Earth's Moving Plates
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Title of Paper
Raw earth construction: is there a role for unsaturated soil mechanics ? D. Gallipoli, A.W. Bruno & C. Perlot Université de Pau et des Pays de l'Adour, Laboratoire SIAME, Anglet, France N. Salmon Nobatek, Anglet, France ABSTRACT: “Raw earth” (“terre crue” in French) is an ancient building material consisting of a mixture of moist clay and sand which is compacted to a more or less high density depending on the chosen building tech- nique. A raw earth structure could in fact be described as a “soil fill in the shape of a building”. Despite the very nature of this material, which makes it particularly suitable to a geotechnical analysis, raw earth construc- tion has so far been the almost exclusive domain of structural engineers and still remains a niche market in current building practice. A multitude of manufacturing techniques have already been developed over the cen- turies but, recently, this construction method has attracted fresh interest due to its eco-friendly characteristics and the potential savings of embodied, operational and end-of-life energy that it can offer during the life cycle of a structure. This paper starts by introducing the advantages of raw earth over other conventional building materials followed by a description of modern earthen construction techniques. The largest part of the manu- script is devoted to the presentation of recent studies about the hydro-mechanical properties of earthen materi- als and their dependency on suction, water content, particle size distribution and relative humidity. A raw earth structure therefore consists of com- pacted moist soil and may be described in geotech- 1 DEFINITION OF EARTHEN nical terms as a “soil fill in the shape of a building”. -
Chapter 3. the Crust and Upper Mantle
Theory of the Earth Don L. Anderson Chapter 3. The Crust and Upper Mantle Boston: Blackwell Scientific Publications, c1989 Copyright transferred to the author September 2, 1998. You are granted permission for individual, educational, research and noncommercial reproduction, distribution, display and performance of this work in any format. Recommended citation: Anderson, Don L. Theory of the Earth. Boston: Blackwell Scientific Publications, 1989. http://resolver.caltech.edu/CaltechBOOK:1989.001 A scanned image of the entire book may be found at the following persistent URL: http://resolver.caltech.edu/CaltechBook:1989.001 Abstract: T he structure of the Earth's interior is fairly well known from seismology, and knowledge of the fine structure is improving continuously. Seismology not only provides the structure, it also provides information about the composition, crystal structure or mineralogy and physical state. In subsequent chapters I will discuss how to combine seismic with other kinds of data to constrain these properties. A recent seismological model of the Earth is shown in Figure 3-1. Earth is conventionally divided into crust, mantle and core, but each of these has subdivisions that are almost as fundamental (Table 3-1). The lower mantle is the largest subdivision, and therefore it dominates any attempt to perform major- element mass balance calculations. The crust is the smallest solid subdivision, but it has an importance far in excess of its relative size because we live on it and extract our resources from it, and, as we shall see, it contains a large fraction of the terrestrial inventory of many elements. In this and the next chapter I discuss each of the major subdivisions, starting with the crust and ending with the inner core. -
Italy and China Sharing Best Practices on the Sustainable Development of Small Underground Settlements
heritage Article Italy and China Sharing Best Practices on the Sustainable Development of Small Underground Settlements Laura Genovese 1,†, Roberta Varriale 2,†, Loredana Luvidi 3,*,† and Fabio Fratini 4,† 1 CNR—Institute for the Conservation and the Valorization of Cultural Heritage, 20125 Milan, Italy; [email protected] 2 CNR—Institute of Studies on Mediterranean Societies, 80134 Naples, Italy; [email protected] 3 CNR—Institute for the Conservation and the Valorization of Cultural Heritage, 00015 Monterotondo St., Italy 4 CNR—Institute for the Conservation and the Valorization of Cultural Heritage, 50019 Sesto Fiorentino, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-06-90672887 † These authors contributed equally to this work. Received: 28 December 2018; Accepted: 5 March 2019; Published: 8 March 2019 Abstract: Both Southern Italy and Central China feature historic rural settlements characterized by underground constructions with residential and service functions. Many of these areas are currently tackling economic, social and environmental problems, resulting in unemployment, disengagement, depopulation, marginalization or loss of cultural and biological diversity. Both in Europe and in China, policies for rural development address three core areas of intervention: agricultural competitiveness, environmental protection and the promotion of rural amenities through strengthening and diversifying the economic base of rural communities. The challenge is to create innovative pathways for regeneration based on raising awareness to inspire local rural communities to develop alternative actions to reduce poverty while preserving the unique aspects of their local environment and culture. In this view, cultural heritage can be a catalyst for the sustainable growth of the rural community. -
Earth's Structure and Processes 8-3 the Student Will Demonstrate An
Earth’s Structure and Processes 8-3 The student will demonstrate an understanding of materials that determine the structure of Earth and the processes that have altered this structure. (Earth Science) 8-3.1 Summarize the three layers of Earth – crust, mantle, and core – on the basis of relative position, density, and composition. Taxonomy level: 2.4-B Understand Conceptual Knowledge Previous/future knowledge: Students in 3rd grade (3-3.5, 3-3.6) focused on Earth’s surface features, water, and land. In 5th grade (5-3.2), students illustrated Earth’s ocean floor. The physical property of density was introduced in 7th grade (7-5.9). Students have not been introduced to areas of Earth below the surface. Further study into Earth’s internal structure based on internal heat and gravitational energy is part of the content of high school Earth Science (ES-3.2). It is essential for students to know that Earth has layers that have specific conditions and composition. Layer Relative Position Density Composition Crust Outermost layer; thinnest Least dense layer overall; Solid rock – mostly under the ocean, thickest Oceanic crust (basalt) is silicon and oxygen under continents; crust & more dense than Oceanic crust - basalt; top of mantle called the continental crust (granite) Continental crust - granite lithosphere Mantle Middle layer, thickest Density increases with Hot softened rock; layer; top portion called depth because of contains iron and the asthenosphere increasing pressure magnesium Core Inner layer; consists of Heaviest material; most Mostly iron and nickel; two parts – outer core and dense layer outer core – slow flowing inner core liquid, inner core - solid It is not essential for students to know specific depths or temperatures of the layers. -
Earth Layers Rocks
Released SOL Test Questions 4. Which of these best describes the relationship between Sorted by Topic Earth’s layers? Compiled by SOLpass – www.solpass.org (2007-12) a. The hottest layers are closest to the core. SOL 5.7 Earth’s Constantly b. The more liquid layers are closest to the crust. Changing Surface c. The lightest layers are closest to the core. The student will investigate and understand how Earth’s d. The more metallic layers are closest to the crust. surface is constantly changing. Key concepts include 5. What layer of Earth is located just below the crust? a) identification of rock types (2007-26) b) the rock cycle and how transformations between rocks a. Inner core occur b. Mantle c) Earth history and fossil evidence c. Continental shelf d) the basic structure of Earth’s interior d. Outer core e) changes in Earth’s crust due to plate tectonics 6. Which of these Earth layers is the thinnest? f) weathering, erosion, and deposition; and (2003-24) g) human impact a. The inner core b. The outer core EARTH LAYERS c. The mantle 1. Which layer of Earth is the thinnest? d. The crust (2011-34) a. Inner core ROCKS b. Crust 7. Pumice is formed when lava from a volcano cools. Which c. Outer core rock type is pumice? d. Mantle (2011-26) a. Gaseous rock 2. Earth is composed of four layers. Many scientists believe that as Earth cooled, the denser materials sank to the b. Igneous rock center and the less dense materials rose to the top. -
Evaluation of Seismic Performance in Mechanically Stabilized Earth Structures
Evaluation of seismic performance in Mechanically Stabilized Earth structures J.E. Sankey The Reinforced Earth Company, Vienna, Virginia – USA P. Segrestin Freyssinet International, Velizy, France ABSTRACT: Recent earthquake events have brought about renewed interest in the response of a variety of structures to seismic loads. In the case of mechanically stabilized earth structures, such as Reinforced Earth®, current seismic design codes do not appear to fully incorporate their inherent flexibility. A brief catalogue of major earthquakes and corresponding descriptions regarding the condition of local Reinforced Earth structures is provided to demonstrate the realistic flexibility of the structures. A call for better consideration of the ductile response of Reinforced Earth is recommended based on its flexible composition of discrete steel reinforcements and select soil matrix. 1 BACKGROUND subjected to seismic events in the Northridge, Kobe and Izmit Earthquakes. The actual physical In the last decade there have been major earthquake condition will then be compared to the criteria used events in the United States (Northridge, California, in design for the walls. Even in cases where the 1994, 6.7 Richter magnitude), Japan (Great Hanshin, seismic accelerations exceeded the design Kobe, 1995, 7.2 Richter magnitude), and Turkey accelerations, it will be shown that little if any (North Anatolian, Izmit, 1999, 7.4 Richter distress resulted. The rationale shall be presented magnitude). The Northridge Earthquake was that the ductility of the Reinforced Earth may allow responsible for 57 deaths, 11,000 injuries and $20 minor permanent deflections to occur without billion US in damages. The Kobe Earthquake was a distress that would affect service life. -
Lecture Liquefaction of Soils During Earthquakes I.M
LECTURE LIQUEFACTION OF SOILS DURING EARTHQUAKES I.M. Idriss Woodward-Clyde Consultants San Francisco, California, U.S.A. DEFINITION OF TERMS The following definitions perta1n1ng to cyclic loading conditions are based on slight modifications of those originally proposed by Lee and Seed (1967). FAILURE: When the induced cyclic: strains become excessive. COMPLETE LIQUEFACTION: When a soil exhibits no resistance to de formation over a wide strain range. PARTIAL LIQUEFACTION: When a soil exhibits no resistance to de formation over a strain range less than that considered to cons titute failure. INITIAL LIQUEFACTION: When a soil first exhibits any degree of partial liquefaction during cyclic loading. Ordinarily, the fir@t condition reached is INITIAL LIQUEFACTION, followed by PARTIAL, and COMPLETE liquefaction, with FAILURE being reached at some stage during the partial or complete liquefaction stages. The following definitions are given by Seed, Arango and Chan (1975) : INITIAL LIQUEFACTION: Denotes a condition where ,during the course of cyclic stress applications, the residual pore water pressure on completion of any full stress cycle becomes equal to the applied 507 J. B. MlUtins (ed.), Numerical Methods in GeomechanicB, 507-530. Copyright e 1982 by D. Reidel Publishing Company. 508 1. M.IDRISS confining pressure; the development of initial liquefaction has no implications concerning the magnitude of the deformations which the soil might subsequently undergo; however,it defines a condition which is a useful basis for assessing various possible forms of subsequent soil behavior. INITIAL LIQUEFACTION WITH LIMITED STRAIN POTENTIAL OR CYCLIC MOBI LITY: Denotes a condition in which cyclic stress applications develop a condition of initial liquefaction and subsequent cyclic stress applications cause limited strains to develop either be cause of the remaining resistance of the soil to deformation or because the soil dilates, the pore pressure drops, and the soil stabilizes under the applied loads. -
Advanced Geodynamics: Fourier Transform Methods
Advanced Geodynamics: Fourier Transform Methods David T. Sandwell January 13, 2021 To Susan, Katie, Melissa, Nick, and Cassie Eddie Would Go Preprint for publication by Cambridge University Press, October 16, 2020 Contents 1 Observations Related to Plate Tectonics 7 1.1 Global Maps . .7 1.2 Exercises . .9 2 Fourier Transform Methods in Geophysics 20 2.1 Introduction . 20 2.2 Definitions of Fourier Transforms . 21 2.3 Fourier Sine and Cosine Transforms . 22 2.4 Examples of Fourier Transforms . 23 2.5 Properties of Fourier transforms . 26 2.6 Solving a Linear PDE Using Fourier Methods and the Cauchy Residue Theorem . 29 2.7 Fourier Series . 32 2.8 Exercises . 33 3 Plate Kinematics 36 3.1 Plate Motions on a Flat Earth . 36 3.2 Triple Junction . 37 3.3 Plate Motions on a Sphere . 41 3.4 Velocity Azimuth . 44 3.5 Recipe for Computing Velocity Magnitude . 45 3.6 Triple Junctions on a Sphere . 45 3.7 Hot Spots and Absolute Plate Motions . 46 3.8 Exercises . 46 4 Marine Magnetic Anomalies 48 4.1 Introduction . 48 4.2 Crustal Magnetization at a Spreading Ridge . 48 4.3 Uniformly Magnetized Block . 52 4.4 Anomalies in the Earth’s Magnetic Field . 52 4.5 Magnetic Anomalies Due to Seafloor Spreading . 53 4.6 Discussion . 58 4.7 Exercises . 59 ii CONTENTS iii 5 Cooling of the Oceanic Lithosphere 61 5.1 Introduction . 61 5.2 Temperature versus Depth and Age . 65 5.3 Heat Flow versus Age . 66 5.4 Thermal Subsidence . 68 5.5 The Plate Cooling Model . -
Reinforced Earth: Principles and Applications in Engineering Construction
International Journal of Advanced Academic Research | Sciences, Technology & Engineering | ISSN: 2488-9849 Vol. 2, Issue 6 (June 2016) REINFORCED EARTH: PRINCIPLES AND APPLICATIONS IN ENGINEERING CONSTRUCTION Okechukwu, S.I; Okeke, O. C; Akaolisa, C. C. Z; Jack, L. And Akinola, A. O. Department of Geology, Federal University of Technology, Owerri, Imo State, Nigeria Abstract Reinforced earth is a material formed by combining earth and reinforcement material. The reinforced soil is obtained by placing extensible or inextensible materials such as metallic strips or polymeric reinforcement within the soil to obtain the requisite properties. The reinforcement enables the soil mass to resist tension in a way which the earth alone could not. The source of this resistance to tension is the internal friction of soil, because the stresses that are created within the mass are transferred from soil to the reinforcement strips by friction. Reinforcement of soil is practiced to improve the mechanical properties of the soil being reinforced by the inclusion of structural elements. The reinforcement improves the earth by increasing the bearing capacity of the soil. It also reduces the liquefaction behavior of the soil. Reinforced earth is not complex to achieve. The components of reinforced earth are soil, skin and reinforcing material. The reinforcing material may include steel, concrete, glass, planks etc. Reinforced earth has so many applications in construction work. Some of the applications include its use in stabilization of soil, construction of retaining walls, bridge abutments for highways, industrial and mining structures. Keywords: Reinforcement, Reinforced earth. 1.0 Introduction An internally stabilized system such as reinforced earth involves reinforcements installed within and extending beyond the potential failure mass. -
The Way the Earth Works: Plate Tectonics
CHAPTER 2 The Way the Earth Works: Plate Tectonics Marshak_ch02_034-069hr.indd 34 9/18/12 2:58 PM Chapter Objectives By the end of this chapter you should know . > Wegener's evidence for continental drift. > how study of paleomagnetism proves that continents move. > how sea-floor spreading works, and how geologists can prove that it takes place. > that the Earth’s lithosphere is divided into about 20 plates that move relative to one another. > the three kinds of plate boundaries and the basis for recognizing them. > how fast plates move, and how we can measure the rate of movement. We are like a judge confronted by a defendant who declines to answer, and we must determine the truth from the circumstantial evidence. —Alfred Wegener (German scientist, 1880–1930; on the challenge of studying the Earth) 2.1 Introduction In September 1930, fifteen explorers led by a German meteo- rologist, Alfred Wegener, set out across the endless snowfields of Greenland to resupply two weather observers stranded at a remote camp. The observers had been planning to spend the long polar night recording wind speeds and temperatures on Greenland’s polar plateau. At the time, Wegener was well known, not only to researchers studying climate but also to geologists. Some fifteen years earlier, he had published a small book, The Origin of the Con- tinents and Oceans, in which he had dared to challenge geologists’ long-held assumption that the continents had remained fixed in position through all of Earth history. Wegener thought, instead, that the continents once fit together like pieces of a giant jigsaw puzzle, to make one vast supercontinent. -
MAGNITUDE of DRIVING FORCES of PLATE MOTION Since the Plate
J. Phys. Earth, 33, 369-389, 1985 THE MAGNITUDE OF DRIVING FORCES OF PLATE MOTION Shoji SEKIGUCHI Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto, Japan (Received February 22, 1985; Revised July 25, 1985) The absolute magnitudes of a variety of driving forces that could contribute to the plate motion are evaluated, on the condition that all lithospheric plates are in dynamic equilibrium. The method adopted here is to solve the equations of torque balance of these forces for all plates, after having estimated the magnitudes of the ridge push and slab pull forces from known quantities. The former has been estimated from the age of ocean floors, the depth and thickness of oceanic plates and hence lateral density variations, and the latter from the density con- trast between the downgoing slab and the surrounding mantle, and the thickness and length of the slab. The results from the present calculations show that the magnitude of the slab pull forces is about five times larger than that of the ridge push forces, while the North American and South American plates, which have short and shallow slabs but long oceanic ridges, appear to be driven by the ridge push force. The magnitude of the slab pull force exerted on the Pacific plate exceeds to 40 % of the total slab pull forces, and that of the ridge push force working on the Pacific plate is the largest among the ridge push forces exerted on the plates. The high cor- relation that exists between the mantle drag force and the sum of the slab pull and ridge push forces makes it difficult to evaluate the absolute net driving forces. -
An Evidence-Based Approach to Teaching Plate Tectonics in High School
An evidence-based approach to teaching plate tectonics in high school COLIN PRICE ABSTRACT 5. relating the extreme age and stability of a large part of the Australian continent to its plate tectonic This article proposes an evidence-based and engaging history. approach to teaching the mechanisms driving the movement of tectonic plates that should lead high The problem with this list is the fourth elaboration, school students towards the prevalent theories because the idea that convection currents in the used in peer-reviewed science journals and taught mantle drive the movement of tectonic plates is a in universities. The methods presented replace the myth. This convection is presented as whole mantle inaccurate and outdated focus on mantle convection as or whole asthenosphere cells with hot material rising the driving mechanism for plate motion. Students frst under the Earth’s divergent plate boundaries and examine the relationship between the percentages of cooler material sinking at the convergent boundaries plate boundary types of the 14 largest plates with their with the lithosphere dragged along by the horizontal GPS-determined plate speeds to then evaluate the fow of the asthenosphere (Figure 1). This was the three possible driving mechanisms: mantle convection, preferred explanation for plate motion until the ridge push and slab pull. A classroom experiment early 1990s but it does not stand up to a frequent measuring the densities of igneous and metamorphic deduction made by Year 9 students: how can there be rocks associated with subduction zones then provides large-scale mantle convection if hotspots (like Hawaii) a plausible explanation for slab pull as the dominant don’t move? Most science teachers quickly cover driving mechanism.