Transcriptional Poising Prior to the Midblastula Transition Underlies Dorsal Cell Fate Specification Yb the Wnt/Beta-Catenin Pathway

Total Page:16

File Type:pdf, Size:1020Kb

Transcriptional Poising Prior to the Midblastula Transition Underlies Dorsal Cell Fate Specification Yb the Wnt/Beta-Catenin Pathway University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Fall 2009 Transcriptional Poising Prior to the Midblastula Transition Underlies Dorsal Cell Fate Specification yb the Wnt/Beta-Catenin Pathway Shelby A. Blythe University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Developmental Biology Commons Recommended Citation Blythe, Shelby A., "Transcriptional Poising Prior to the Midblastula Transition Underlies Dorsal Cell Fate Specification by the Wnt/Beta-Catenin Pathway" (2009). Publicly Accessible Penn Dissertations. 242. https://repository.upenn.edu/edissertations/242 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/242 For more information, please contact [email protected]. Transcriptional Poising Prior to the Midblastula Transition Underlies Dorsal Cell Fate Specification yb the Wnt/Beta-Catenin Pathway Abstract Following fertilization in many multicellular organisms, zygotic transcription is suppressed for several hours and cell divisions, until a major embryonic transition termed the midblastula transition (MBT). Nevertheless, steps critical for later patterning of the embryo occur during this early stage. To address this question, we have optimized the chromatin immunoprecipitation technique to allow the investigation of pre-MBT chromatin architecture. We find that, in the context of transcriptional quiescence before the MBT in Xenopus, Wnt signaling through β-catenin primes dorsal gene expression by establishing transcriptionally poised chromatin architecture at target promoters. This is later resolved into active gene expression following the large-scale activation of zygotic transcription at the MBT. During pre-MBT dorsal specification, β-catenin interacts with a histone H3 methyltransferase activity that targets arginine 8 (R8). Recruitment of the arginine methyltransferase Prmt2 to β-catenin target promoters is necessary and sufficiento t establish the dorsal developmental program, indicating that Prmt2-mediated histone H3R8 methylation plays a critical role downstream of β-catenin in establishing poised chromatin architecture and marking key organizer genes for later expression. This work demonstrates a mechanism whereby a signal transduction pathway can establish poised chromatin architecture at target genes, which could have implications for the regulation of gene regulatory networks during development. Additionally, our results suggest the possibility that transcriptional poising plays a broader role in maintaining zygotic genome silencing before the MBT. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Cell & Molecular Biology First Advisor Peter S. Klein Keywords Wnt Signaling, Embryogenesis, Chromatin, Histone Methylation, Transcriptional Poising Subject Categories Developmental Biology This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/242 Acknowledgments I am grateful to Peter Klein for providing an intellectually challenging and stimulating lab, and for allowing me to pursue the idea that became this dissertation. I am also grateful to my thesis committee for being patient and extremely supportive of my project, even at times when things looked difficult. Everyone’s encouragement to follow the work through made it possible for me to get this story together. I am also grateful to the members of the Klein lab for providing a lively and enjoyable place to be a student. And, of course, none of this would have been very easy or enjoyable without the support of my friends and family. I also acknowledge former lab member Dr. Mahmoud Najafi for initially generating the N-β- catenin antibody and Dr. Said Sif of Ohio State University for sharing his anti-H3R8me2s antiserum. During development of the ChIP protocol, I also appreciated the contributions of Christine Reid and Dan Kessler, whose ability to successfully perform the procedure and obtain nice reproducible results gave me confidence that the protocol was good. Finally, I am grateful for the intellectual and financial support of the Cell and Molecular Biology graduate group and the Department of Cell and Developmental Biology. This work was supported by both the C&MB and Dev. Biol. training grants, as well as an NIH grant to Peter Klein. ii ABSTRACT TRANSCRIPTIONAL POISING PRIOR TO THE MIDBLASTULA TRANSITION UNDERLIES DORSAL CELL FATE SPECIFICATION BY THE WNT/β-CATENIN PATHWAY Shelby A. Blythe Peter S. Klein Following fertilization in many multicellular organisms, zygotic transcription is suppressed for several hours and cell divisions, until a major embryonic transition termed the midblastula transition (MBT). Nevertheless, steps critical for later patterning of the embryo occur during this early stage. To address this question, we have optimized the chromatin immunoprecipitation technique to allow the investigation of pre-MBT chromatin architecture. We find that, in the context of transcriptional quiescence before the MBT in Xenopus, Wnt signaling through β- catenin primes dorsal gene expression by establishing transcriptionally poised chromatin architecture at target promoters. This is later resolved into active gene expression following the large-scale activation of zygotic transcription at the MBT. During pre-MBT dorsal specification, β- catenin interacts with a histone H3 methyltransferase activity that targets arginine 8 (R8). Recruitment of the arginine methyltransferase Prmt2 to β-catenin target promoters is necessary and sufficient to establish the dorsal developmental program, indicating that Prmt2-mediated histone H3R8 methylation plays a critical role downstream of β-catenin in establishing poised chromatin architecture and marking key organizer genes for later expression. This work demonstrates a mechanism whereby a signal transduction pathway can establish poised chromatin architecture at target genes, which could have implications for the regulation of gene regulatory networks during development. Additionally, our results suggest the possibility that transcriptional poising plays a broader role in maintaining zygotic genome silencing before the MBT. iii Table of Contents Title......................................................................................................................... i Acknowledgments ................................................................................................. ii Abstract ................................................................................................................ iii List of Figures ....................................................................................................... vi Chapter 1: Introduction ..........................................................................................1 1.1: Summary 1 1.2: The Midblastula Transition 2 1.2.1: Two Developmental Timers 4 1.3: Transcriptional Control Before the MBT 6 1.3.1: Suppression of Basal Transcription in pre-MBT Embryos 8 1.3.2: Counteracting Trans-Activator Function 9 1.3.3: Heritability of Active Chromatin Structure Before the MBT 12 1.4: Transcriptional Poising 14 1.5: Dorsal Specification by the Maternal Wnt/β-catenin Pathway 18 1.6: Research Summary 22 Chapter 2: Chromatin Immunoprecipitation in Early Xenopus laevis Embryos ...24 2.1: Introduction 24 2.2: Results and Discussion 27 2.2.1: Crosslinking Optimization 28 2.2.2: General Sonication Guidelines 32 2.2.3: Shearing Optimization 32 2.2.4: Chromatin Immunoprecipitation in Blastula Stage Embryos 33 2.2.5: Controls for Antibody Specificity 37 2.2.6: Quantitative PCR Analysis 41 2.2.7: Further Considerations 45 2.2.8: Concluding Remarks 49 2.3: Experimental Procedures 49 2.3.1: ChIP Protocol 50 2.3.2: PCR 60 2.3.3: Cloning of Additional Xnr6 Genomic Sequence 64 2.3.4: Western Blotting 64 2.3.5: Antibodies 65 iv Chapter 3: β-catenin Primes Organizer Gene Expression By Recruiting a Histone H3 Arginine Methyltransferase, Prmt2......................................................66 3.1: Introduction 66 3.2: Results 69 3.2.1: β-catenin Establishes Poised Chromatin Architecture at Target Promoters Before the Midblastula Transition 73 3.2.2: β-catenin Associates with a Histone H3 (R8) Methyltransferase Activity in early Xenopus Embryos 79 3.2.3: β-catenin Recruits the Arginine Methyltransferase Prmt2 to Target Loci 89 3.2.4: Directing Prmt2 to β-catenin Target Promoters Is Sufficient to Drive Dorsal Specification in the Absence of β-catenin. 95 3.2.5: Prmt2 Is Necessary for Dorsal Specification and for Conferring Resistance to ΔNTcf3 Before the MBT. 99 3.3: Discussion 106 3.3.1: H3R8 Methylation and the Histone Code 106 3.3.2: Pre-Setting Patterns of Gene Expression in the Embryo 108 3.3.3: Context-Dependent Chromatin Modifying Activities for β-catenin? 110 Chapter 4: Conclusions and Future Directions..................................................112 4.1: Accounting for pre-MBT β-catenin Activity: Prmt2 Function 112 4.1.1: The H3R8me2 “Reader”/ H3K4me3 “Writer” Hypothesis 113 4.1.2: The H3R8me2 “Lock” Hypothesis 115 4.1.3: The H3R8 / H3K9 Competition Hypothesis 119 4.1.4: Concluding Remarks: The Function of H3R8 Methylation at β-catenin Target Genes Before the MBT 124 4.2: Poised Chromatin Architecture 125 4.2.1: β-catenin, H3K4me3, and ISWI: A Potential Regulatory Node in Poised Chromatin Architecture? 128 4.3: Transcriptional Poising and Cell Fate Determination 134 4.3.1: p-TEFb Before the MBT, A Clue From Primordial
Recommended publications
  • Kaiso Is a Genome-Wide Repressor of Transcription That Is Essential for Amphibian Development Alexey Ruzov1,2,3,*, Donncha S
    Research article 6185 Kaiso is a genome-wide repressor of transcription that is essential for amphibian development Alexey Ruzov1,2,3,*, Donncha S. Dunican1,3,*, Anna Prokhortchouk2, Sari Pennings1, Irina Stancheva1, Egor Prokhortchouk2 and Richard R. Meehan1,3,† 1Department of Biomedical Sciences, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK 2Institute of Gene Biology, Russian Academy of Sciences, Vavilova 34/5, Moscow, 119334, Russian Federation 3Human Genetics Unit, MRC, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK *These authors contributed equally to this work †Author for correspondence (e-mail: [email protected]) Accepted 28 October 2004 Development 131, 6185-6194 Published by The Company of Biologists 2004 doi:10.1242/dev.01549 Summary DNA methylation in animals is thought to repress expression occurs before the mid-blastula transition transcription via methyl-CpG specific binding proteins, (MBT). Subsequent phenotypes (developmental arrest which recruit enzymatic machinery promoting the and apoptosis) strongly resemble those observed for formation of inactive chromatin at targeted loci. Loss of hypomethylated embryos. Injection of wild-type human DNA methylation can result in the activation of normally kaiso mRNA can rescue the phenotype and associated gene silent genes during mouse and amphibian development. expression changes of xKaiso-depleted embryos. Our Paradoxically, global changes in gene expression have not results, including gene expression profiling, are consistent been observed in mice that are null for the methyl-CpG with an essential role for xKaiso as a global repressor of specific repressors MeCP2, MBD1 or MBD2. Here, we methylated genes during early vertebrate development.
    [Show full text]
  • Stages of Embryonic Development of the Zebrafish
    DEVELOPMENTAL DYNAMICS 2032553’10 (1995) Stages of Embryonic Development of the Zebrafish CHARLES B. KIMMEL, WILLIAM W. BALLARD, SETH R. KIMMEL, BONNIE ULLMANN, AND THOMAS F. SCHILLING Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254 (C.B.K., S.R.K., B.U., T.F.S.); Department of Biology, Dartmouth College, Hanover, NH 03755 (W.W.B.) ABSTRACT We describe a series of stages for Segmentation Period (10-24 h) 274 development of the embryo of the zebrafish, Danio (Brachydanio) rerio. We define seven broad peri- Pharyngula Period (24-48 h) 285 ods of embryogenesis-the zygote, cleavage, blas- Hatching Period (48-72 h) 298 tula, gastrula, segmentation, pharyngula, and hatching periods. These divisions highlight the Early Larval Period 303 changing spectrum of major developmental pro- Acknowledgments 303 cesses that occur during the first 3 days after fer- tilization, and we review some of what is known Glossary 303 about morphogenesis and other significant events that occur during each of the periods. Stages sub- References 309 divide the periods. Stages are named, not num- INTRODUCTION bered as in most other series, providing for flexi- A staging series is a tool that provides accuracy in bility and continued evolution of the staging series developmental studies. This is because different em- as we learn more about development in this spe- bryos, even together within a single clutch, develop at cies. The stages, and their names, are based on slightly different rates. We have seen asynchrony ap- morphological features, generally readily identi- pearing in the development of zebrafish, Danio fied by examination of the live embryo with the (Brachydanio) rerio, embryos fertilized simultaneously dissecting stereomicroscope.
    [Show full text]
  • Competition Between Histone and Transcription Factor Binding Regulates the Onset of Transcription in Zebrafish Embryos
    1 Competition between histone and transcription factor binding regulates the 2 onset of transcription in zebrafish embryos 3 4 Shai R. Joseph1, Máté Pálfy1, Lennart Hilbert1,2,3, Mukesh Kumar1, Jens Karschau3, 5 Vasily Zaburdaev2,3, Andrej Shevchenko1, and Nadine L. Vastenhouw1# 6 7 1Max Planck Institute of Molecular Cell Biology and Genetics, 2Center for Systems 8 Biology Dresden, Pfotenhauerstraße 108, D-01307 Dresden, Germany, 3Max Planck 9 Institute for the Physics of Complex Systems, Nöthnitzerstraße 38, D-01187 Dresden, 10 Germany #Corresponding author 11 12 Email: [email protected] 13 1 14 SUMMARY 15 Upon fertilization, the genome of animal embryos remains transcriptionally inactive until 16 the maternal-to-zygotic transition. At this time, the embryo takes control of its 17 development and transcription begins. How the onset of zygotic transcription is regulated 18 remains unclear. Here, we show that a dynamic competition for DNA binding between 19 nucleosome-forming histones and transcription factors regulates zebrafish genome 20 activation. Taking a quantitative approach, we found that the concentration of non-DNA 21 bound core histones sets the time for the onset of transcription. The reduction in nuclear 22 histone concentration that coincides with genome activation does not affect nucleosome 23 density on DNA, but allows transcription factors to compete successfully for DNA 24 binding. In agreement with this, transcription factor binding is sensitive to histone levels 25 and the concentration of transcription factors also affects the time of transcription. Our 26 results demonstrate that the relative levels of histones and transcription factors regulate 27 the onset of transcription in the embryo.
    [Show full text]
  • Vertebrate Embryonic Cleavage Pattern Determination
    Chapter 4 Vertebrate Embryonic Cleavage Pattern Determination Andrew Hasley, Shawn Chavez, Michael Danilchik, Martin Wühr, and Francisco Pelegri Abstract The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate develop- ment. This chapter describes the early cleavage stages for species representing ray- finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these pat- terns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orien- tation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early devel- opment, as well as cytoskeletal specializations specific to early blastomeres A. Hasley • F. Pelegri (*) Laboratory of Genetics, University of Wisconsin—Madison, Genetics/Biotech Addition, Room 2424, 425-G Henry Mall, Madison, WI 53706, USA e-mail: [email protected] S. Chavez Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Physiology & Pharmacology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Obstetrics & Gynecology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA M.
    [Show full text]
  • Rapid Embryonic Cell Cycles Defer the Establishment of Heterochromatin by Eggless/Setdb1 in Drosophila
    Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Rapid embryonic cell cycles defer the establishment of heterochromatin by Eggless/SetDB1 in Drosophila Charles A. Seller, Chun-Yi Cho, and Patrick H. O’Farrell Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143, USA Acquisition of chromatin modifications during embryogenesis distinguishes different regions of an initially naïve genome. In many organisms, repetitive DNA is packaged into constitutive heterochromatin that is marked by di/ trimethylation of histone H3K9 and the associated protein HP1a. These modifications enforce the unique epigenetic properties of heterochromatin. However, in the early Drosophila melanogaster embryo, the heterochromatin lacks these modifications, which appear only later, when rapid embryonic cell cycles slow down at the midblastula transition (MBT). Here we focus on the initial steps restoring heterochromatic modifications in the embryo. We describe the JabbaTrap, a technique for inactivating maternally provided proteins in embryos. Using the JabbaTrap, we reveal a major requirement for the methyltransferase Eggless/SetDB1 in the establishment of heterochromatin. In contrast, other methyltransferases contribute minimally. Live imaging reveals that endogenous Eggless gradually accumulates on chromatin in interphase but then dissociates in mitosis, and its accumulation must restart in the next cell cycle. Cell cycle slowing as the embryo approaches the MBT permits increasing accumulation and action of Eggless at its targets. Experimental manipulation of interphase duration shows that cell cycle speed regulates Egg- less. We propose that developmental slowing of the cell cycle times embryonic heterochromatin formation. [Keywords: cell cycle; development; embryo; heterochromatin] Supplemental material is available for this article.
    [Show full text]
  • 1 Cytoplasmic Volume and Limiting Nucleoplasmin Scale Nuclear Size During Xenopus Laevis Development Pan Chen1, Miroslav Tomschi
    bioRxiv preprint doi: https://doi.org/10.1101/511451; this version posted January 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Cytoplasmic volume and limiting nucleoplasmin scale nuclear size during Xenopus laevis development Pan Chen1, Miroslav Tomschik1, Katherine Nelson1,2, John Oakey2, J. C. Gatlin1, Daniel L. Levy1,* 1 Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071 2 Department of Chemical Engineering, University of Wyoming, Laramie, WY, 82071 *Corresponding author and lead contact: Daniel L. Levy University of Wyoming Department of Molecular Biology 1000 E. University Avenue Laramie, WY, 82071 Phone: 307-766-4806 Fax: 307-766-5098 E-mail: [email protected] Running Head: Nucleoplasmin scales Xenopus nuclear size Abbreviations: NE, nuclear envelope; NPC, nuclear pore complex; ER, endoplasmic reticulum; NLS, nuclear localization signal; PKC, protein kinase C; CS, cross-sectional; N/C, nuclear-to-cytoplasmic; MBT, midblastula transition; Npm2, nucleoplasmin 1 bioRxiv preprint doi: https://doi.org/10.1101/511451; this version posted January 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. SUMMARY How nuclear size is regulated relative to cell size is a fundamental cell biological question. Reductions in both cell and nuclear sizes during Xenopus laevis embryogenesis provide a robust scaling system to study mechanisms of nuclear size regulation.
    [Show full text]
  • Emergence of the Subapical Domain Is Associated with the Midblastula
    bioRxiv preprint doi: https://doi.org/10.1101/713719; this version posted July 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Emergence of the subapical domain is associated with the midblastula 2 transition 3 Anja Schmidt (2), Jörg Großhans (1,2) 4 (1) Professur für Entwicklungsgenetik, Fachbereich Biologie, Philipps-Universität 5 Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany 6 (2) Institut für Entwicklungsbiochemie, Universitätsmedizin, Georg-August- 7 Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany 8 Key words: cortical domains, epithelial domains, subapical, Canoe, midblastula 9 transition, zygotic genome activation 10 Abstract 11 Epithelial domains and cell polarity are determined by polarity proteins which are 12 associated with the cell cortex in a spatially restricted pattern. Early Drosophila 13 embryos are characterized by a stereotypic dynamic and de novo formation of cortical 14 domains. For example, the subapical domain emerges at the transition from syncytial 15 to cellular development during the first few minutes of interphase 14. The dynamics 16 in cortical patterning is revealed by the subapical markers Canoe/Afadin and ELMO- 17 Sponge, which widely distributed in interphase 13 but subapically restricted in 18 interphase 14. The factors and mechanism determining the timing for the emergence 19 of the subapical domain have been unknown. In this study, we show, that the restricted 20 localization of subapical markers depends on the onset of zygotic gene expression.
    [Show full text]
  • Genome Wide Decrease of DNA Replication Eye Density at the Midblastula Transition of Xenopus Laevis
    Genome wide decrease of DNA replication eye density at the midblastula transition of Xenopus laevis Marie Platel, Hemalatha Narassimprakash, Diletta Ciardo, Olivier Haccard, Kathrin Marheineke To cite this version: Marie Platel, Hemalatha Narassimprakash, Diletta Ciardo, Olivier Haccard, Kathrin Marheineke. Genome wide decrease of DNA replication eye density at the midblastula transition of Xenopus laevis. Cell Cycle, Taylor & Francis, 2019, 18 (13), pp.1458-1472. 10.1080/15384101.2019.1618641. hal- 02143721 HAL Id: hal-02143721 https://hal.archives-ouvertes.fr/hal-02143721 Submitted on 10 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Genome wide decrease of DNA replication eye density at the midblastula transition of Xenopus laevis Marie Platel1, Hemalatha Narassimprakash1, Diletta Ciardo 1, Olivier Haccard1, Kathrin Marheineke 1* 1Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris‐Sud, University Paris‐Saclay, Gif‐sur‐Yvette, France *corresponding author E-mail: [email protected] Key words: S-phase, DNA replication, replication origins, midblastula transition (MBT), Xenopus laevis, DNA combing 1 Abstract During the first rapid divisions of early development in many species, the DNA:cytoplasm ratio increases until the midblastula transition (MBT) when transcription resumes and cell cycles lengthen.
    [Show full text]
  • Early Embryonic Development in Pikeperch (Sander Lucioperca) Related to Micromanipulation
    Czech J. Anim. Sci., 61, 2016 (6): 273–280 Original Paper doi: 10.17221/35/2015-CJAS Early embryonic development in pikeperch (Sander lucioperca) related to micromanipulation H. Güralp, K. Pocherniaieva, M. Blecha, T. Policar, M. Pšenička, T. Saito South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic ABSTRACT: Recently, transplantation of germ cells has attracted attention as a potential technique for effi- cient reproduction of fish. One of the well-proven techniques to deliver donor germ cells into a recipient is the transplantation of primordial germ cells (PGCs) during the blastula stage. Nevertheless, the application of such techniques so far has been limited to model fish species such as zebrafish, due to the lack of information about early development in many fish species. We propose that pikeperch (Sander lucioperca) can be a useful model species for establishing this technique in the order Perciformes, which includes commercially and ecologi- cally important marine species. In this study, we described the important events, namely, embryonic staging, yolk syncytial layer (YSL) formation, and midblastula transition (MBT) during the blastula stage in pikeperch to obtain basic information about early embryonic development. The chorion was softened by treating with 0.2% trypsin and 0.4% urea in Ringer’s solution so as to remove it easily by forceps. Although the first cleavage occurred at about 2.5 h post fertilization, blastomeres divided approximately every one hour after this at 15°C. The YSL was formed after the breakdown of marginal cells during the 512- to 1k-cell stage.
    [Show full text]
  • Link of Zygotic Genome Activation and Cell Cycle Control
    Chapter 2 Link of Zygotic Genome Activation and Cell Cycle Control Boyang Liu and Jörg Grosshans Abstract The activation of the zygotic genome and onset of transcription in blastula embryos is linked to changes in cell behavior and remodeling of the cell cycle and constitutes a transition from exclusive maternal to zygotic control of development. This step in development is referred to as mid-blastula transition and has served as a paradigm for the link between developmental program and cell behavior and morphology. Here, we discuss the mechanism and functional relationships between the zygotic genome activation and cell cycle control during mid-blastula transition with a focus on Drosophila embryos. Key words Cell cycle, Mid-blastula transition, Zygotic genome activation 1 Introduction In most animals, from nematodes to chordates, embryogenesis starts with a series of rapid cleavage cell cycles after fertilization. These fast divisions lead to an exponentially increasing number of cells without an accompanied growth of the embryo. After a species- specific number of divisions, the cell cycle slows down and finally enters a pause. Subsequently, the embryo enters gastrulation with its characteristic morphogenetic movements, loss of symmetry, and cell type-specific differentiation. Mammalian embryogenesis is spe- cial in that it begins with differentiation of inner cell mass (ICM) and trophoblast, and the fast embryonic cleavage cycles eventually arise at late blastocyst stage [1–3]. Maternally supplied materials, including proteins, RNAs, and conceivably also metabolites con- tribute to the initial developmental processes. Maternal products exclusively control development during this first period, as the zygotic genome starts expression only with a delay after fertiliza- tion.
    [Show full text]
  • Transgenerational Epigenetic Inheritance TOP ARTICLES SUPPLEMENT
    Transgenerational Epigenetic Inheritance TOP ARTICLES SUPPLEMENT CONTENTS EDITORIAL:: Epigenetics: where environment, society and genetics meet Epigenomics Vol. 6 Issue 1 REVIEW: Transgenerational epigenetic inheritance: adaption through the germline epigenome? Epigenomics Vol. 7 Issue 5 PERSPECTIVE: Transgenerational epigenetic inheritance: an open dicussion Epigenomics Vol. 7 Issue 5 Editorial Editorial Epigenetics: where environment, society and genetics meet “The goal is to use epigenetics to anticipate health in the individual and, more importantly, the population. Before this can be done, several challenges must be faced.” Keywords: environment • epigenetics • noncoding RNA • socioeconomic status • transgenerational epigenetic inheritance Understanding how environment, social fac- with environmental chemical exposure [3], tors and genetics combine to affect patterns race, gender [4] and income level [5]. How- of health is an urgent priority. Social factors ever, epigenetic gene regulation is bigger than that affect health patterns include race and methylation alone. socioeconomic status (SES), while biological Human and animal studies have begun factors include sex, genetics and epigenetics. to investigate environmental effects on epi- The consequence of biology and environ- genetics. While these publications are increas- ment can be observed in life expectancy ing, some factors need to be considered, these Amber V Majnik data. At 25 years old, life expectancy for include tissue specificity, epigenetic specific- Author for correspondence:
    [Show full text]
  • Midblastula Transition During Xenopus Embryogenesis JOHN A
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 2060-2064, March 1996 Developmental Biology A developmental timer regulates degradation of cyclin El at the midblastula transition during Xenopus embryogenesis JOHN A. HOWE AND JOHN W. NEWPORT* Department of Biology, University of California, San Diego, La Jolla, CA 92093-0347 Communicated by John Gerhart, University of California, Berkeley, CA, November 28, 1995 (received for review August 14, 1995) ABSTRACT We have analyzed cyclin El, a protein that is ulation of cell cycle control molecules. InXenopus, fertilization essential for the G1/S transition, during early development in is followed by a stage of rapid cellularization during which the Xenopus embryos. Cyclin El was found to be abundant in eggs, egg divides synchronously 12 times in 6 hr. These early cell and after fertilization, until the midblastula transition (MBT) cycles are biphasic, consisting only of S and M phases that last when levels of cyclin El protein, and associated kinase - 15 min each. After the 12th cleavage division, embryos go activity, were found to decline precipitously. Our results through the midblastula transition (MBT). At this time zygotic suggest that the reduced level ofthe cyclin El protein detected transcription is initiated and the cell cycle elongates (17, 18). after the MBT does not occur indirectly as a result of The first two cell cycles immediately following the MBT are El mRNA. longer (50 and 100 min, respectively) most likely due to an degradation of the maternally encoded cyclin expansion in the length of S phase (19). The third cell cycle Instead, the stability of cyclin El protein appears to play a after the MBT is the first that is substantially expanded, with major role in reduction of cyclin El levels at this time.
    [Show full text]