatta Institute of Observational Sciences, Nainital Richard Lane, Universidad de Concepción Søren Larsen, Sterrenkundig Instituut Utrecht Steffen Mieske, ESO Santiago Ingo Misgeld, Universität München Aaron Romanowsky, Lick Observatory, Santa Cruz Ricardo Salinas, Universidad de Concepción Ylva Schuberth, Universität Bonn Analia Smith-Castelli, Universidad de La Plata List of early-type galaxies with more than 117 GC velocities NGC 1399 700 Schuberth et al. 2010 NGC 5128 605 Woodley et al. 2010 NGC 4636 238 Lee et al. 2010 460 Schuberth et al. 2011 (in the revision process) NGC 4486 278 Côté et al. 2001 NGC 4472 263 Côté et al. 2003 393 Zepf et al. 2010 NGC 1407 172 Romanowsky et al. 2009 NGC 4694 121 Hwang et al. 2008 NGC 3311 118 Richtler et al. 2011 Misgeld et al. 2011 NGC 4374 287 Kumar et al. 2011 ??? NGC 1316 160 Kumar et al. 2011 ??? Globular cluster system kinematics? Mass profle of the host galaxy in combination with other tracers: stellar light, PNe, X-rays GC subpopulations in combination with age, -> test LCDM predictions metallicity -> test alternate gravity concepts Clues to their origin Can we distinguish LCDM halos from, say, MONDian phantom halos by using globular clusters ? Concentration rs/rvirial vs. mass of galaxy models Phantom halos Fitted with NFW profles (Richtler et al. 2011) Cosmological halos (Maccio et al. 2008) A look onto the halo of M87 Huchra & Brodie 1987 - 10 GCs --> projected mass estimator Murphy et al.
    [Show full text]
  • April 14 2018 7:00Pm at the April 2018 Herrett Center for Arts & Science College of Southern Idaho
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting President’s Message Tim Frazier Saturday, April 14th 2018 April 2018 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. It really is beginning to feel like spring. The weather is more moderate and there will be, hopefully, clearer skies. (I write this with some trepidation as I don’t want to jinx Public Star Party Follows at the it in a manner similar to buying new equipment will ensure at least two weeks of Centennial Observatory cloudy weather.) Along with the season comes some great spring viewing. Leo is high overhead in the early evening with its compliment of galaxies as is Coma Club Officers Berenices and Virgo with that dense cluster of extragalactic objects. Tim Frazier, President One of my first forays into the Coma-Virgo cluster was in the early 1960’s with my [email protected] new 4 ¼ inch f/10 reflector and my first star chart, the epoch 1960 version of Norton’s Star Atlas. I figured from the maps I couldn’t miss seeing something since Robert Mayer, Vice President there were so many so closely packed. That became the real problem as they all [email protected] appeared as fuzzy spots and the maps were not detailed enough to distinguish one galaxy from another. I still have that atlas as it was a precious Christmas gift from Gary Leavitt, Secretary my grandparents but now I use better maps, larger scopes and GOTO to make sure [email protected] it is M84 or M86.
    [Show full text]
  • Lopsided Spiral Galaxies: Evidence for Gas Accretion
    A&A 438, 507–520 (2005) Astronomy DOI: 10.1051/0004-6361:20052631 & c ESO 2005 Astrophysics Lopsided spiral galaxies: evidence for gas accretion F. Bournaud1, F. Combes1,C.J.Jog2, and I. Puerari3 1 Observatoire de Paris, LERMA, 61 Av. de l’Observatoire, 75014 Paris, France e-mail: [email protected] 2 Department of Physics, Indian Institute of Science, Bangalore 560012, India 3 Instituto Nacional de Astrofísica, Optica y Electrónica, Calle Luis Enrique Erro 1, 72840 Tonantzintla, Puebla, Mexico Received 3 January 2005 / Accepted 15 March 2005 Abstract. We quantify the degree of lopsidedness for a sample of 149 galaxies observed in the near-infrared from the OSUBGS sample, and try to explain the physical origin of the observed disk lopsidedness. We confirm previous studies, but for a larger sample, that a large fraction of galaxies have significant lopsidedness in their stellar disks, measured as the Fourier amplitude of the m = 1 component normalised to the average or m = 0 component in the surface density. Late-type galaxies are found to be more lopsided, while the presence of m = 2 spiral arms and bars is correlated with disk lopsidedness. We also show that the m = 1 amplitude is uncorrelated with the presence of companions. Numerical simulations were carried out to study the generation of m = 1viadifferent processes: galaxy tidal encounters, galaxy mergers, and external gas accretion with subsequent star formation. These simulations show that galaxy interactions and mergers can trigger strong lopsidedness, but do not explain several independent statistical properties of observed galaxies. To explain all the observational results, it is required that a large fraction of lopsidedness results from cosmological accretion of gas on galactic disks, which can create strongly lopsided disks when this accretion is asymmetrical enough.
    [Show full text]
  • SAC's 110 Best of the NGC
    SAC's 110 Best of the NGC by Paul Dickson Version: 1.4 | March 26, 1997 Copyright °c 1996, by Paul Dickson. All rights reserved If you purchased this book from Paul Dickson directly, please ignore this form. I already have most of this information. Why Should You Register This Book? Please register your copy of this book. I have done two book, SAC's 110 Best of the NGC and the Messier Logbook. In the works for late 1997 is a four volume set for the Herschel 400. q I am a beginner and I bought this book to get start with deep-sky observing. q I am an intermediate observer. I bought this book to observe these objects again. q I am an advance observer. I bought this book to add to my collect and/or re-observe these objects again. The book I'm registering is: q SAC's 110 Best of the NGC q Messier Logbook q I would like to purchase a copy of Herschel 400 book when it becomes available. Club Name: __________________________________________ Your Name: __________________________________________ Address: ____________________________________________ City: __________________ State: ____ Zip Code: _________ Mail this to: or E-mail it to: Paul Dickson 7714 N 36th Ave [email protected] Phoenix, AZ 85051-6401 After Observing the Messier Catalog, Try this Observing List: SAC's 110 Best of the NGC [email protected] http://www.seds.org/pub/info/newsletters/sacnews/html/sac.110.best.ngc.html SAC's 110 Best of the NGC is an observing list of some of the best objects after those in the Messier Catalog.
    [Show full text]
  • Molecular Gas Properties on Cloud Scales Across the Local Star-Forming Galaxy Population
    DRAFT VERSION SEPTEMBER 7, 2020 Typeset using LATEX twocolumn style in AASTeX63 Molecular Gas Properties on Cloud Scales Across the Local Star-forming Galaxy Population JIAYI SUN (Y嘉懿), 1 ADAM K. LEROY,1 EVA SCHINNERER,2 ANNIE HUGHES,3, 4 ERIK ROSOLOWSKY,5 MIGUEL QUEREJETA,6, 7 ANDREAS SCHRUBA,8 DAIZHONG LIU,2 TOSHIKI SAITO,2 CINTHYA N. HERRERA,9 CHRISTOPHER FAESI,2, 10 ANTONIO USERO,7 JER´ OMEˆ PETY,9, 11 J. M. DIEDERIK KRUIJSSEN,12 EVE C. OSTRIKER,13 FRANK BIGIEL,14 GUILLERMO A. BLANC,15, 16 ALBERTO D. BOLATTO,17 MED´ ERIC´ BOQUIEN,18 MELANIE´ CHEVANCE,12 DANIEL A. DALE,19 SINAN DEGER,20 ERIC EMSELLEM,6, 21 SIMON C. O. GLOVER,22 KATHRYN GRASHA,23 BRENT GROVES,23 JONATHAN HENSHAW,2 MARIA J. JIMENEZ-DONAIRE,7, 24 JENNY J. KIM,12 RALF S. KLESSEN,22, 25 KATHRYN KRECKEL,12 JANICE C. LEE,20 SHARON MEIDT,26 KARIN SANDSTROM,27 AMY E. SARDONE,1, 28 DYAS UTOMO,1 AND THOMAS G. WILLIAMS2 1Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA 2Max-Planck-Institut fur¨ Astronomie, Konigstuhl¨ 17, D-69117, Heidelberg, Germany 3CNRS, IRAP, 9 Av. du Colonel Roche, BP 44346, F-31028 Toulouse cedex 4, France 4Universite´ de Toulouse, UPS-OMP, IRAP, F-31028 Toulouse cedex 4, France 5Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada 6European Southern Observatory, Karl-Schwarzschild Straße 2, D-85748 Garching bei M unchen, Germany 7Observatorio Astronomico´ Nacional (IGN), C/ Alfonso XII, 3, E-28014 Madrid, Spain 8Max-Planck-Institut fur¨ extraterrestrische Physik, Giessenbachstraße 1,
    [Show full text]
  • ARRAKIS: Atlas of Resonance Rings As Known in The
    Astronomy & Astrophysics manuscript no. arrakis˙v12 c ESO 2018 September 28, 2018 ARRAKIS: atlas of resonance rings as known in the S4G⋆,⋆⋆ S. Comer´on1,2,3, H. Salo1, E. Laurikainen1,2, J. H. Knapen4,5, R. J. Buta6, M. Herrera-Endoqui1, J. Laine1, B. W. Holwerda7, K. Sheth8, M. W. Regan9, J. L. Hinz10, J. C. Mu˜noz-Mateos11, A. Gil de Paz12, K. Men´endez-Delmestre13 , M. Seibert14, T. Mizusawa8,15, T. Kim8,11,14,16, S. Erroz-Ferrer4,5, D. A. Gadotti10, E. Athanassoula17, A. Bosma17, and L.C.Ho14,18 1 University of Oulu, Astronomy Division, Department of Physics, P.O. Box 3000, FIN-90014, Finland e-mail: [email protected] 2 Finnish Centre of Astronomy with ESO (FINCA), University of Turku, V¨ais¨al¨antie 20, FI-21500, Piikki¨o, Finland 3 Korea Astronomy and Space Science Institute, 776, Daedeokdae-ro, Yuseong-gu, Daejeon 305-348, Republic of Korea 4 Instituto de Astrof´ısica de Canarias, E-38205 La Laguna, Tenerife, Spain 5 Departamento de Astrof´ısica, Universidad de La Laguna, E-38200, La Laguna, Tenerife, Spain 6 Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 7 European Space Agency, ESTEC, Keplerlaan 1, 2200 AG, Noorwijk, the Netherlands 8 National Radio Astronomy Observatory/NAASC, 520 Edgemont Road, Charlottesville, VA 22903, USA 9 Space Telescope Science Institute, 3700 San Antonio Drive, Baltimore, MD 21218, USA 10 European Southern Observatory, Casilla 19001, Santiago 19, Chile 11 MMTO, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA 12 Departamento de Astrof´ısica,
    [Show full text]
  • 190 Index of Names
    Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea
    [Show full text]
  • Star Formation in Bulgeless Late Type Galaxies: Clues to Their Evolution
    Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 12 March 2021 (MN LATEX style file v2.2) Star formation in bulgeless late type galaxies: clues to their evolution M.Das1, C. Sengupta2,3, S. Ramya1, K. Misra4 1. Indian Institute of Astrophysics, Koramangala, Bangalore 560034, India 2. Instituto de Astrofsica de Andaluca (CSIC), Glorieta de Astronoma s/n, 18008 Granada, Spain 3. Calar Alto Observatory, Centro Astronmico Hispano Alemn, C/ Jess Durbn Remn, 2-2, 04004 Almeria, Spain 4. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA Accepted.....; Received ..... ABSTRACT We present GMRT 1280 MHz radio continuum observations and follow-up optical studies of the disk and nuclear star formation in a sample of low luminosity bulgeless galaxies. The main aim is to understand bulge formation and overall disk evolution in these late type galax- ies. We detected radio continuum from five of the twelve galaxies in our sample; the emission is mainly associated with disk star formation. Only two of the detected galaxies had extended radio emission; the others had patchy disk emission. In the former two galaxies, NGC 3445 and NGC 4027, the radio continuum is associated with star formation triggered by tidal in- teractions with nearby companion galaxies. We did followup Hα imaging and nuclear spec- troscopy of both galaxies using the Himalayan Chandra Telescope (HCT). The Hα emission is mainly associated with the strong spiral arms. The nuclear spectra indicate ongoing nu- clear star formation in NGC 3445 and NGC 4027 which maybe associated with nuclear star clusters. No obvious signs of AGN activity were detected.
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]
  • Early Observations of the MHONGOOSE Galaxies Sorgho, A.; Carignan, C.; Pisano, D
    University of Groningen Early observations of the MHONGOOSE galaxies Sorgho, A.; Carignan, C.; Pisano, D. J.; Oosterloo, T.; de Blok, W. J. G.; Korsaga, M.; Pingel, N. M.; Sardone, Amy; Goedhart, S.; Passmoor, S. Published in: Monthly Notices of the Royal Astronomical Society DOI: 10.1093/mnras/sty2785 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2019 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Sorgho, A., Carignan, C., Pisano, D. J., Oosterloo, T., de Blok, W. J. G., Korsaga, M., Pingel, N. M., Sardone, A., Goedhart, S., Passmoor, S., Dikgale, A., & Sirothia, S. K. (2019). Early observations of the MHONGOOSE galaxies: Getting ready for MeerKAT . Monthly Notices of the Royal Astronomical Society, 482(1), 1248-1269. https://doi.org/10.1093/mnras/sty2785 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]