Diseño De Un Prototipo Electrónico Para El Control Automático De La Luz Alta De Un Vehículo Mediante Detección Inteligente De Otros Automóviles.”

Total Page:16

File Type:pdf, Size:1020Kb

Diseño De Un Prototipo Electrónico Para El Control Automático De La Luz Alta De Un Vehículo Mediante Detección Inteligente De Otros Automóviles.” Tecnológico de Costa Rica Escuela Ingeniería Electrónica Proyecto de Graduación “Diseño de un prototipo electrónico para el control automático de la luz alta de un vehículo mediante detección inteligente de otros automóviles.” Informe de Proyecto de Graduación para optar por el título de Ingeniero en Electrónica con el grado académico de Licenciatura Ronald Miranda Arce San Carlos, 2018 2 Declaración de autenticidad Yo, Ronald Miranda Arce, en calidad de estudiante de la carrera de ingeniería Electrónica, declaro que los contenidos de este informe de proyecto de graduación son absolutamente originales, auténticos y de exclusiva responsabilidad legal y académica del autor. Ronald Fernando Miranda Arce Santa Clara, San Carlos, Costa Rica Cédula: 207320032 3 Resumen Se presenta el diseño y prueba de un prototipo electrónico para el control automático de la luz alta de un vehículo mediante la detección inteligente de otros automóviles, de esta forma mejorar la experiencia de manejo y seguridad al conducir en la noche, disminuyendo el riesgo de accidentes por deslumbramiento en las carreteras. Se expone el uso de machine learning (máquina de aprendizaje automático) para el entrenamiento de una red neuronal, que permita el reconocimiento en profundidad de patrones, en este caso identificar el patrón que describe un vehículo cuando se acerca durante la noche. Se entrenó exitosamente una red neuronal capaz de identificar correctamente hasta un 89% de los casos ocurridos en las pruebas realizadas, generando las señales para controlar de forma automática los cambios de luz. 4 Summary The design and testing of an electronic prototype for the automatic control of the vehicle's high light through the intelligent detection of other automobiles is presented. This improves driving experience and driving safety at night, reducing the risk of accidents due to glare on the roads. It exposes the use of machine learning for the training of a neural network, that allows deep recognition of patterns, in this case identify the pattern that describes a vehicle when it approaches. A neural network capable of correctly identifying up to 89% of the cases occurred in the tests performed was successfully trained, generating the signals to automatically control the high beam and low beam. 5 Índice General Resumen .............................................................................................................................................. 4 Summary .............................................................................................................................................. 5 Capítulo 1: Introducción ........................................................................................................... 10 1.1 Problema existente e importancia de su solución ..................................................... 11 1.2 Solución seleccionada ..................................................................................................... 12 Capítulo 2: Meta y objetivos ......................................................................................................... 14 2.1 Meta ..................................................................................................................................... 14 2.2 Objetivo general ................................................................................................................ 14 2.3 Objetivos específicos ...................................................................................................... 14 Capítulo 3: Marco teórico ............................................................................................................ 15 3.1.1 Aprendizaje automático .............................................................................................. 15 3.1.2 Redes neuronales ......................................................................................................... 16 3.1.3 Aprendizaje por transferencia ................................................................................... 16 3.1.4 Vector de características de imagen o “Bottleneck” ........................................... 17 3.1.5 Reentrenamiento de una red neuronal .................................................................... 17 3.1.6 Microprocesador Raspberry Pi 3 .............................................................................. 19 3.1.7 Placa de desarrollo Nvidea Drive AGX .................................................................... 20 3.1.8 Asus Tinker S ................................................................................................................ 21 3.1.9 Cámara ............................................................................................................................ 22 3.1.10 Módulos transmisores ESP286 ................................................................................. 23 3.1.11 Arduino Micro ............................................................................................................... 23 3.1.12 Relé ................................................................................................................................... 24 3.1.13 Encapsulado LM350 ..................................................................................................... 24 3.2 Antecedentes y estado de la cuestión ........................................................................ 25 3.2.1 Controlador inteligente de la luz alta IHC ............................................................... 25 3.2.2 Asistente de iluminación SmartBeam ..................................................................... 26 3.2.3 Focos LED adaptables ................................................................................................ 26 3.2.4 Sensor de seguridad AHB .......................................................................................... 26 Capítulo 4: Procedimiento Metodológico .................................................................................. 27 4.1 Reconocimiento y definición del problema .............................................................. 27 6 4.2 Obtención y análisis de información ........................................................................... 28 4.3 Evaluación de las alternativas y síntesis de una solución .................................... 29 4.4 Implementación de la solución .................................................................................... 31 4.4.2 Etapa 2 ....................................................................................................................... 32 4.4.3 Etapa 3 .............................................................................................................................. 33 4.4.4 Etapa 4 ........................................................................................................................... 34 4.4.5 Etapa 5 ........................................................................................................................... 34 4.5 Reevaluación y rediseño ................................................................................................ 35 Capítulo 5: Explicación detallada de la solución ..................................................................... 36 5.1 Análisis de las soluciones y selección final .............................................................. 36 5.1.1 Solución I .................................................................................................................... 37 5.1.2 Solución II ................................................................................................................... 38 5.1.3 Solución III .................................................................................................................. 39 5.2 Descripción del hardware................................................................................................... 40 5.2.1 Unidad de Alimentación ............................................................................................ 41 5.2.2 Unidad de reconocimiento de vehículos ............................................................ 43 5.3 Descripción del software ................................................................................................ 47 Capítulo 6: Análisis de Resultados ............................................................................................. 55 6.1 Resultados del entrenamiento ........................................................................................ 55 6.2 Análisis de imágenes ........................................................................................................ 58 6.3 Análisis de video .............................................................................................................. 61 6.4 Pruebas de filtrado ........................................................................................................... 70 6.5 Pruebas de suavizado ...................................................................................................... 72 6.6 Pruebas regulador de voltaje ......................................................................................... 73 6.7 Implementación en un computador de bajo costo.................................................... 74 Capítulo 7: Conclusiones y recomendaciones ........................................................................ 76 7.1 Conclusiones.....................................................................................................................
Recommended publications
  • User Manual - S.USV Solutions Compatible with Raspberry Pi, up Board and Tinker Board Revision 2.2 | Date 07.06.2018
    User Manual - S.USV solutions Compatible with Raspberry Pi, UP Board and Tinker Board Revision 2.2 | Date 07.06.2018 User Manual - S.USV solutions / Revision 2.0 Table of Contents 1 Functions .............................................................................................................................................. 3 2 Technical Specification ........................................................................................................................ 4 2.1 Overview ....................................................................................................................................... 5 2.2 Performance .................................................................................................................................. 6 2.3 Lighting Indicators ......................................................................................................................... 6 3 Installation Guide................................................................................................................................. 7 3.1 Hardware ...................................................................................................................................... 7 3.1.1 Commissioning S.USV ............................................................................................................ 7 3.1.2 Connecting the battery .......................................................................................................... 8 3.1.3 Connecting the external power supply .................................................................................
    [Show full text]
  • NVIDIA Launches Tegra X1 Mobile Super Chip
    NVIDIA Launches Tegra X1 Mobile Super Chip Maxwell GPU Architecture Delivers First Teraflops Mobile Processor, Powering Deep Learning and Computer Vision Applications NVIDIA today unveiled Tegra® X1, its next-generation mobile super chip with over one teraflops of processing power – delivering capabilities that open the door to unprecedented graphics and sophisticated deep learning and computer vision applications. Tegra X1 is built on the same NVIDIA Maxwell™ GPU architecture rolled out only months ago for the world's top-performing gaming graphics card, the GeForce® GTX 980. The 256-core Tegra X1 provides twice the performance of its predecessor, the Tegra K1, which is based on the previous-generation Kepler™ architecture and debuted at last year's Consumer Electronics Show. Tegra processors are built for embedded products, mobile devices, autonomous machines and automotive applications. Tegra X1 will begin appearing in the first half of the year. It will be featured in the newly announced NVIDIA DRIVE™ car computers. DRIVE PX is an auto-pilot computing platform that can process video from up to 12 onboard cameras to run capabilities providing Surround-Vision, for a seamless 360-degree view around the car, and Auto-Valet, for true self-parking. DRIVE CX is a complete cockpit platform designed to power the advanced graphics required across the increasing number of screens used for digital clusters, infotainment, head-up displays, virtual mirrors and rear-seat entertainment. "We see a future of autonomous cars, robots and drones that see and learn, with seeming intelligence that is hard to imagine," said Jen-Hsun Huang, CEO and co-founder, NVIDIA.
    [Show full text]
  • Co-Optimizing Performance and Memory Footprint Via Integrated CPU/GPU Memory Management, an Implementation on Autonomous Driving Platform
    Co-Optimizing Performance and Memory Footprint Via Integrated CPU/GPU Memory Management, an Implementation on Autonomous Driving Platform Soroush Bateni*, Zhendong Wang*, Yuankun Zhu, Yang Hu, and Cong Liu The University of Texas at Dallas Abstract—Cutting-edge embedded system applications, such as launches the OpenVINO toolkit for the edge-based deep self-driving cars and unmanned drone software, are reliant on learning inference on its integrated HD GPUs [4]. integrated CPU/GPU platforms for their DNNs-driven workload, Despite the advantages in SWaP features presented by the such as perception and other highly parallel components. In this work, we set out to explore the hidden performance im- integrated CPU/GPU architecture, our community still lacks plication of GPU memory management methods of integrated an in-depth understanding of the architectural and system CPU/GPU architecture. Through a series of experiments on behaviors of integrated GPU when emerging autonomous and micro-benchmarks and real-world workloads, we find that the edge intelligence workloads are executed, particularly in multi- performance under different memory management methods may tasking fashion. Specifically, in this paper we set out to explore vary according to application characteristics. Based on this observation, we develop a performance model that can predict the performance implications exposed by various GPU memory system overhead for each memory management method based management (MM) methods of the integrated CPU/GPU on application characteristics. Guided by the performance model, architecture. The reason we focus on the performance impacts we further propose a runtime scheduler. By conducting per-task of GPU MM methods are two-fold.
    [Show full text]
  • A Low-Cost Deep Neural Network-Based Autonomous Car
    DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car Michael G. Bechtely, Elise McEllhineyy, Minje Kim?, Heechul Yuny y University of Kansas, USA. fmbechtel, elisemmc, [email protected] ? Indiana University, USA. [email protected] Abstract—We present DeepPicar, a low-cost deep neural net- task may be directly linked to the safety of the vehicle. This work based autonomous car platform. DeepPicar is a small scale requires a high computing capacity as well as the means to replication of a real self-driving car called DAVE-2 by NVIDIA. guaranteeing the timings. On the other hand, the computing DAVE-2 uses a deep convolutional neural network (CNN), which takes images from a front-facing camera as input and produces hardware platform must also satisfy cost, size, weight, and car steering angles as output. DeepPicar uses the same net- power constraints, which require a highly efficient computing work architecture—9 layers, 27 million connections and 250K platform. These two conflicting requirements complicate the parameters—and can drive itself in real-time using a web camera platform selection process as observed in [25]. and a Raspberry Pi 3 quad-core platform. Using DeepPicar, we To understand what kind of computing hardware is needed analyze the Pi 3’s computing capabilities to support end-to-end deep learning based real-time control of autonomous vehicles. for AI workloads, we need a testbed and realistic workloads. We also systematically compare other contemporary embedded While using a real car-based testbed would be most ideal, it computing platforms using the DeepPicar’s CNN-based real-time is not only highly expensive, but also poses serious safety control workload.
    [Show full text]
  • Developing & Deploying Autonomous Driving
    DEVELOPING & DEPLOYING AUTONOMOUS DRIVING APPLICATIONS WITH THE NVIDIA DRIVE PX PLATFORM Shri Sundaram, Product Manager, DRIVE PX Platform DRIVE PX: AV Development Platform AV Developers: DRIVE PX as your tool AV HW/SW Ecosystem: DRIVE PX as your platform to reach developers 2 NVIDIA DRIVE PX Open AV Computing Platform for the Transportation Industry Powerful and scalable AV computer Deep Neural Network, Sensor Fusion and Computing Extensive I/O to interface with wide range of sensors and vehicle networks An open SW stack Level 3 to Level 5; ASIL-D functional safety 3 DRIVE PX DRIVING AV AI DRIVE Platform Engagements 400 350 300 250 Launched CES 2015 200 150 Spike in AV AI engagements after 100 50 we powered on discrete GPU 0 FY18 Q1 FY18 Q3 More than doubled in last 6 months Plus >145 AV Startups on NVIDIA DRIVE Source: NVIDIA statistics 4 AV DEVELOPMENT Path from Idea to Production IDEA DEVELOPMENT PROTOTYPE PRODUCTION Develop Test Deploy Perception Feature development Safety hardening OBJECTIVE Mapping/Localization Validation Performance tuning Path Planning SW upgrades Combination/More… PC PC DRIVE Platform TOOL Automotive Sensors Production SW OTA framework Scalable compute with discrete GPUs Ecosystem of sensors + other HW/SW peripherals TensorRT, CUDA, Open Source Frameworks 5 Autonomous Vehicle DEVELOPMENT FLOW Application Development 4 Using DRIVE PX Platform Test/Drive 3 1 Data Acquired Curated/Annotated Neural Network Deep Neural From Sensors Training Data Training Network Autonomous Vehicle Applications 2 1 Data Acquisition
    [Show full text]
  • Introduction 3 Acknowledgement 3 Problem and Project Statement 3
    Introduction 3 Acknowledgement 3 Problem and Project Statement 3 Operational environment 5 Intended uses and users 5 Assumptions and limitations 6 End Product 7 Specifications and analysis 9 Proposed Design 9 Design Analysis 10 Implementation details 10 Testing process and testing results 11 Placing your work in the context of: 21 • Related products 21 • Related literature If/When needed, you should resort to Appendices. 22 Appendix I – Operation Manual 23 Raspberry PI 3 Model B 23 Nvidia Drive PX2 29 Software Licensing 31 Appendix II: Alternative/ other initial versions of the design 32 1) The DSRC 32 2) The Mobile Wireless Data 32 3) The Arduino & XBEE 32 Appendix III: Other Considerations 34 Appendix IV: Code 35 Introduction 35 External Libraries 35 Native Libraries 35 Gather Component Information 35 Finding and Initializing Devices 36 Initialize The GPS 37 Parsing and Transmission 37 Introduction As part of our senior design we had to create the means for the communication between two vehicles. The information that had to be communicated was the latitude, longitude coordinates, and the time. For this we have come up with several solutions throughout our design and testing process. We looked into DSRC, Cellular Communication, Raspberry Pi’s over a LAN network, and Xbee transceivers. All these are viable options and several can complement the others pretty well. We will have more details in following sections. Acknowledgement First off, we would like to formally thank Dr. Hegde for guidance on our project and the insightful advice on how to approach and overcome different obstacles of our progress. Also we would like to thank Vishal as our project manager who made sure we stuck to our milestones and meeting with us every week to make sure we were working towards our goals.
    [Show full text]
  • Die Meilensteine Der Computer-, Elek
    Das Poster der digitalen Evolution – Die Meilensteine der Computer-, Elektronik- und Telekommunikations-Geschichte bis 1977 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 und ... Von den Anfängen bis zu den Geburtswehen des PCs PC-Geburt Evolution einer neuen Industrie Business-Start PC-Etablierungsphase Benutzerfreundlichkeit wird gross geschrieben Durchbruch in der Geschäftswelt Das Zeitalter der Fensterdarstellung Online-Zeitalter Internet-Hype Wireless-Zeitalter Web 2.0/Start Cloud Computing Start des Tablet-Zeitalters AI (CC, Deep- und Machine-Learning), Internet der Dinge (IoT) und Augmented Reality (AR) Zukunftsvisionen Phasen aber A. Bowyer Cloud Wichtig Zählhilfsmittel der Frühzeit Logarithmische Rechenhilfsmittel Einzelanfertigungen von Rechenmaschinen Start der EDV Die 2. Computergeneration setzte ab 1955 auf die revolutionäre Transistor-Technik Der PC kommt Jobs mel- All-in-One- NAS-Konzept OLPC-Projekt: Dass Computer und Bausteine immer kleiner, det sich Konzepte Start der entwickelt Computing für die AI- schneller, billiger und energieoptimierter werden, Hardware Hände und Finger sind die ersten Wichtige "PC-Vorläufer" finden wir mit dem werden Massenpro- den ersten Akzeptanz: ist bekannt. Bei diesen Visionen geht es um die Symbole für die Mengendarstel- schon sehr früh bei Lernsystemen. iMac und inter- duktion des Open Source Unterstüt- möglichen zukünftigen Anwendungen, die mit 3D-Drucker zung und lung. Ägyptische Illustration des Beispiele sind: Berkley Enterprice mit neuem essant: XO-1-Laptops: neuen Technologien und Konzepte ermöglicht Veriton RepRap nicht Ersatz werden.
    [Show full text]
  • Deeprcar: an Autonomous Car Model Student: Bc
    ASSIGNMENT OF MASTER’S THESIS Title: DeepRCar: An Autonomous Car Model Student: Bc. David Ungurean Supervisor: Ing. Zdeněk Buk, Ph.D. Study Programme: Informatics Study Branch: Knowledge Engineering Department: Department of Applied Mathematics Validity: Until the end of winter semester 2019/20 Instructions Search for RC car models suitable for autonomous driving implementation. Focus on models which allow the control software to be run onboard. The autonomous control will be based primarily on visual inputs from an onboard camera. Other sensors such as ultrasonic distance sensors can be also used. Implement the control algorithms using deep neural networks which use the visual information as input and produce control signals for steering and speed control. Design and implement several experiments to test various neural network architectures and image preprocessing methods. References - J. Koutnik, J. Schmidhuber, F. Gomez, Online evolution of deep convolutional network for vision-based RL, SAB 2014: http://people.idsia.ch/ koutnik/papers/koutnik2014sab.pdf - Zheng Wang, Self Driving RC Car: https://zhengludwig.wordpress.com/projects/self-driving-rc-car/ Ing. Karel Klouda, Ph.D. doc. RNDr. Ing. Marcel Jiřina, Ph.D. Head of Department Dean Prague February 16, 2018 Master’s thesis DeepRCar: An Autonomous Car Model Bc. David Ungurean Department of Applied Mathematics Supervisor: Ing. Zdenˇek Buk, Ph.d. May 9, 2018 Acknowledgements First of all, I would like to thank my supervisor Dr. Buk for giving me the chance to explore such an interesting field of machine learning and for always pointing me in the right direction, whenever I was starting to get lost. I am also very grateful to Dr.
    [Show full text]
  • Proyecto Fin De Grado
    ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA Y SISTEMAS DE TELECOMUNICACIÓN PROYECTO FIN DE GRADO TÍTULO: Despliegue de Liota (Little IoT Agent) en Raspberry Pi AUTOR: Ricardo Amador Pérez TITULACIÓN: Ingeniería Telemática TUTOR (o Director en su caso): Antonio da Silva Fariña DEPARTAMENTO: Departamento de Ingeniería Telemática y Electrónica VºBº Miembros del Tribunal Calificador: PRESIDENTE: David Luengo García VOCAL: Antonio da Silva Fariña SECRETARIO: Ana Belén García Hernando Fecha de lectura: Calificación: El Secretario, Despliegue de Liota (Little IoT Agent) en Raspberry Pi Quizás de todas las líneas que he escrito para este proyecto, estas sean a la vez las más fáciles y las más difíciles de todas. Fáciles porque podría doblar la longitud de este proyecto solo agradeciendo a mis padres la infinita paciencia que han tenido conmigo, el apoyo que me han dado siempre, y el esfuerzo que han hecho para que estas líneas se hagan realidad. Por todo ello y mil cosas más, gracias. Mamá, papá, lo he conseguido. Fáciles porque sin mi tutor Antonio, este proyecto tampoco sería una realidad, no solo por su propia labor de tutor, si no porque literalmente sin su ayuda no se hubiera entregado a tiempo y funcionando. Después de esto Antonio, voy a tener que dejarme ganar algún combate en kenpo como agradecimiento. Fáciles porque, sí melones os toca a vosotros, Alex, Alfonso, Manu, Sama, habéis sido mi apoyo más grande en los momentos más difíciles y oscuros, y mis mejores compañeros en los momentos de felicidad. Amigos de Kulturales, los hermanos Baños por empujarme a mejorar, Pablo por ser un ejemplo a seguir, Chou, por ser de los mejores profesores y amigos que he tenido jamás.
    [Show full text]
  • Entertainment Software Association
    Long Comment Regarding a Proposed Exemption Under 17 U.S.C. 1201 [ ] Check here if multimedia evidence is being provided in connection with this comment Item 1. Commenter Information The Entertainment Software Association (“ESA”) represents all of the major platform providers and nearly all of the major video game publishers in the United States.1 It is the U.S. association exclusively dedicated to serving the business and public affairs needs of companies that publish computer and video games for video game consoles, personal computers, and the Internet. Any questions regarding these comments should be directed to: Cory Fox Simon J. Frankel Ehren Reynolds Lindsey L. Tonsager ENTERTAINMENT SOFTWARE ASSOCIATION COVINGTON & BURLING LLP 575 7th Street, NW One Front Street Suite 300 35th Floor Washington, DC 20004 San Francisco, CA 94111 Telephone: (202) 223-2400 Telephone: (415) 591-6000 Facsimile: (202) 223-2401 Facsimile: (415) 591-6091 Item 2. Proposed Class Addressed Proposed Class 19: Jailbreaking—Video Game Consoles Item 3. Overview A. Executive Summary Proposed Class 19 is virtually identical to the video game console “jailbreaking” exemption that the Librarian denied in the last rulemaking proceeding. As in the last proceeding, “the evidentiary record fail[s] to support a finding that the inability to circumvent access controls on video game consoles has, or over the course of the next three years likely would have, a substantial adverse impact on the ability to make noninfringing uses.”2 Proponents offer no more than the same de minimis, hypothetical, 1 See http://www.theesa.com/about-esa/members/ (listing ESA’s members).
    [Show full text]
  • DRIVE PX 2 HANDS-ON NVIDIA Automotive
    DRIVE PX 2 HANDS-ON NVIDIA Automotive Rev. 20170725 Drive PX 2 SDK 4.1.8.0 TABLE OF CONTENT DRIVE PX 2 Overview DRIVE PX 2 Hardware Setup DRIVE PX 2 SDK Installation DRIVE PX 2 Hands-on NVIDIA CONFIDENTIAL — DRIVE PX 2 DEVELOPMENT PLATFORM DRIVE PX 2 OVERVIEW DRIVE PX 2 AutoChauffeur • Scalable from 1 to 4 processors to multiple DRIVE PX 2s • 2x Tegra Parker SoC • 2x Pascal dGPU • 8 TFLOPS • 24 DNN TOPs • Up to 12 cameras, plus LIDAR, radar, ultrasonic sensors • DriveWorks SW/SDK • AI perception • Mapping NVIDIA CONFIDENTIAL — DRIVE PX 2 DEVELOPMENT PLATFORM NVIDIA DRIVE PX 2 BUILT FOR NVIDIA CONFIDENTIAL — DRIVE PX 2 DEVELOPMENT PLATFORM NVIDIA DRIVE PX 2 – SOFTWARE STACK A full stack of rich software components NVIDIA Vibrante Linux & Comprehensive BSP Rich Middleware Filesystem SDK, Samples and more Open GL ES 3.x Ubuntu Open GL 4.x 16.04 CUDA 8.x Yocto X11 EGLStream/EGLOutput Linux K4.4 NVIDIA CONFIDENTIAL — DRIVE PX 2 DEVELOPMENT PLATFORM DRIVE PX 2 HARDWARE SETUP Check out the Quick start guide! Included in your DRIVE PX 2 box NVIDIA CONFIDENTIAL — DRIVE PX 2 DEVELOPMENT PLATFORM Top View DRIVE PX 2 Connectors Front View NVIDIA CONFIDENTIAL — DRIVE PX 2 DEVELOPMENT PLATFORM DRIVE PX 2 Harness Connectors Note: Make sure that the AURIX Flashing switch is in the RUN position NVIDIA CONFIDENTIAL — DRIVE PX 2 DEVELOPMENT PLATFORM Vehicle Harness Cable Step 1 ATTENTION: Do not plug in the power supply to the wall socket unless instructed. a) Connect vehicle harness • Plug the vehicle harness cable to DRIVE PX 2 • Lock the DRIVE PX 2 Vehicle Harness b) Connect the Power Supply to the harness cable NVIDIA CONFIDENTIAL — DRIVE PX 2 DEVELOPMENT PLATFORM Connecting the Cameras If you don’t have GMSL cameras, proceed to Step 3 Connect your GMSL Camera (e.g.
    [Show full text]
  • Self Driving RC Car Using Behavioral Cloning
    Self Driving RC Car using Behavioral Cloning 1. 2. 3. Aliasgar​ Haji, Priyam​ Shah, Srinivas​ Bijoor ​ ​ 1 S​ tudent, IT Dept., K. J. Somaiya College Of Engineering, Mumbai. 2 S​ tudent, Computer Dept., K. J. Somaiya College Of Engineering, Mumbai. 3 S​ tudent, Startup School India, K. J. Somaiya College Of Engineering, Mumbai. ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Self Driving Car technology is a vehicle that Convolutional Neural Networks as they are made up of ​ guides itself without human conduction. The first truly neurons that have learnable weights and biases are similar autonomous cars appeared in the 1980s with projects to ordinary Neural Networks. [1] Each neuron receives funded by DARPA( Defense Advance Research Project some inputs, performs a dot product and optionally Agency ). Since then a lot has changed with the follows it with a non-linearity activation function. The improvements in the fields of Computer Vision and Machine overall functionality of the network is like having an image Learning. We have used the concept of behavioral cloning to on one end and class as an output on the other end. They convert a normal RC model car into an autonomous car still have a loss function like Logarithmic loss/ Softmax on using Deep Learning technology. the last (fully-connected) layer and all ideas developed for learning regular Neural Networks still apply. In simple Key Words: Self Driving Car, Behavioral Cloning. Deep words, images are sent to the input side and the output ​ Learning, Convolutional Neural Networks, Raspberry Pi, side to classify them into classes based on a probability Radio-controlled (RC) car score, whether the input image applied is a cat or a dog or a rat and so on.
    [Show full text]