Epigenetics and Inheritance of Phenotype Variation in Livestock Kostas A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ESRRB Regulates Glucocorticoid Gene Expression in Mice and Patients with Acute Lymphoblastic Leukemia
University of Massachusetts Medical School eScholarship@UMMS Open Access Articles Open Access Publications by UMMS Authors 2020-07-13 ESRRB regulates glucocorticoid gene expression in mice and patients with acute lymphoblastic leukemia Kayleigh M. Gallagher University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Cancer Biology Commons, and the Neoplasms Commons Repository Citation Gallagher KM, Roderick JE, Tan SH, Tan TK, Murphy L, Yu J, Li R, O'Connor K, Zhu LJ, Green MR, Sanda T, Kelliher MA. (2020). ESRRB regulates glucocorticoid gene expression in mice and patients with acute lymphoblastic leukemia. Open Access Articles. https://doi.org/10.1182/bloodadvances.2020001555. Retrieved from https://escholarship.umassmed.edu/oapubs/4285 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. REGULAR ARTICLE ESRRB regulates glucocorticoid gene expression in mice and patients with acute lymphoblastic leukemia Downloaded from https://ashpublications.org/bloodadvances/article-pdf/4/13/3154/1748491/advancesadv2020001555.pdf by UNIV OF MASSACHUSETTS user on 10 August 2020 Kayleigh M. Gallagher,1 Justine E. Roderick,1 Shi Hao Tan,2 Tze King Tan,2 Leonard Murphy,1 Jun Yu,1 Rui Li,1 Kevin W. O’Connor,1 Julie Zhu,1 Michael R. Green,1 Takaomi Sanda,2 and Michelle A. Kelliher1 1Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and 2Cancer Science Institute of Singapore, Center of Translational Medicine, Singapore Synthetic glucocorticoids (GCs), such as dexamethasone and prednisone, remain key Key Points components of therapy for patients with lymphoid malignancies. -
Identification of GA-Binding Protein Transcription Factor Alpha Subunit
International Journal of Molecular Sciences Article Identification of GA-Binding Protein Transcription Factor Alpha Subunit (GABPA) as a Novel Bookmarking Factor Shunya Goto 1, Masashi Takahashi 1, Narumi Yasutsune 1, Sumiki Inayama 1, Dai Kato 2, Masashi Fukuoka 3, Shu-ichiro Kashiwaba 1 and Yasufumi Murakami 1,2,* 1 Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; [email protected] (S.G.); [email protected] (M.T.); [email protected] (N.Y.); [email protected] (S.I.); [email protected] (S.K.) 2 Order-MadeMedical Research Inc., 208Todai-Kashiwa VP, 5-4-19 Kashiwanoha, Kashiwa-shi, Chiba-ken 277-0882, Japan; [email protected] 3 Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-3-5876-1717 (ext. 1919); Fax: +81-3-5876-1470 Received: 7 February 2019; Accepted: 27 February 2019; Published: 4 March 2019 Abstract: Mitotic bookmarking constitutes a mechanism for transmitting transcriptional patterns through cell division. Bookmarking factors, comprising a subset of transcription factors (TFs), and multiple histone modifications retained in mitotic chromatin facilitate reactivation of transcription in the early G1 phase. However, the specific TFs that act as bookmarking factors remain largely unknown. Previously, we identified the “early G1 genes” and screened TFs that were predicted to bind to the upstream region of these genes, then identified GA-binding protein transcription factor alpha subunit (GABPA) and Sp1 transcription factor (SP1) as candidate bookmarking factors. -
Kaiso Is a Genome-Wide Repressor of Transcription That Is Essential for Amphibian Development Alexey Ruzov1,2,3,*, Donncha S
Research article 6185 Kaiso is a genome-wide repressor of transcription that is essential for amphibian development Alexey Ruzov1,2,3,*, Donncha S. Dunican1,3,*, Anna Prokhortchouk2, Sari Pennings1, Irina Stancheva1, Egor Prokhortchouk2 and Richard R. Meehan1,3,† 1Department of Biomedical Sciences, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK 2Institute of Gene Biology, Russian Academy of Sciences, Vavilova 34/5, Moscow, 119334, Russian Federation 3Human Genetics Unit, MRC, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK *These authors contributed equally to this work †Author for correspondence (e-mail: [email protected]) Accepted 28 October 2004 Development 131, 6185-6194 Published by The Company of Biologists 2004 doi:10.1242/dev.01549 Summary DNA methylation in animals is thought to repress expression occurs before the mid-blastula transition transcription via methyl-CpG specific binding proteins, (MBT). Subsequent phenotypes (developmental arrest which recruit enzymatic machinery promoting the and apoptosis) strongly resemble those observed for formation of inactive chromatin at targeted loci. Loss of hypomethylated embryos. Injection of wild-type human DNA methylation can result in the activation of normally kaiso mRNA can rescue the phenotype and associated gene silent genes during mouse and amphibian development. expression changes of xKaiso-depleted embryos. Our Paradoxically, global changes in gene expression have not results, including gene expression profiling, are consistent been observed in mice that are null for the methyl-CpG with an essential role for xKaiso as a global repressor of specific repressors MeCP2, MBD1 or MBD2. Here, we methylated genes during early vertebrate development. -
Chip Validated H4k5ac (Clone RM140) Antibody with Positive and Negative Primer Sets
www.chromatrap.com Clywedog Rd South Wrexham Industrial Estate Wrexham LL13 9XS, United Kingdom Tel: +44 (0) 1978 666239/40 Email: [email protected] ChIP Validated H4K5ac (Clone RM140) Antibody with Positive and Negative Primer Sets Catalogue no: 900029 Chromatrap®’s ChIP Validated H4K5ac Antibody with Positive Primer Set provides a complete set of tools to assist with a successful ChIP assay. Including: H4K5ac antibody, control rabbit IgG, and positive primer set. The ChIP Validated H4K5ac Antibody with Positive Primer Set is not suitable for use with non-human species. Background: Histone 4 (H4) is one of the five core histone proteins, comprising the protein component of chromatin. H4 is ubiquitous within chromosomes and can be found bound to most gene sequences throughout the genome. Acetylation of lysine 5 on histone 4 (H4K5ac) is associated with open chromatin and active gene transcription. H4K5ac has been shown to have roles in epigenetic bookmarking, a process where genetic information is passed onto daughter cells during cell division. A rabbit IgG is included in this Antibody Primer Set as a negative control for the ChIP experiment. The H4K5ac positive primer set recognises the promoter of the GAPDH gene, associated with active transcription and is a suitable target for this antibody. Suggested Usage: Component Suggested Dilution Figure H4K5ac 2:1 (antibody: chromatin) 1 Rabbit IgG 2:1 (antibody: chromatin) 1 Positive Primer Set Dilute from 4M (provided) to 1M working concentration Please note: Optimal dilutions should be determined by the user. These volumes are stated as guidelines only. Advancements in Epigenetics *This product is for research use only. -
Function of Bromodomain and Extra-Terminal Motif Proteins (Bets) in Gata1-Mediated Transcription
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2015 Function of Bromodomain and Extra-Terminal Motif Proteins (bets) in Gata1-Mediated Transcription Aaron James Stonestrom University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Molecular Biology Commons, and the Pharmacology Commons Recommended Citation Stonestrom, Aaron James, "Function of Bromodomain and Extra-Terminal Motif Proteins (bets) in Gata1-Mediated Transcription" (2015). Publicly Accessible Penn Dissertations. 1148. https://repository.upenn.edu/edissertations/1148 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1148 For more information, please contact [email protected]. Function of Bromodomain and Extra-Terminal Motif Proteins (bets) in Gata1-Mediated Transcription Abstract Bromodomain and Extra-Terminal motif proteins (BETs) associate with acetylated histones and transcription factors. While pharmacologic inhibition of this ubiquitous protein family is an emerging therapeutic approach for neoplastic and inflammatory disease, the mechanisms through which BETs act remain largely uncharacterized. Here we explore the role of BETs in the physiologically relevant context of erythropoiesis driven by the transcription factor GATA1. First, we characterize functions of the BET family as a whole using a pharmacologic approach. We find that BETs are broadly required for GATA1-mediated transcriptional activation, but that repression is largely BET-independent. BETs support activation by facilitating both GATA1 occupancy and transcription downstream of its binding. Second, we test the specific olesr of BETs BRD2, BRD3, and BRD4 in GATA1-activated transcription. BRD2 and BRD4 are required for efficient anscriptionaltr activation by GATA1. Despite co-localizing with the great majority of GATA1 binding sites, we find that BRD3 is not equirr ed for GATA1-mediated transcriptional activation. -
Gene Regulatory Networks
Gene Regulatory Networks 02-710 Computaonal Genomics Seyoung Kim Transcrip6on Factor Binding Transcrip6on Control • Gene transcrip.on is influenced by – Transcrip.on factor binding affinity for the regulatory regions of target genes – Transcrip.on factor concentraon – Nucleosome posi.oning and chroman states – Enhancer ac.vity Gene Transcrip6onal Regulatory Network • The expression of a gene is controlled by cis and trans regulatory elements – Cis regulatory elements: DNA sequences in the regulatory region of the gene (e.g., TF binding sites) – Trans regulatory elements: RNAs and proteins that interact with the cis regulatory elements Gene Transcrip6onal Regulatory Network • Consider the following regulatory relaonships: Target gene1 Target TF gene2 Target gene3 Cis/Trans Regulatory Elements Binding site: cis Target TF regulatory element TF binding affinity gene1 can influence the TF target gene Target gene2 expression Target TF gene3 TF: trans regulatory element TF concentra6on TF can influence the target gene TF expression Gene Transcrip6onal Regulatory Network • Cis and trans regulatory elements form a complex transcrip.onal regulatory network – Each trans regulatory element (proteins/RNAs) can regulate mul.ple target genes – Cis regulatory modules (CRMs) • Mul.ple different regulators need to be recruited to ini.ate the transcrip.on of a gene • The DNA binding sites of those regulators are clustered in the regulatory region of a gene and form a CRM How Can We Learn Transcriponal Networks? • Leverage allele specific expressions – In diploid organisms, the transcript levels from the two copies of the genes may be different – RNA-seq can capture allele- specific transcript levels How Can We Learn Transcriponal Networks? • Leverage allele specific gene expressions – Teasing out cis/trans regulatory divergence between two species (WiZkopp et al. -
Stages of Embryonic Development of the Zebrafish
DEVELOPMENTAL DYNAMICS 2032553’10 (1995) Stages of Embryonic Development of the Zebrafish CHARLES B. KIMMEL, WILLIAM W. BALLARD, SETH R. KIMMEL, BONNIE ULLMANN, AND THOMAS F. SCHILLING Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254 (C.B.K., S.R.K., B.U., T.F.S.); Department of Biology, Dartmouth College, Hanover, NH 03755 (W.W.B.) ABSTRACT We describe a series of stages for Segmentation Period (10-24 h) 274 development of the embryo of the zebrafish, Danio (Brachydanio) rerio. We define seven broad peri- Pharyngula Period (24-48 h) 285 ods of embryogenesis-the zygote, cleavage, blas- Hatching Period (48-72 h) 298 tula, gastrula, segmentation, pharyngula, and hatching periods. These divisions highlight the Early Larval Period 303 changing spectrum of major developmental pro- Acknowledgments 303 cesses that occur during the first 3 days after fer- tilization, and we review some of what is known Glossary 303 about morphogenesis and other significant events that occur during each of the periods. Stages sub- References 309 divide the periods. Stages are named, not num- INTRODUCTION bered as in most other series, providing for flexi- A staging series is a tool that provides accuracy in bility and continued evolution of the staging series developmental studies. This is because different em- as we learn more about development in this spe- bryos, even together within a single clutch, develop at cies. The stages, and their names, are based on slightly different rates. We have seen asynchrony ap- morphological features, generally readily identi- pearing in the development of zebrafish, Danio fied by examination of the live embryo with the (Brachydanio) rerio, embryos fertilized simultaneously dissecting stereomicroscope. -
Competition Between Histone and Transcription Factor Binding Regulates the Onset of Transcription in Zebrafish Embryos
1 Competition between histone and transcription factor binding regulates the 2 onset of transcription in zebrafish embryos 3 4 Shai R. Joseph1, Máté Pálfy1, Lennart Hilbert1,2,3, Mukesh Kumar1, Jens Karschau3, 5 Vasily Zaburdaev2,3, Andrej Shevchenko1, and Nadine L. Vastenhouw1# 6 7 1Max Planck Institute of Molecular Cell Biology and Genetics, 2Center for Systems 8 Biology Dresden, Pfotenhauerstraße 108, D-01307 Dresden, Germany, 3Max Planck 9 Institute for the Physics of Complex Systems, Nöthnitzerstraße 38, D-01187 Dresden, 10 Germany #Corresponding author 11 12 Email: [email protected] 13 1 14 SUMMARY 15 Upon fertilization, the genome of animal embryos remains transcriptionally inactive until 16 the maternal-to-zygotic transition. At this time, the embryo takes control of its 17 development and transcription begins. How the onset of zygotic transcription is regulated 18 remains unclear. Here, we show that a dynamic competition for DNA binding between 19 nucleosome-forming histones and transcription factors regulates zebrafish genome 20 activation. Taking a quantitative approach, we found that the concentration of non-DNA 21 bound core histones sets the time for the onset of transcription. The reduction in nuclear 22 histone concentration that coincides with genome activation does not affect nucleosome 23 density on DNA, but allows transcription factors to compete successfully for DNA 24 binding. In agreement with this, transcription factor binding is sensitive to histone levels 25 and the concentration of transcription factors also affects the time of transcription. Our 26 results demonstrate that the relative levels of histones and transcription factors regulate 27 the onset of transcription in the embryo. -
Transvection in 2012: Site-Specific Transgenes Reveal a Plethora of Trans-Regulatory Effects
COMMENTARY Transvection in 2012: Site-Specific Transgenes Reveal a Plethora of Trans-Regulatory Effects Judith A. Kassis1 Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 In this commentary, Judith Kassis discusses Bateman et al., widespread in the Drosophila genome (Bateman et al. 2012; “Comparing Enhancer Action in cis and in trans” and Mellert Mellert and Truman 2012). and Truman “Transvection is Common Throughout the Dro- Both groups of researchers used the phi-C31 system to in- sophila Genome”, which are published in this issue of GENETICS. tegrate transgenes into specific genomic locations to look at the ability of one transgene to activate the expression of another, N Drosophila, homologous chromosomes are paired in so- greatly increasing our knowledge of trans-interactions and sug- Imatic cells (reviewed in McKee 2004), leading to the oppor- gesting many experiments for the future. However, beyond that, tunity for regulatory DNA on one chromosome to influence their approaches to studying transvection and the questions they the expression of a promoter located on the homologous addressed differ. Bateman et al. (2012) used recombination- chromosome (reviewed in Duncan 2002; Kennison and mediated cassette exchange (Bateman et al. 2006) to insert Southworth 2002). Such trans-regulatory interactions were a simple, defined enhancer, the GMR (which consists of five first reported by Ed Lewis (Lewis 1954) who found that binding sites for the eye transcriptional activator Glass) and allelic complementation between particular mutations within adefined promoter driving the expression of either GFP or the bithorax complex did not occur when the pairing of ho- mCherry into three different chromosomal insertion sites to ad- mologous chromosomes was disrupted. -
Spectrum of Mutations and Genotype ± Phenotype Analysis in Currarino Syndrome
European Journal of Human Genetics (2001) 9, 599 ± 605 ã 2001 Nature Publishing Group All rights reserved 1018-4813/01 $15.00 www.nature.com/ejhg ARTICLE Spectrum of mutations and genotype ± phenotype analysis in Currarino syndrome Joachim KoÈchling1, Mohsen Karbasiyan2 and Andre Reis*,2,3 1Department of Pediatric Oncology/Hematology, ChariteÂ, Humboldt University, Berlin, Germany; 2Institute of Human Genetics, ChariteÂ, Humboldt University, Berlin, Germany; 3Institute of Human Genetics, Friedrich- Alexander University Erlangen-NuÈrnberg, Erlangen, Germany The triad of a presacral tumour, sacral agenesis and anorectal malformation constitutes the Currarino syndrome which is caused by dorsal-ventral patterning defects during embryonic development. The syndrome occurs in the majority of patients as an autosomal dominant trait associated with mutations in the homeobox gene HLXB9 which encodes the nuclear protein HB9. However, genotype ± phenotype analyses have been performed only in a few families and there are no reports about the specific impact of HLXB9 mutations on HB9 function. We performed a mutational analysis in 72 individuals from nine families with Currarino syndrome. We identified a total of five HLXB9 mutations, four novel and one known mutation, in four out of four families and one out of five sporadic cases. Highly variable phenotypes and a low penetrance with half of all carriers being clinically asymptomatic were found in three families, whereas affected members of one family showed almost identical phenotypes. However, an obvious genotype ± phenotype correlation was not found. While HLXB9 mutations were diagnosed in 23 patients, no mutation or microdeletion was detected in four sporadic patients with Currarino syndrome. The distribution pattern of here and previously reported HLXB9 mutations indicates mutational predilection sites within exon 1 and the homeobox. -
Vertebrate Embryonic Cleavage Pattern Determination
Chapter 4 Vertebrate Embryonic Cleavage Pattern Determination Andrew Hasley, Shawn Chavez, Michael Danilchik, Martin Wühr, and Francisco Pelegri Abstract The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate develop- ment. This chapter describes the early cleavage stages for species representing ray- finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these pat- terns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orien- tation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early devel- opment, as well as cytoskeletal specializations specific to early blastomeres A. Hasley • F. Pelegri (*) Laboratory of Genetics, University of Wisconsin—Madison, Genetics/Biotech Addition, Room 2424, 425-G Henry Mall, Madison, WI 53706, USA e-mail: [email protected] S. Chavez Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Physiology & Pharmacology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Obstetrics & Gynecology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA M. -
Solutions for Practice Problems for Molecular Biology, Session 5
Solutions to Practice Problems for Molecular Biology, Session 5: Gene Regulation and the Lac Operon Question 1 a) How does lactose (allolactose) promote transcription of LacZ? 1) Lactose binds to the polymerase and increases efficiency. 2) Lactose binds to a repressor protein, and alters its conformation to prevent it from binding to the DNA and interfering with the binding of RNA polymerase. 3) Lactose binds to an activator protein, which can then help the RNA polymerase bind to the promoter and begin transcription. 4) Lactose prevents premature termination of transcription by directly binding to and bending the DNA. Solution: 2) Lactose binds to a repressor protein, and alters its conformation to prevent it from binding to the DNA and interfering with the binding of RNA polymerase. b) What molecule is used to signal low glucose levels to the Lac operon regulatory system? 1) Cyclic AMP 2) Calcium 3) Lactose 4) Pyruvate Solution: 1) Cyclic AMP. Question 2 You design a summer class where you recreate experiments studying the lac operon in E. coli (see schematic below). In your experiments, the activity of the enzyme b-galactosidase (β -gal) is measured by including X-gal and IPTG in the growth media. X-gal is a lactose analog that turns blue when metabolisize by b-gal, but it does not induce the lac operon. IPTG is an inducer of the lac operon but is not metabolized by b-gal. I O lacZ Plac Binding site for CAP Pi Gene encoding β-gal Promoter for activator protein Repressor (I) a) Which of the following would you expect to bind to β-galactosidase? Circle all that apply.