A Revised List of Euryhalin Fishes of North and Middle America
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fish and Mammals in the Economy of an Ancient Peruvian Kingdom
Proc. Natl. Acad. Sci. USA Vol. 96, pp. 6564–6570, May 1999 Anthropology This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected on April 29, 1997. Fish and mammals in the economy of an ancient Peruvian kingdom JOYCE MARCUS*, JEFFREY D. SOMMER, AND CHRISTOPHER P. GLEW Museum of Anthropology, 1109 Geddes Avenue, University of Michigan, Ann Arbor, MI 48109-1079 Contributed by Joyce Marcus, April 8, 1999 ABSTRACT Fish and mammal bones from the coastal Yunga and Chaupi Yunga site of Cerro Azul, Peru shed light on economic specialization just before the Inca conquest of A.D. 1470. The site devoted In Quechua, the language of the Inca, the Peruvian coast was itself to procuring anchovies and sardines in quantity for divided into yunga and chaupi yunga. The yunga, or coast shipment to agricultural communities. These small fish were proper, is an arid strip along the ocean, rarely extending inland dried, stored, and eventually transported inland via caravans more than 50 km. Beyond that point, it merges with the chaupi of pack llamas. Cerro Azul itself did not raise llamas but yunga, a piedmont zone at the base of the Andes. The chaupi obtained charqui (or dried meat) as well as occasional whole yunga is cut by stream canyons supporting trees, shrubs, and adult animals from the caravans. Guinea pigs were locally grasses that are rare to absent in the yunga. raised. Some 20 species of larger fish were caught by using In ancient times, one could hunt deer and guanaco in these nets; the more prestigious varieties of these show up mainly in piedmont canyons. -
Striped Bass
Can you tell the difference between a striped bass, a white bass and a striped bass hybrid? Anglers need to know the differences between these spe- cies because different sizes, seasons and creel limits apply to striped bass and striped bass hybrids, and to white bass. Knowing the differences between these species can also help you better understand Pennsylvania fishes and our wa- ters. These fish belong to the family Moronidae, temperate basses, also known as “true” basses. In Pennsylvania, this family also includes the white perch. Moronidae species are medium-sized to large-sized active predators and prized trophy and sport fishes. Some species live only in fresh water, while others are anadromous they spend much of their lives in salt water or brackish water but return to fresh water to spawn. Striped Bass Morone saxatilis Identification: The striped bass has a smoothly arched pro- file, slimmer and more streamlined than a striped bass hybrid, until it reaches a weight of five to 10 pounds, when its body becomes heavy-looking. The back is olive-green to steely blue- gray, sometimes almost black. The sides are silvery to pale rapidly and stay in brackish bays at the end of their downstream silvery-green, shading to white on the belly. There are seven float. Juveniles spend their first and second summers in the or eight distinct dark stripes that run laterally on the side of tidal Delaware River with most inhabitating that area from the the body. Striped bass have two dorsal fins, the front spiny- Schuylkill River downstream into the state of Delaware. -
Genetic Analysis of Whole Mitochondrial Genome of Lateolabrax Maculatus (Perciformes: Moronidae) Indicates the Presence of Two Populations Along the Chinese Coast
ZOOLOGIA 37: e49046 ISSN 1984-4689 (online) zoologia.pensoft.net RESEARCH ARTICLE Genetic analysis of whole mitochondrial genome of Lateolabrax maculatus (Perciformes: Moronidae) indicates the presence of two populations along the Chinese coast Jie Gong 1,2, Baohua Chen 1,2, Bijun Li 1, Zhixiong Zhou 1, Yue Shi 1, Qiaozhen Ke 1,3, Dianchang Zhang 4, Peng Xu 1,2,3 1Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University. 361000 Xiamen, China. 2Shenzhen Research Institute, Xiamen University. 518000 Shenzhen, China. 3State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited. 352130 Ningde, China. 4South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences. 510300 Guangzhou, China. Corresponding author: Peng Xu ([email protected]) http://zoobank.org/B5BBA46C-7FC5-44C3-B9CE-19F8E93FAA1C ABSTRACT. The whole mitochondrial genome of Lateolabrax maculatus (Cuvier, 1828) was used to investigate the reasons for the observed patterns of genetic differentiation among 12 populations in northern and southern China. The haplotype diversity and nucleotide diversity of L. maculatus were 0.998 and 0.00169, respectively. Pairwise FST values between popula- tions ranged from 0.001 to 0.429, correlating positively with geographic distance. Genetic structure analysis and haplotype network analysis indicated that these populations were split into two groups, in agreement with geographic segregation and environment. Tajima’s D values, Fu’s Fs tests and Bayesian skyline plot (BSP) indicated that a demographic expansion event may have occurred in the history of L. maculatus. Through selection pressure analysis, we found evidence of significant negative selection at the ATP6, ND3, Cytb, COX3, COX2 and COX1 genes. -
First Record of F2 Hybrid Striped Bass (Morone Chrysops ♀ × Morone Saxatilis ♂ × Morone Chrysops ♀ × Morone Saxatilis ♂) in Kemer Dam Lake
Turkish Journal of Zoology Turk J Zool (2014) 38: 637-641 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1304-42 First record of F2 hybrid striped bass (Morone chrysops ♀ × Morone saxatilis ♂ × Morone chrysops ♀ × Morone saxatilis ♂) in Kemer Dam Lake 1, 2 Volkan KIZAK *, Yusuf GÜNER 1 Fisheries Faculty, Tunceli University, Tunceli, Turkey 2 Fisheries Faculty, Ege University, İzmir, Turkey Received: 26.04.2013 Accepted: 19.03.2014 Published Online: 14.07.2014 Printed: 13.08.2014 Abstract: The morphometric and meristic characters of 2 F2 hybrid striped bass (M. chrysops ♀ × M. saxatilis ♂ × M. chrysops ♀ × M. saxatilis ♂) from the family Moronidae are described. Two specimens were caught from Kemer Dam Lake. The body of the F2 hybrid striped bass was elongated, moderately compressed, and scaly. Dorsal surface and sides were silver and black to olive-gray, and the abdomen was white in color. Four or 5 longitudinal broken stripes ran above the lateral line to the caudal fin. The stripes were less visible behind the pectoral fins and below the lateral line. The bodies of the2 F specimens were deeper than 1/4 the fork length. The 2 dorsal fins were separated entirely. The first dorsal fin had 8–9 spines, and the second dorsal fin had a spine and 13–14 soft rays. The caudal fin was slightly forked. The anal fin had 3 spines with 12–14 soft rays. One tooth patch was present on the anterior of the tongue. According to our results, the fish were 2F hybrid striped bass offspring of 1F hybrid striped bass, which can reproduce naturally in Turkey. -
(Galeichthys Peruvianus) Otoliths
THE UNIVERSITY OF ALABAMA University Libraries Oxygen Isotope Record of the 1997–1998 El Niño in Peruvian Sea Catfish (Galeichthys peruvianus) Otoliths C. Fred T. Andrus – University of Georgia Douglas E. Crowe – University of Georgia Christopher S. Romanek – University of Georgia Deposited 01/16/2018 Citation of published version: Andrus, C., Crowe, D., Romanek, C. (2002): Oxygen Isotope Record of the 1997–1998 El Niño in Peruvian Sea Catfish (Galeichthys peruvianus) Otoliths. Paleoceanography, 17(4). DOI: https://doi.org/10.1029/2001PA000652 © 2002. American Geophysical Union. All Rights Reserved. PALEOCEANOGRAPHY, VOL. 17, NO. 4, 1053, doi:10.1029/2001PA000652, 2002 Oxygen isotope record of the 1997–1998 El Nin˜o in Peruvian sea catfish (Galeichthys peruvianus) otoliths C. Fred T. Andrus, Douglas E. Crowe, and Christopher S. Romanek1 Department of Geology, University of Georgia, Athens, Georgia, USA Received 2 May 2001; revised 9 January 2002; accepted 23 January 2002; published 11 October 2002. [1] Sagittal otoliths of the Peruvian sea catfish Galeichthys peruvianus were collected from the north coast of Peru during and after the 1997–1998 El Nin˜o. The otoliths were analyzed via laser microprobe and micromilling techniques for oxygen isotope composition through ontogeny to document their use as an El Nin˜o-Southern Oscillation (ENSO) proxy. Results were compared to theoretical calculations for the d18O of otolith aragonite using measured sea surface temperatures (SST) and d18O values for local seawater assuming equilibrium oxygen isotope fractionation was achieved. All otoliths recorded the 1997–1998 El Nin˜o event as well as seasonal temperature variations. These ENSO events were recorded in otolith aragonite as significant negative excursions in d18O that reflected the increased temperature of local marine waters. -
Fish Species Diversity, Abundance and Distribution in the Major Water Bodies in Akwa Ibom State, Nigeria
Biodiversity International Journal Review Article Open Access Fish species diversity, abundance and distribution in the major water bodies in Akwa Ibom state, Nigeria Abstract Volume 4 Issue 1 - 2020 Akwa Ibom State is one of the largest oil producing States in Nigeria. Unfortunately, this Essien-Ibok MA, Isemin NL State like every other Niger Delta region has gone through devastation and marginalization Department of Fisheries and Aquatic Environmental over the years; a consequent of exploration and its attendant oil spillage, gas flaring and Management, University of Uyo, Nigeria climate change. A review of fish composition, diversity and distribution of the major water bodies in Akwa Ibom State was carried out on spatial and temporal scales, with a view to Correspondence: Essien-Ibok MA, Department of Fisheries assessment of the fisheries. Water bodies reviewed were of Cross River, Imo River and and Aquatic Environmental Management, University of Uyo, Qua Iboe River Eco-zones. The review revealed that Cross River is richer when compared Nigeria, Tel 2348085944125, Email to either Imo or Qua Iboe Rivers. However, a careful management strategy and routine monitoring are critical for the improvement and sustenance of the fisheries Received: February 05, 2020 | Published: February 14, 2020 Keywords: South eastern Nigeria, physico-chemical parameters, climate change, fish species composition and distribution Introduction ecosystems. Their full extent cannot be accurately stated as it varies with season and from year to year depending on -
Highly Diversified Late Cretaceous Fish Assemblage Revealed by Otoliths (Ripley Formation and Owl Creek Formation, Northeast Mississippi, Usa)
Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy) vol. 126(1): 111-155. March 2020 HIGHLY DIVERSIFIED LATE CRETACEOUS FISH ASSEMBLAGE REVEALED BY OTOLITHS (RIPLEY FORMATION AND OWL CREEK FORMATION, NORTHEAST MISSISSIPPI, USA) GARY L. STRINGER1, WERNER SCHWARZHANS*2 , GEORGE PHILLIPS3 & ROGER LAMBERT4 1Museum of Natural History, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA. E-mail: [email protected] 2Natural History Museum of Denmark, Zoological Museum, Universitetsparken 15, DK-2100, Copenhagen, Denmark. E-mail: [email protected] 3Mississippi Museum of Natural Science, 2148 Riverside Drive, Jackson, Mississippi 39202, USA. E-mail: [email protected] 4North Mississippi Gem and Mineral Society, 1817 CR 700, Corinth, Mississippi, 38834, USA. E-mail: [email protected] *Corresponding author To cite this article: Stringer G.L., Schwarzhans W., Phillips G. & Lambert R. (2020) - Highly diversified Late Cretaceous fish assemblage revealed by otoliths (Ripley Formation and Owl Creek Formation, Northeast Mississippi, USA). Riv. It. Paleontol. Strat., 126(1): 111-155. Keywords: Beryciformes; Holocentriformes; Aulopiformes; otolith; evolutionary implications; paleoecology. Abstract. Bulk sampling and extensive, systematic surface collecting of the Coon Creek Member of the Ripley Formation (early Maastrichtian) at the Blue Springs locality and primarily bulk sampling of the Owl Creek Formation (late Maastrichtian) at the Owl Creek type locality, both in northeast Mississippi, USA, have produced the largest and most highly diversified actinopterygian otolith (ear stone) assemblage described from the Mesozoic of North America. The 3,802 otoliths represent 30 taxa of bony fishes representing at least 22 families. In addition, there were two different morphological types of lapilli, which were not identifiable to species level. -
A Checklist of Texas Fresh-Water Fishes By
A Checklist of I Texas Fresh-Water Fishes By CLARK HUBBS Department of Zoology The University of Texas DIVISION OF INLAND FISHERIES TEXAS GAME AND FISH COMMISSION Austin, Texas Marion Toole, Director IF Series - No. 3 Revised Dec. 1958 FOREWORD A checklist of Texas fresh-water fishes by CLARK HUBBS This checklist is modified from that of Hubbs (1957a). A number of changes have been made in nomenclature. Notropis roseus and N. deliciosus have been changed to N. texanus and N. strarnineus, re spectively, following Suttkus (1958). Etheostorna whipplei and E. m·tesiae have been changed to E. radiosum following a re-examina tion of available material. Two species have been added, Garnbusia senilis, following Hubbs (1958), and Eucinoslornus argenteus, a marine species collected in a .coastal stream near Brownsville. Two species which had not been described in the previous checklist are given their names, Gambusia geiseri, following Hubbs and Springer (1957), and G. helerochir, following Hubbs (1957b). The primary difference between the checklists is the addition of information on the distribution of fishes within the state to this list. The general concepts follow those given in a previous report (Hubbs, 1957c), but emphasize the ranges of the individual species rather than the distributional patterns. The range designations follow the common names of all species. The numbers refer to the modified game areas shovvn on the map. If the fish inhabits only a part of the area, it is so designated by preceding the number with letters (N. for north, etc.) indicating· the pai·t of the area inhabited by the species. -
Percomorph Phylogeny: a Survey of Acanthomorphs and a New Proposal
BULLETIN OF MARINE SCIENCE, 52(1): 554-626, 1993 PERCOMORPH PHYLOGENY: A SURVEY OF ACANTHOMORPHS AND A NEW PROPOSAL G. David Johnson and Colin Patterson ABSTRACT The interrelationships of acanthomorph fishes are reviewed. We recognize seven mono- phyletic terminal taxa among acanthomorphs: Lampridiformes, Polymixiiformes, Paracan- thopterygii, Stephanoberyciformes, Beryciformes, Zeiformes, and a new taxon named Smeg- mamorpha. The Percomorpha, as currently constituted, are polyphyletic, and the Perciformes are probably paraphyletic. The smegmamorphs comprise five subgroups: Synbranchiformes (Synbranchoidei and Mastacembeloidei), Mugilomorpha (Mugiloidei), Elassomatidae (Elas- soma), Gasterosteiformes, and Atherinomorpha. Monophyly of Lampridiformes is justified elsewhere; we have found no new characters to substantiate the monophyly of Polymixi- iformes (which is not in doubt) or Paracanthopterygii. Stephanoberyciformes uniquely share a modification of the extrascapular, and Beryciformes a modification of the anterior part of the supraorbital and infraorbital sensory canals, here named Jakubowski's organ. Our Zei- formes excludes the Caproidae, and characters are proposed to justify the monophyly of the group in that restricted sense. The Smegmamorpha are thought to be monophyletic principally because of the configuration of the first vertebra and its intermuscular bone. Within the Smegmamorpha, the Atherinomorpha and Mugilomorpha are shown to be monophyletic elsewhere. Our Gasterosteiformes includes the syngnathoids and the Pegasiformes -
Molecular Clocks Provide New Insights Into the Evolutionary History of Galeichthyine Sea Catfishes
ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2009.00640.x MOLECULAR CLOCKS PROVIDE NEW INSIGHTS INTO THE EVOLUTIONARY HISTORY OF GALEICHTHYINE SEA CATFISHES Ricardo Betancur-R.1,2 and Jonathan W. Armbruster1 1Department of Biological Sciences, Auburn University, 331 Funchess Hall, Auburn, Alabama 36849 2E-mail: [email protected] Received August 28, 2008 Accepted January 7, 2009 Intercontinental distributions in the southern hemisphere can either be the result of Gondwanan vicariance or more recent transoceanic dispersal. Transoceanic dispersal has come into vogue for explaining many intercontinental distributions; however, it has been used mainly for organisms that can float or raft between the continents. Despite their name, the Sea Catfishes (Ariidae) have limited dispersal ability, and there are no examples of nearshore ariid genera with a transoceanic distribution except for Galeichthys where three species occur in southern Africa and one in the Peruvian coast. A previous study suggested that the group originated in Gondwana, and that the species arrived at their current range after the breakup of the supercontinent in the Early Cretaceous. To test this hypothesis, we infer molecular phylogenies (mitochondrial cytochrome b, ATP synthase 8/6, 12S, and 16S; nuclear rag2; total ∼4 kb) and estimate intercontinental divergence via molecular clocks (penalized-likelihood, Bayesian relaxed clock, and universal clock rates in fishes). Age ranges for cladogenesis of African and South American lineages are 15.4–2.5 my, far more recent than would be suggested by Gondwanan vicariance; thus, the distribution of galeichthyines must be explained by dispersal or more recent vicariant events. The nested position of the Peruvian species (Galeichthys peruvianus) within the African taxa is robust, suggesting that the direction of the dispersal was from Africa to South America. -
Effects of Bottom Gillnetting on Demersal Fish Species and The
Effects of bottom gillnetting on demersal fish species and the biology of an abundant benthic cichlid, Limnotilapia darndennei, in Kigoma Bay, Lake Tanganyika, Tanzania Student: Athanasio S.E. Mbonde, (TAFIRI)– SOTA Station, Lake Victoria Mentors: Ismael A. Kimirei and Catherine O’Reilly Introduction The fisheries of Lake Tanganyika are mainly conducted in the pelagic and littoral areas of the lake with a major target of capturing Stolothrissa tanganicae (locally known as “dagaa”) and Lates stappersi (“mgebuka”), which are of commercial importance (Kimirei et al. 2006). The pelagic fishery has, therefore, been an important fishery for traditional, artisanal and industrial fishers of the lake for quite a long time. Currently, this fishery provides 25-40% of animal protein for the population of the surrounding countries (Mölsä et al. 1999). Recent data indicated that, the pelagic fish catches are decreasing with increasing fishing pressure (Mölsä et al., 2002; Sarvala et al., 2006; Kimirei et al., 2006). The pelagic fishery of Lake Tanganyika is also threatened by climate changes (Plisnier 1997, 2000, 2004). The climate change has caused increased warming of the surface waters, increasing the stability of the water column and restricting vertical mixing. Consequently, there are reduced nutrients in the water column, reduced primary productivity and expansion of the anoxic hypolimnion (Verburg et al. 2003, O’Reilly et al, 2003). The decreasing trend in the pelagic fish catches provides a room for many fishers to invest in the demersal fishery. Unfortunately, they are investing without prior knowledge of management issues for the benthic stock. The available data show that demersal fishery/bottom gillnetting is cheaper and targets the capture of bottom dwelling fish species, especially, Limnotilapia dardennei and Benthochromis tricoti (Lowe 2006, Kalangali 2006). -
A Review of the Systematic Biology of Fossil and Living Bony-Tongue Fishes, Osteoglossomorpha (Actinopterygii: Teleostei)" (2018)
W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2018 A review of the systematic biology of fossil and living bony- tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei) Eric J. Hilton Virginia Institute of Marine Science Sebastien Lavoue Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Hilton, Eric J. and Lavoue, Sebastien, "A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei)" (2018). VIMS Articles. 1297. https://scholarworks.wm.edu/vimsarticles/1297 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Neotropical Ichthyology, 16(3): e180031, 2018 Journal homepage: www.scielo.br/ni DOI: 10.1590/1982-0224-20180031 Published online: 11 October 2018 (ISSN 1982-0224) Copyright © 2018 Sociedade Brasileira de Ictiologia Printed: 30 September 2018 (ISSN 1679-6225) Review article A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei) Eric J. Hilton1 and Sébastien Lavoué2,3 The bony-tongue fishes, Osteoglossomorpha, have been the focus of a great deal of morphological, systematic, and evolutio- nary study, due in part to their basal position among extant teleostean fishes. This group includes the mooneyes (Hiodontidae), knifefishes (Notopteridae), the abu (Gymnarchidae), elephantfishes (Mormyridae), arawanas and pirarucu (Osteoglossidae), and the African butterfly fish (Pantodontidae). This morphologically heterogeneous group also has a long and diverse fossil record, including taxa from all continents and both freshwater and marine deposits.