The Anti- Satellite Capability of the Phased Adaptive Approach Missile Defense System

Total Page:16

File Type:pdf, Size:1020Kb

The Anti- Satellite Capability of the Phased Adaptive Approach Missile Defense System PUBLIC INTEREST REPORT WINTER 2011 The Anti- Satellite Capability of the Phased Adaptive Approach Missile Defense System — BY LAURA GREGO In early 2008, President Bush tasked U.S. based missile defense system. After a few days done so since 1982.2 This unofficial morato- Strategic Command with Operation Burnt of waiting out rough seas, on February 20, the rium had been recently broken by China in Frost: “mitigating” the threat posed by a non- U.S. Navy Ticonderoga-class cruiser Lake Erie 2007, when it destroyed its own aging responsive intelligence satellite that was soon launched an SM-3 missile which intercepted weather satellite at 800 km altitude. The Bush to re-enter the Earth’s atmosphere. USA-193 the USA-193 satellite. administration had withdrawn from the Anti- had been launched into orbit just over a year While framed as a public safety measure, Ballistic Missile Treaty in 2002 and expressed earlier, and its fate was sealed after the Na- some observers expressed skepticism that this interest in a range of new military uses for tional Reconnaissance Office was unable to risk was the real or entire motivation for the space, including space-based weapons and establish control over the satellite after launch. exercise. The interception, at an altitude of anti-satellite weapons. Just a week before Op- While the imminent re-entry of a satellite was 240 kilometers (km), vividly demonstrated eration Burnt Frost was carried out, China not in itself at all remarkable—70 tons of the ASAT capability of the U.S. Aegis sea- and Russia had circulated to the Conference space debris and scores of large objects drop based missile defense system. The intercept on Disarmament a draft treaty that would out of orbit each year without any casualty required only modification of the system ban putting weapons in space and using force and without any operations mounted in re- software,1 and could have been done from any against satellites.3 The United States re- sponse—administration officials expressed of the 5 cruisers or 16 destroyers equipped sponded with little interest, saying that there concern that leftover hydrazine fuel aboard with the Aegis system at the time (two de- was no need for arms control in space.4 the satellite might survive re-entry and hurt stroyers were slated to be backups to the USS Operation Burnt Frost, in turn, is impor- someone on the ground. Lake Erie). tant context for the announcement eighteen On February 14, 2008, General James The context is important. This was the months later of the Obama administration’s Cartwright announced the United States first time the United States had deliberately new plans for European missile defense, the would destroy the satellite using the Aegis sea- destroyed a satellite since 1985; Russia hadn’t Phased Adaptive Approach (PAA). 1 FEDERATION OF AMERICAN SCIENTISTS WWW.FAS.ORG PUBLIC INTEREST REPORT WINTER 2011 This new PAA plan replaced the maneuver (“divert capability”). Both Block I and the recently shuttered Airborne Laser, George W. Bush administrations’ plan that interceptors have a reported burnout velocity of also have intrinsic anti-satellite capability.9 aimed to protect European allies from 3.0-3.5 km/s. The Block IIA will have longer The GMD interceptors could reach nearly missile threats in the Middle East using range and a seeker with better discrimination any satellite in low earth orbit (LEO). powerful ground-based interceptors in and more divert capability. The Block IIA inter- The SM-3 is designed to intercept Poland and a radar in the Czech Republic. ceptors are expected to burnout at a velocity 45- warheads in the midcourse phase of flight, PAA would rely on and substantially ex- 50percent faster than the Block I missiles, so in when they are above the atmosphere. The pand and improve the Aegis missile de- the range of 4.5 to 5.5 km/s.5 The Block IIB kill vehicle carries its own fuel for maneu- vering as well as an infrared sensor. The fense system used in Operation Burnt interceptor is still in the conceptual stage, but is sensor is intended to guide the interceptor Frost and demonstrated to have anti- meant to engage intercontinental-range ballistic toward an object and allow it to home in satellite capability. missiles and to have yet higher propulsion. It on and destroy the target by direct impact, may be land-based only. or “kinetic kill.” The Phased Adaptive The plan is to make all versions of the SM-3 Because midcourse missile defense Approach to European missile able to be launched from the launch systems are intended to destroy ballistic tubes on the Aegis ships. Missile Defense missile warheads, which travel at speeds Also important is the development of more and altitudes comparable to those of satel- sensors and the capability of the Aegis ships and The PAA system’s much smaller SM-3 lites, such defense systems also have ASAT sites to perform “launch on remote,” the ability interceptors are to be based primarily at sea capabilities. In fact, while the technologies to launch on the cue from a sensor not on the on Aegis ships converted to the purpose as being developed for long-range missile ship. This will allow the interceptors to launch defenses might not prove very effective well as some land-based “Aegis ashore” from a greater range. This capability was first against ballistic missiles—for example, sites. It is meant to be flexible and address introduced to the Aegis system after Operation because of countermeasure problems in- emerging ballistic missile threats from the Burnt Frost and will now become standard. herent in midcourse missile defense—they Middle East over the coming decade. It could be far more effective against satel- will be improved incrementally, in four Missile Defenses as ASAT Weapons lites. phases. The current generation of the SM- In many ways, attacking satellites is an 3 missiles, Block 1, will eventually be aug- easier task than defending against ballistic mented with longer-range, more sophisti- While Operation Burnt Frost was the first time the United States used a missile defense system missiles. Satellites travel in repeated, pre- cated missiles. More ships would be outfit- to destroy an orbiting satellite, the United States dictable orbits that ground facilities can ted with new missiles and new and im- has for years had some intrinsic ASAT capability accurately determine by tracking them. An proved sensors added. Land-based sites in its existing missile defense programs. Both the attacker would have time to plan an attack would be added starting in 2015. Aegis BMD and Terminal High Altitude Area against a satellite, could choose the time of Currently, only the Block IA variant Defense (THAAD) missile defense systems the attack in advance, and would be able to of the SM-3 missile is deployed. The Block were considered during the preparation of Op- take as many shots as necessary to destroy IB interceptors, currently under testing eration Burnt Frost,7 although THAAD, like it whereas advance notice of a ballistic and development, are based on the same 3- the SM-3 Block 1 systems, would be useful only missile attack is unlikely. In addition, an stage booster missile as the Block IA mis- against the lowest altitude satellites. interceptor attacking a satellite would not sile, but the Block IB kill vehicle will have The U.S. Ground Based Midcourse (GMD) have to contend with the same counter- sensors that can image the target at two missile defense system with a total of 30 de- measure10 problems that a midcourse mis- ployed interceptors in Alaska and California8 wavelengths and increased capability to sile defense system would face. 2 FEDERATION OF AMERICAN SCIENTISTS WWW.FAS.ORG PUBLIC INTEREST REPORT WINTER 2011 Countermeasures can severely limit the below the inclination angle) twice a day. Since the vast majority of LEO satellites (see Fig- ability of a midcourse missile defense to de- an attacker could choose the timing and ge- ure 2).11 Interceptors with burnout speeds at fend against ballistic missiles: warheads and ometry, the attack can be mounted when the the high range of estimates for the SM-3 IIA lightweight decoys move on the same trajec- satellite is overhead and the missile defense (5.5 km/s) would be able to reach any satel- tories in the vacuum of space, and the inter- interceptor may therefore use its velocity to lite in LEO, as would GMD interceptors. ceptor’s onboard sensor or ground-based reach the highest altitude possible rather than radars would be unable to distinguish these to reach out laterally. A rough estimation of PAA as a Strategic ASAT decoys from the warhead. An attacker can the maximum altitude an interceptor can Weapons System release numerous decoys along with the war- reach may be calculated by setting the kinetic head in order to confuse the missile defenses energy of the interceptor at burnout (when While the United States has long had ASAT or exhaust them by forcing them to intercept the missile ceases powered flight) to the po- capability in its missile defense systems, the all the decoys along with the warheads. tential energy at the given altitude. PAA system as conceived is ASAT capability Operation Burnt Frost showed that The current Aegis interceptors SM-3 IA/ on a much different scale. The enormous SM-3 interceptors can successfully intercept IB can reach only the relatively few satellites in potential size of the capability is new. While satellites if they can be reached. LEO satel- orbits with perigees at or below 600 km alti- the projected inventory of Block II SM-3 lites are generally in highly inclined or nearly tude.
Recommended publications
  • LAYERED HOMELAND MISSILE DEFENSE a Strategy for Defending the United States
    LAYERED HOMELAND MISSILE DEFENSE A Strategy for Defending the United States “Our fundamental responsibility is to protect the American people, the homeland, and the American way of life... A layered missile defense system will defend our homeland against missile attacks. ~ National Security Strategy, 2017 DEFENDING THE HOMELAND Defending the U.S. homeland is DoD’s number one objective. Rogue states seek to threaten the U.S. homeland with long-range ballistic missiles to coerce us, restrict our freedom of action, and undermine our resolve to defend allies and partners. A secure U.S. homeland allows us to defend our security interests, commit to the defense of others, resist coercion, and negotiate from a position of strength. THREATS TO THE HOMELAND Rogue state adversaries like North Korea and Iran seek dangerous capabilities, including long-range ballistic missiles that can threaten the U.S. homeland, support regional aggression, and deter potential U.S. responses. North Korea, despite repeated diplomatic engagements, is developing and testing nuclear-capable intercontinental ballistic missiles (ICBMs) that could reach the U.S. homeland. Iran has demonstrated a space-launch capability that could lead to the development of an ICBM. These threats are likely to advance in capability and capacity by mid-decade and beyond, which is why President Trump stated, “We are committed to establishing a missile defense program that can shield every city in the United States. And we will never negotiate away our right to do this.” U.S. MISSILE DEFENSE POLICY U.S. missile defense policy recognizes the reality and enduring nature of these threats – plus the need to hedge against the uncertain nature of future threats.
    [Show full text]
  • OASD Satellite Engagement Communications Plan (Feb
    The University of Mississippi School of Law The National Center for Remote Sensing, Air, and Space Law Informational resources on the legal aspects of human activities using aerospace technologies USA-193: Selected Documents Compiled by P.J. Blount P.J. Blount, editor Joanne Irene Gabrynowicz, editor This page intentionally left blank. Disclaimer The information contained in this compilation represents information as of February 20, 2009. It does not constitute legal representation by the National Center for Remote Sensing, Air, and Space Law (Center), its faculty or staff. Before using any information in this publication, it is recommended that an attorney be consulted for specific legal advice. This publication is offered as a convenience to the Center's readership. The documents contained in this publication do not purport to be official copies. Some pages have sections blocked out. These blocked sections do not appear in the original documents. Blocked out sections contain information wholly unrelated to the space law materials intended to be compiled. The sections were blocked out by the Center's faculty and staff to facilitate focus on the relevant materials. i National Center for Remote Sensing, Air, and Space Law Founded in 1999, the National Center for Remote Sensing, Air, and Space Law is a reliable source for creating, gathering, and disseminating objective and timely remote sensing, space, and aviation legal research and materials. The Center serves the public good and the aerospace industry by addressing and conducting education and outreach activities related to the legal aspects of aerospace technologies to human activities. Faculty and Staff Prof. Joanne Irene Gabrynowicz, Director Prof.
    [Show full text]
  • Outer Space in Russia's Security Strategy
    Outer Space in Russia’s Security Strategy Nicole J. Jackson Simons Papers in Security and Development No. 64/2018 | August 2018 Simons Papers in Security and Development No. 64/2018 2 The Simons Papers in Security and Development are edited and published at the School for International Studies, Simon Fraser University. The papers serve to disseminate research work in progress by the School’s faculty and associated and visiting scholars. Our aim is to encourage the exchange of ideas and academic debate. Inclusion of a paper in the series should not limit subsequent publication in any other venue. All papers can be downloaded free of charge from our website, www.sfu.ca/internationalstudies. The series is supported by the Simons Foundation. Series editor: Jeffrey T. Checkel Managing editor: Martha Snodgrass Jackson, Nicole J., Outer Space in Russia’s Security Strategy, Simons Papers in Security and Development, No. 64/2018, School for International Studies, Simon Fraser University, Vancouver, August 2018. ISSN 1922-5725 Copyright remains with the author. Reproduction for other purposes than personal research, whether in hard copy or electronically, requires the consent of the author(s). If cited or quoted, reference should be made to the full name of the author(s), the title, the working paper number and year, and the publisher. Copyright for this issue: Nicole J. Jackson, nicole_jackson(at)sfu.ca. School for International Studies Simon Fraser University Suite 7200 - 515 West Hastings Street Vancouver, BC Canada V6B 5K3 Outer Space in Russia’s Security Strategy 3 Outer Space in Russia’s Security Strategy Simons Papers in Security and Development No.
    [Show full text]
  • Navy Aegis Ballistic Missile Defense (BMD) Program: Background and Issues for Congress
    Navy Aegis Ballistic Missile Defense (BMD) Program: Background and Issues for Congress Updated September 30, 2021 Congressional Research Service https://crsreports.congress.gov RL33745 SUMMARY RL33745 Navy Aegis Ballistic Missile Defense (BMD) September 30, 2021 Program: Background and Issues for Congress Ronald O'Rourke The Aegis ballistic missile defense (BMD) program, which is carried out by the Missile Defense Specialist in Naval Affairs Agency (MDA) and the Navy, gives Navy Aegis cruisers and destroyers a capability for conducting BMD operations. BMD-capable Aegis ships operate in European waters to defend Europe from potential ballistic missile attacks from countries such as Iran, and in in the Western Pacific and the Persian Gulf to provide regional defense against potential ballistic missile attacks from countries such as North Korea and Iran. MDA’s FY2022 budget submission states that “by the end of FY 2022 there will be 48 total BMDS [BMD system] capable ships requiring maintenance support.” The Aegis BMD program is funded mostly through MDA’s budget. The Navy’s budget provides additional funding for BMD-related efforts. MDA’s proposed FY2021 budget requested a total of $1,647.9 million (i.e., about $1.6 billion) in procurement and research and development funding for Aegis BMD efforts, including funding for two Aegis Ashore sites in Poland and Romania. MDA’s budget also includes operations and maintenance (O&M) and military construction (MilCon) funding for the Aegis BMD program. Issues for Congress regarding the Aegis BMD program include the following: whether to approve, reject, or modify MDA’s annual procurement and research and development funding requests for the program; the impact of the COVID-19 pandemic on the execution of Aegis BMD program efforts; what role, if any, the Aegis BMD program should play in defending the U.S.
    [Show full text]
  • Space Weapons Earth Wars
    CHILDREN AND FAMILIES The RAND Corporation is a nonprofit institution that EDUCATION AND THE ARTS helps improve policy and decisionmaking through ENERGY AND ENVIRONMENT research and analysis. HEALTH AND HEALTH CARE This electronic document was made available from INFRASTRUCTURE AND www.rand.org as a public service of the RAND TRANSPORTATION Corporation. INTERNATIONAL AFFAIRS LAW AND BUSINESS NATIONAL SECURITY Skip all front matter: Jump to Page 16 POPULATION AND AGING PUBLIC SAFETY SCIENCE AND TECHNOLOGY Support RAND Purchase this document TERRORISM AND HOMELAND SECURITY Browse Reports & Bookstore Make a charitable contribution For More Information Visit RAND at www.rand.org Explore RAND Project AIR FORCE View document details Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non-commercial use only. Unauthorized posting of RAND electronic documents to a non-RAND website is prohibited. RAND electronic documents are protected under copyright law. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. For information on reprint and linking permissions, please see RAND Permissions. The monograph/report was a product of the RAND Corporation from 1993 to 2003. RAND monograph/reports presented major research findings that addressed the challenges facing the public and private sectors. They included executive summaries, technical documentation, and synthesis pieces. SpaceSpace WeaponsWeapons EarthEarth WarsWars Bob Preston | Dana J. Johnson | Sean J.A. Edwards Michael Miller | Calvin Shipbaugh Project AIR FORCE R Prepared for the United States Air Force Approved for public release; distribution unlimited The research reported here was sponsored by the United States Air Force under Contract F49642-01-C-0003.
    [Show full text]
  • Space Almanac 2007
    2007 Space Almanac The US military space operation in facts and figures. Compiled by Tamar A. Mehuron, Associate Editor, and the staff of Air Force Magazine 74 AIR FORCE Magazine / August 2007 Space 0.05g 60,000 miles Geosynchronous Earth Orbit 22,300 miles Hard vacuum 1,000 miles Medium Earth Orbit begins 300 miles 0.95g 100 miles Low Earth Orbit begins 60 miles Astronaut wings awarded 50 miles Limit for ramjet engines 28 miles Limit for turbojet engines 20 miles Stratosphere begins 10 miles Illustration not to scale Artist’s conception by Erik Simonsen AIR FORCE Magazine / August 2007 75 US Military Missions in Space Space Support Space Force Enhancement Space Control Space Force Application Launch of satellites and other Provide satellite communica- Ensure freedom of action in space Provide capabilities for the ap- high-value payloads into space tions, navigation, weather infor- for the US and its allies and, plication of combat operations and operation of those satellites mation, missile warning, com- when directed, deny an adversary in, through, and from space to through a worldwide network of mand and control, and intel- freedom of action in space. influence the course and outcome ground stations. ligence to the warfighter. of conflict. US Space Funding Millions of constant Fiscal 2007 dollars 60,000 50,000 40,000 30,000 20,000 10,000 0 Fiscal Year 59 62 65 68 71 74 77 80 83 86 89 92 95 98 01 04 Fiscal Year NASA DOD Other Total Fiscal Year NASA DOD Other Total 1959 1,841 3,457 240 5,538 1983 13,051 18,601 675 32,327 1960 3,205 3,892
    [Show full text]
  • Keeping Europe Safe
    Missile Defence Update Keeping Europe Safe November 2017 Issue INSIDE SMART InvestmentS: EUROPEAN MISSILE DEFENCE MAKES IMPORTANT PROGRESS MISSILE DEFENCE SUCCESS IN ACTION PAGE 3 Next-GenERATION Missile Defence PAGE 5 by MISSILE DEFENCE UPDATE Every day, missile defence systems safeguard hundreds of millions of people across Europe, identifying and responding to the unprecedented security challenges coming from multiple sides. These advanced, proven, interoperable systems ensure Europe has capabilities that will keep it safe. Sustaining this level of protection requires smart, strategic investments by the member states of NATO and the European Union. Many of these countries are users of Raytheon’s Patriot Air and Missile Defense system and other defensive systems, which offer the best technology and the best value to taxpayers. This issue of the Missile Defence Update highlights the recent advancements, investments and strategies that allow European countries to rise to the challenge of stopping these threats. CONTENTS 2 SMART INVESTMENTS IN MISSILE DEFENCE 3 SUCCESS IN ACTION 4 HOW DOES LAYERED MISSILE DEFENCE WORK? NEXT-GENERATION 5 MISSILE DEFENCE NEXT-GENERATION 6 MISSILE TECHNOLOGY 7 PATRIOT MAKES THE GRADE 8 PATRIOT MAKES ITS WAY IN EUROPE POLAND’S COMMITMENT TO PATRIOT 9 READY NOW FOR GERMANY THE NETHERLANDS: PATRIOT INVESTMENT 10 LITHUANIA PURCHASES THE NASAMS SYSTEM AEGIS ASHORE TRANSFORMS EUROPEAN 11 MISSILE DEFENCE SKYCEPTOR INTEGRATION IN POLAND’S MISSILE 12 DEFENCE SYSTEM 13 RAYTHEON IN EUROPE 1 Missile Defence Update • November 2017 Issue MISSILE DEFENCE UPDATE SMART INVESTMENTS IN MISSILE DEFENCE PROTECTING EUROPE Continued investment in the Patriot also has many economic advantages THROUGH COLLABORATION that contribute to the growth of AND INTEROPERABILITY Europe’s defence industry.
    [Show full text]
  • February 18, 2015 Dr. Joan Johnson-Freese Professor, Naval War College Testimony Before the U.S.-China Economic & Security R
    February 18, 2015 Dr. Joan Johnson-Freese Professor, Naval War College Testimony before the U.S.-China Economic & Security Review Commission “China’s Space & Counterspace Programs” The question before the Commission concerns how the United States (U.S.) can achieve stated U.S. goals regarding space security given a rapidly expanding and increasingly sophisticated Chinese space program.1 The importance of protecting the space environment and U.S. space assets in orbit, assets which provide information critical to the U.S. civilian and military sectors and overall U.S. national security, has required that goals be considered and reconsidered at many levels and within multiple communities of the U.S. government. Therefore, it is appropriate to begin by referencing the multiple and nested U.S. strategies related to or referencing space, specifically the 2010 National Security Strategy (NSS), the 2010 National Space Policy (NSP), the 2010 Quadrennial Defense Review (QDR) and the 2011 National Security Space Strategy (NSSS)2 for analytic parameters. Guidance in the NSS is simply stated. “To promote security and stability in space, we will pursue activities consistent with the inherent right of self-defense, deepen cooperation with allies and friends, and work with all nations toward the responsible and peaceful use of space.” (p. 31)3 These general ideas are reiterated in the NSP as “the United States considers the sustainability, stability, and free access to, and use of, space vital to its national interests.” (NSP p.3) With security, sustainability, free-access and stability as overall goals, the NSSS recognizes the importance of working with all space-faring nations due to the nature of the space environment stated as both contested, congested and competitive (NSS p.i) and “… a domain that no nation owns, but on which all rely,” (NSSS p.i).
    [Show full text]
  • Statement-By-Iran-Os.Pdf
    (Please check against delivery) Statement by Mr. Seyed Mohammad AH Robatjazi, Director, Office for Disarmament and Non-Proliferation Affairs, Islamic Republic ofIran Before the First Committee ofthe United Nations General Assembly On Outer Space (Disarmament Aspects) New York, 24 October 2018 In the Name ofGod, theMost Compassionate, theMostMerciful Mr. Chairman, My delegation associates itselfwith the NAM statement delivered by Indonesia. According to international space law, outer space is the common heritage and province of all mankind, and all States have freedom and equality to access outer space for peaceful purposes. With this right comes an obligation that the use ofouter space by one country should not degrade the space environment for future users, and the commitment that the exploration and use ofouter space shall be for the benefit ofall countries, irrespective oftheir degree ofeconomic or scientific development. However, the militarization and weaponization ofouter space undermines these global rules and commitments. To ensure a peaceful outer space environment, prevention of its weaponization and an arms race therein is an essential and urgent priority. The rapid advances in space science and technology, the existing shortcomings in international space law, coupled with the irresponsible actions and policies of certain States, have made the danger ofthe weaponization of outer space more imminent than ever. As a result, the occurrence ofan arms race in outer space is a real possibility today. We are very concerned about the U.S. space policies and plans which threaten the sustainability of a peaceful space environment and risk triggering a destructive arms competition in outer space. The U.S.
    [Show full text]
  • Report to Congress on the Strategic Defense System Architecture (U)
    Sr:CfCr:T/NOfiOftN/fiOflM!flLY ReSTRICT!!) DATA DECLASSIFIED UNDER AUTHORITY OF THE INTERAGENCY SECURITY CLASSIFICATION APPEALS PANEL. E.O. 13526, SECTION 5.3(b)(3) ISCAP No. ;tt>09 - 0 a3> , document '1. REPORT TO CONGRESS ON THE STRATEGIC DEFENSE SYSTEM ARCHITECTURE (U) \.. 17 DECEMBER 1987 ', .. , ... ,:' Prepared by the Strategic Defense Initiative Organization Washington. D.C. 20301-7100 St!CRETfNOFORN/FORMERLV RESTRICTED DATA a,... M" ff}I /" seCRET/NOFORN/FORMERLV RESTRICTED DATA' REPORT TO CONGRESS ON 'THE STRATEGIC DEFENSE· SYSTEM ARCHITECTURE (U) 17 DECEMBER 1987 Prepared by the Strategic Defense Initiative Organization Washington, D.C. 20301-7100 SRCIR' T ABLE OF CONTENTS UST OF ACRONYMS ii I. INlROOUcnON 1 A. Purpose of Repon 1 B. Strategic Defense System Architecture Concept 1 II. STRATEGIC DEFENSE SYSTEM DESCRIPTION 3 A. Overview 3 B. Phased Deployment 4 C. Phase I 5 O. Description of Selected Architecture for Phase I 8 E. Follow-on Phases 11 III. STRATEGIC DEFENSE SYSTEM PHASE I 15 A. Strategic Defense Mission 17 B. System Characteristics 18 C. Concept of Operation 21 IV. 50S FOLLOW-ON PHASES CONCEPT OF OPERATION 27 V. ACQUISmON STRATEGY 29 A. Acquisition Approach 29 B. SOS Acquisition Strategy Elements 29 VI. ISSUES 31 A. Interaction With Interim Operational Command 31 B. Survivability 31 C. Discrimination 31 D. Affotdability 32 E. Lethality 32 F. Readiness 32 G. Security 33 H. Advanced Launch System 33 I. Industrial Base 33 1. Effectiveness in Natural and Nuclear Perturbed Environments 34 vn. SDS ARCIm'ECfURE DEVELOPMENT 35 A. SOS Srudies. - Phase I 35 B. Architecture Analysis - Phase I 35 C.
    [Show full text]
  • SPACE POLICY PRIMER Key Concepts, Issues, and Actors SECOND EDITION
    JOHN PAUL BYRNE John Paul Byrne is an undergraduate at the United States Air Force Academy. He was recently an intern at The Aerospace Corporation, where he supported the work of the Center for Space Policy and Strategy. He is working as the president of the Air Force Academy’s International Applied Space Policy and Strategy cadet club, where they focus on developing space-minded officers for the Air and Space Forces. John will earn his bachelor’s degree in political science with a focus in international relations, and a minor in German in 2021. ROBIN DICKEY Robin Dickey is a space policy and strategy analyst at The Aerospace Corporation’s Center for Space Policy and Strategy, focusing on national security space. Her prior experience includes risk analysis, legislative affairs, and international development. She earned her bachelor’s and master’s degrees in international studies at Johns Hopkins University. MICHAEL P. GLEASON Dr. Michael P. Gleason is a national security senior project engineer in The Aerospace Corporation’s Center for Space Policy and Strategy and is a well-regarded author on space policy subjects, including international cooperation, space traffic management, national security, and deterrence. He has presented his research on critical space policy issues at conferences in Canada, Europe, Japan, and across the United States. A graduate of the U.S. Air Force Academy, Gleason served 29 years active in the Air Force space career field, including stints in spacecraft operations, on the Air Force Academy faculty, at the Pentagon, and at the Department of State. He holds a Ph.D.
    [Show full text]
  • The Missile Defense “Arms Race” Myth
    STRATEGIC STUDIES QUARTERLY - POLICY FORUM The Missile Defense “Arms Race” Myth US policy toward ballistic missile defense (BMD) of the homeland is designed to stay ahead of the rogue state threat while relying on nuclear deterrence to prevent an attack from the nuclear missile arsenals of Russia or China. Today, the United States has 44 ground-­­based interceptors (GBI) and plans to increase the total number of its most capable interceptors to 64 by 2030 with the deployment of the Next Generation Interceptor. After its recent successful test against an intercontinental ballistic missile (ICBM)-type threat, the United States is also examining how the Standard Missile-3 (SM-3) Block IIA could complement GBIs in a layered home- land missile defense architecture. Domestic critics of US homeland missile defense, as well as Russia and China, claim that increased US missile defense capacity and capability will lead to an arms race. They assert that it will stimulate Russia and China to build more offensive missiles in response, ultimately making the United States less safe. The critics’ logic also assumes that US restraint in missile defense will obviate Russian and Chinese perceived needs for missile modernization and production. These individuals predict a proto- typical action-­­reaction dynamic that has little empirical support and de- serves great scrutiny. Russian Reaction to US Missile Defenses roadly speaking, Russia could react in two ways to overcome per- ceived advances in US missile defense: proportionally or dispro- portionately increase the overall number of missiles, launchers, and Breentry vehicles in an attempt to overwhelm US missile defense capacity, or develop specific weapon systems meant to evade US missile defenses.
    [Show full text]