Aspects of Production for Clerodendrum As Potted Flowering Plants Annina Delaune Louisiana State University and Agricultural and Mechanical College

Total Page:16

File Type:pdf, Size:1020Kb

Aspects of Production for Clerodendrum As Potted Flowering Plants Annina Delaune Louisiana State University and Agricultural and Mechanical College Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2005 Aspects of production for Clerodendrum as potted flowering plants Annina Delaune Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Recommended Citation Delaune, Annina, "Aspects of production for Clerodendrum as potted flowering plants" (2005). LSU Master's Theses. 174. https://digitalcommons.lsu.edu/gradschool_theses/174 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. ASPECTS OF PRODUCTION FOR CLERODENDRUM AS POTTED FLOWERING PLANTS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirement for the degree of Master of Science in The Department of Horticulture Annina Delaune B.S. University of Tennessee, 1969 May 2005 Acknowledgements I wish to thank my family, especially my husband, for helping and encouraging me throughout my pursuit of this degree. Many thanks to Dr. Jeff Kuehny for his support and dedication. Also, Dr. Charles E. Johnson, who is on my committee, was always ready to help me and assure me of my ability to succeed as a non-traditional student. I would also like to thank my brother, Dr. Karl M. Barth, emeritus professor of animal science, for helping me always focus on the big picture in pursuing an advanced degree. Patricia Branch, Research Associate, helped me tremendously in the greenhouse with her vast knowledge of greenhouse practices. Dr. Edward Bush is also to be thanked for his service on my committee. Thanks also to my daughter, Kelly Ebey, for help in organizing, formatting and proofreading my thesis. Many other members of the Horticulture Department have helped me in the past two and one-half years to achieve this dream that started for me after high school and had to be put on hold until now. ii Table of Contents Acknowledgements............................................................................................................. ii Abstract.............................................................................................................................. vi Chapter 1. Introduction ....................................................................................................... 1 1.1 Introduction and Literature Review.......................................................................... 1 1.2 Plant Growth Regulation........................................................................................... 6 1.3 Growth Retardants .................................................................................................... 7 1.4 Photoperiodism ......................................................................................................... 9 1.5 Post-production....................................................................................................... 10 1.6 References............................................................................................................... 11 Chapter 2. Preliminary PGR Study................................................................................... 14 2.1 Introduction............................................................................................................. 14 2.2 Materials and Methods............................................................................................ 15 2.3 Results..................................................................................................................... 17 2.4 Discussion............................................................................................................... 21 2.5 References............................................................................................................... 21 Chapter 3. PGR Study on Clerodendrum ugandense ....................................................... 23 3.1 Introduction............................................................................................................. 23 3.2 Materials and Methods............................................................................................ 24 3.3 Results..................................................................................................................... 25 3.4 Discussion............................................................................................................... 28 3.5 References............................................................................................................... 30 Chapter 4. PGR Study on C. ugandense and C. bungei and Post-production .................. 31 4.1 Introduction............................................................................................................. 31 4.2 Materials and Methods............................................................................................ 32 4.3 Results..................................................................................................................... 34 4.4 Discussion............................................................................................................... 39 4.5 References............................................................................................................... 40 Chapter 5. Gibberellic Acid and Ancymidol Treatments for C. thomsoniae Grown around a Hoop............................................................................................................................... 41 5.1 Introduction............................................................................................................. 41 5.2 Materials and Methods............................................................................................ 42 5.3 Results..................................................................................................................... 43 5.4 Discussion............................................................................................................... 46 5.5 References............................................................................................................... 47 Chapter 6. Photoperiodism of Three Species of Clerodendrum....................................... 48 6.1 Introduction............................................................................................................. 48 6.2 Materials and Methods............................................................................................ 49 iii 6.3 Results..................................................................................................................... 50 6.4 Discussion............................................................................................................... 53 6.5 References............................................................................................................... 54 Chapter 7. Conclusions ..................................................................................................... 55 Vita.................................................................................................................................... 57 iv Abstract The effect of growth regulators gibberellic acid (Pro-Gibb™), daminozide (B- Nine™), ancymidol (A-Rest™) and paclobutrazol (Bonzi™) were evaluated on species of Clerodendrum grown as flowering pot plants. Studies on photoperiod and post- production longevity were also included. Experiments were conducted on C. bungei, C. thomsoniae, C. ugandense, C. phillippinum, C. paniculata and C. speciosissimum in polycarbonate greenhouses. For C. thomsoniae the best growth control was achieved by applying paclobutrazol and ancymidol drench at a rate of 1.0 mg a.i. /pot. For C. ugandense, the most appropriate application rate of PGR was paclobutrazol drench at 5 to 15 mg a.i./pot. C. bungei did not respond significantly to either daminozide or paclobutrazol treatments compared to control. Based on the visual quality rating, C. bungei were acceptable as marketable plants until day 7, and C. ugandense were acceptable as marketable plants until day 5. Neither daminozide nor paclobutrazol had any effect on C. bungei quality ratings in post- production. In C. ugandense, however, there were significant differences in post- production when comparing the daminozide and the paclobutrazol treatments. On day 5, 7 and 11, the paclobutrazol treated plants had significantly lower quality ratings compared to control and compared to those treated with daminozide. It appears that the paclobutrazol treatment may produce a quality plant, but has a negative effect on post- production longevity. v Gibberellic acid at 10 ppm was considered the best rate and most economical rate for promoting optimum vegetative growth of C. thomsoniae to sufficiently cover a round support hoop. C. speciosissimum, C. phillippinum, C. paniculata and C. speciosissimum were determined to be long day plants (12-h photoperiod or longer). Height of C. paniculata and C. speciosissimum was significantly increased by the 12 or 16-h photoperiod. vi Chapter 1. Introduction 1.1 Introduction and Literature Review The genus Clerodendrum has a wide variety of traits that make it a good candidate for a new crop for the floriculture industry. Characteristics of these plants that
Recommended publications
  • Full Page Fax Print
    THE SPECIES Clerodendrum myricoides (Rotheca myricoides) Verbenaceae Indigenous STANDARDlTRADE NAME: Butterfly bush. COMMON NAMES: Boran: Mara sisa; Kamba: Kiteangwai, Muvweia; Kikuyu: Munjugu; Kipsigis: Chesamisiet, Obetiot; Luhya (Bukusu): Kumusilangokho; Luhya: Shisilangokho; Luo: Kurgweno, Okwergweno, Okwero, Okworo, Oseke, Sangla; Maasai: Olmakutukut; Marakwet: Chebobet, Chesagon; Samburu: Makutukuti; Tugen: Gobetie. DESCRIPTION: A small shrub up to 3.5 m, much branched from the base and often with some branches scrambling through other plants. The leaves and stem have a distinctive smell when crushed. LEA VES: Opposite or in whods, simple, ovate, margin toothed or, rarely, entire, up to 12 cm long but usually smaller, without hairs and almost stalkless. FLOWERS: Blue or purple, sweetly scented, conspicuous, irregular, 2 petals shaped like butterfly wings. FRUIT: Small rounded berry, black when ripe. ECOLOGY: Found from Sudan and Ethiopia south to Zimba­ bwe. A common shrub in forest edges, bushland, moun­ tain scrub, wooded grassland and in secondary vegeta­ tion, 1,500-2,400 m. Common in rocky places. Agroclimatic Zone Ill. Flowers may occur any time of the year. USES: Arrows, medicine (leaves, stem, roots), bee forage, ornamental, ceremonial. PROPAGATION: Propagation is easy. Cuttings and seedlings can be used, as well as root cuttings or root suckers produced from exposed or injured roots. REMARKS: There are close to two dozen Clerodendrum species in Kenya. C. myricoides is the commonest. Other common species are C. johnstonii (Kamba: Muteangwai; Kikuyu: Muringo; Luhya; Lusala; Marakwet: Jersegao; Meru: Kiankware), which can be a shrub or liana that climbs with the remains of leaf petioles. Flowers are white and the usually galled fruits orange to black.
    [Show full text]
  • MEDICINAL HERBS and FLOWERING PLANTS GARDEN in VIGNAN's CAMPUS Objectives: 1. to Grow and Maintain the Flowering and Medicinal
    MEDICINAL HERBS AND FLOWERING PLANTS GARDEN IN VIGNAN’S CAMPUS Objectives : 1. To grow and maintain the flowering and medicinal important herbs in the vicinity of Hanuman Statue to bring elegance to the campus. 2. To design compost units and develop organic manure for the cultivation of herbs. 3. To prepare herbal decoction, syrup and infusions using roots, leaves, stem of propagated medicinal herbs both standalone and combinatorial mixtures. 4. To train students in the identification and taxonomy of medicinal herbs and extraction procedure, to screen secondary metabolites. Rationale: As our lifestyle is now getting techno-savvy, we are moving away from nature. However, we cannot escape from nature for we are part of nature. Natural herbal flora withstood the vagaries of climatic changes through the ages of earth. In addition, they are endowed with safe compounds preferably positive health benefits and hence they are comparatively safer and eco- friendly. Traditionally there lots of herbs are in use to relieve humans and livestock from the ailments. Therefore, there is a need to promote them to save human lives. These herbal products are today are the symbol of safety in contrast to the synthetic drugs, that are regarded as unsafe to human beings and environment. Although herbs had been priced for their medicinal, flavoring and aromatic qualities for centuries, the synthetic products of the modern age surpassed their importance, for a while. It is primarily because of the marketing strategies adopted to promote synthetic products. It’s time to promote and propagate the various species of medicinal plants globally particularly among students and woman folk to appraise their value in healthcare.
    [Show full text]
  • Towards Resolving Lamiales Relationships
    Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales.
    [Show full text]
  • A Comparative Pharmacognostical Study of Certain Clerodendrum Species (Family Lamiaceae) Cultivated in Egypt
    A Comparative Pharmacognostical Study of Certain Clerodendrum Species (Family Lamiaceae) Cultivated in Egypt A Thesis Submitted By Asmaa Mohamed Ahmed Khalil For the Degree of Master in Pharmaceutical Sciences (Pharmacognosy) Under the Supervision of Prof. Dr. Prof. Dr. Soheir Mohamed El Zalabani Hesham Ibrahim El-Askary Professor of Pharmacognosy Professor of Pharmacognosy Faculty of Pharmacy Faculty of Pharmacy Cairo University Cairo University Assistant Prof. Dr. Omar Mohamed Sabry Assistant Professor of Pharmacognosy Faculty of Pharmacy Cairo University Pharmacognosy Department Faculty of Pharmacy Cairo University A.R.E. 2019 Abstract A Comparative Pharmacognostical Study of Certain Clerodendrum Species (Family Lamiaceae) Cultivated in Egypt Clerodendrum inerme L. Gaertn. and Clerodendrum splendens G. Don, two members of the cosmopolitan family Lamiaceae, are successfully acclimatized in Egypt. The current study aimed to evaluate the local plants as potential candidates for implementation in pharmaceutical industries, which necessitates an intensive investigation of safety and bioactivity of the cited species. To ensure quality and purity of the raw material, criteria for characterization of and/or discrimination between the two species were established via botanical profiling, proximate analysis, phytochemical screening and UPLC analysis. The leaves were subjected to comparative biological and chemical study to select the most suitable from the medicinal and economic standpoints. In this respect, the antioxidant cyotoxic and antimicrobial potentials of the defatted ethanol (70%) extracts of the tested samples were assessed in-vitro. Meanwhile, the chemical composition of the leaves was examined through qualitative and quantitative comparative analyses of the phenolic components. In this respect, The leaves of C. inerme were selected for more intensive both phytochemical and biological investigation.
    [Show full text]
  • Geographic Distribution of Ploidy Levels and Chloroplast Haplotypes in Japanese Clerodendrum Trichotomum S
    ISSN 1346-7565 Acta Phytotax. Geobot. 70 (2): 87–102 (2019) doi: 10.18942/apg.201823 Geographic Distribution of Ploidy Levels and Chloroplast Haplotypes in Japanese Clerodendrum trichotomum s. lat. (Lamiaceae) 1,* 2 3 4 5 Leiko Mizusawa , Naoko ishikawa , okihito YaNo , shiNji Fujii aNd Yuji isagi 1Faculty of Human Development and Culture, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan. * [email protected] (author for correspondence); 2Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Tokyo 153-8902, Japan; 3Faculty of Biosphere-Geosphere Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan; 4Faculty of Human Environments, University of Human Environments, 6-2 Kamisanbonmatsu, Motojuku-cho, Okazaki, Aichi 444-3505, Japan; 5Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan Clerodendrum trichotomum s. lat., under which many infraspecific taxa have been recognized, includes both tetraploid and diploid individuals, although chromosome numbers and geographic variation in ploi- dy levels have not been investigated in the Japanese archipelago. The geographic distribution of ploidy levels and chloroplast haplotypes of four Japanese taxa of C. trichotomum s. lat., based on chromosome counts, flow cytometry, and genotyping of five microsatellite loci is reported. It was determined that Japanese C. trichotomum var. trichotomum and var. yakusimense are tetraploid (2n = 104), while var. es- culentum and C. izuinsulare are diploid (2n = 52). The diploid taxa are distributed only on the southern edge of the Japanese archipelago, while tetraploid C. trichotomum is distributed widely. Such distribu- tion patterns may be formed by temperate forest shrinkage during, and tetraploid expansion after, glacial periods.
    [Show full text]
  • Efficacy of A-Rest™ Or Bonzi™ on Clerodendrum Thomsoniae As a Flowering Potted Plant Jeff S
    Special Research Report: #515: Production Technology Efficacy of A-Rest™ or Bonzi™ on Clerodendrum thomsoniae as a Flowering Potted Plant Jeff S. Kuehny and Annina Delaune, Deparment of Horticulture, Louisiana State University AgCenter, Baton Rouge, LA 70803-2120. ___________________________________________________________________________________ pairs were planted in May 2004 (latitude 30.43N) using one per 6-inch container filled with a mixture of Promix. All plants received FUNDING INDUSTRY SOLUTIONS THROUGH RESEARCH & ambient light levels in a EDUCATION greenhouse with temperature Phone: 703-838-5211 set points of 86° F day/73° F E-mail: [email protected] night. Plants were fertilized Website: www.endowment.org at ever irrigation with Figure 1. Effect of control, Peters™ 20-10-20 at the rate A-Rest™ (ancymidol) 0.5 of 200 ppm N. or1.0 mg a.i./pot drench on BACKGROUND C. thomsoniae. An application of A-Rest™ Two weeks after (ancymidol) or Bonzi™ transplanting, central leaders (paclobutrazol) has been were pinched. PGR recommended either as a treatments were applied after spray or a drench to control two weeks of vegetative growth of Clerodendrum growth. Measurements were thomsoniae. recorded 49 d after PGR applications. Recommendations suggest 6 to 50 ppm sprays that will RESULTS reduce plant growth by 40% A-Rest™ and Bonzi™ Figure 2. Effect of control, when compared to controls. reduced internode length of Bonzi™ (paclobutrazol) 0.5 They also increased C. thomsoniae (Table 1) and or 1.0 mg a.i./pot drench on flowering. The objectives of had minimal effect on days to C. thomsoniae. this study were to determine flower, number of laterals the efficacy of: a) A-Rest™ (average 3), or number of (ancymidol) at 100 or 200 leaves (average of 50).
    [Show full text]
  • Plant Identification Presentation
    Today’s Agenda ◦ History of Plant Taxonomy ◦ Plant Classification ◦ Scientific Names ◦ Leaf and Flower Characteristics ◦ Dichotomous Keys Plant Identification Heather Stoven What do you gain Looking at plants more closely from identifying plants? Why is it ◦ How do plants relate to each other? How are they important? grouped? • Common disease and insect problems • Cultural requirements • Plant habit • Propagation methods • Use for food and medicine Plant Classification Plant Classification Group each plant into a specific category Group each plant into a specific category Maple Spiraea Viburnum Crabapple Maple Spiraea Apple tree Ash Viburnum Crabapple Daylily Geranium Apple tree Ash Tomato Poinsettia Daylily Geranium TREES Oak Pepper Tomato Poinsettia Weeping willow Mint Oak Pepper Petunia Euonymus Weeping willow Mint Petunia Euonymus OS-Plant ID.ppt, page 1 Plant Classification Plant Classification Group each plant into a specific category Group each plant into a specific category Maple Spiraea Maple Spiraea Viburnum Crabapple Viburnum Crabapple Apple tree Ash Ornamental Apple tree Ash Edible Daylily Geranium Flowering Daylily Geranium Tomato Poinsettia Plants Tomato Poinsettia Crops Oak Pepper Oak Pepper Weeping willow Mint Weeping willow Mint Petunia Euonymus Petunia Euonymus Carolus Linnaeus Plant Taxonomy The Father of Taxonomy ◦ Identifying, classifying and assigning ◦ Swedish botanist scientific names to plants ◦ Developed binomial ◦ Historical botanists trace the start of nomenclature taxonomy to one of Aristotle’s students, Theophrastus (372-287 B.C.), but he didn’t ◦ Cataloged plants based on create a scientific system natural relationships—primarily flower structures (male and ◦ He relied on the common groupings of female sexual organs) folklore combined with growth: tree, shrub, undershrub or herb ◦ Published Species Naturae in ◦ Detected the process of germination and 1735 and Species Plantarum in realized the importance of climate and soil 1753 to plants ◦ Then, along came Linnaeus….
    [Show full text]
  • Present and Future Threats by Invasive Alien Plants
    Areas of high conservation value in Georgia: present and future threats by invasive alien plants Biological Invasions Daniela Julia Klara Thalmann, Department of Biology, Ecology & Evolution, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland, Tel: + (41) (0) 78-802 92 25, [email protected] David Kikodze, Institute of Botany, Ilia State University, Georgia Manana Khutsishvili, Institute of Botany, Ilia State University, Georgia David Kharazishvili, Batumi Botanical Garden, Georgia Antoine Guisan, University of Lausanne, Switzerland Olivier Broennimann*, University of Lausanne, Switzerland Heinz Müller-Schärer*,University of Fribourg, Switzerland *joint senior authorship Annex 2: Occurrence data collected by source for the selected nine alien invasive species in Georgia. Amount of records by Amount of records by Amount of records by Species website herbar field survey Ailanthus altissima 4255 2 47 Ambrosia artemisiifolia 7826 27 26 Clerodendron bungai 76 19 8 Miscanthus sinensis 773 5 6 Opuntia humifusa 676 0 29 Opuntia phaeacantha 489 0 22 Robinia pseudoacacia 24862 4 50 Spiraea japonica 633 6 6 Vitex rotundifolia 348 1 2 Annex 3. The global model for Ambrosia artemisiifolia and its statistics cf. text for details. The fitted models were first projected on the whole world and were then projected on Georgia at a resolution of 1x1 Km. Annex 4. Evaluation of the species distribution models. Mean and standard deviation (over 3 techniques x 10 iterations) of Boyce, TSS and POD evaluation metrics are provided
    [Show full text]
  • Clerodendrum Trichotomum C.P
    Clerodendrum trichotomum C.P. Thunberg Harlequin Glorybower (Clerodendron trichotomum) Other Common Names: Hardy Clerodendrum, Tree-of-Bad-Fortune, Tree-of-Good-Fortune. Family: Verbenaceae. Cold Hardiness: Useful as a woody shrub or small tree in USDA zones 8 and 9 (10), as a dieback shrub, subshrub, or herbaceous perennial in zone 7 or perhaps 6b. Foliage: Deciduous to semi-evergreen; opposite; simple; ovate to ovate-elliptic; blade medium to dark green in color; (3½O) 4O to 6O (9O) long by 2O to 5O wide; tip acuminate; base broadly cuneate, broadly rounded, to nearly truncate; margins nearly entire or with sparse shallow toothing; leaves softly tomentose, particularly beneath; palmately veined; petioles green to red in color and covered with a tomentose; petioles long, (1½O) 2O t 4O long; leaves emitting a strong scent when crushed ranging from malodorous to reminiscent of green peas (Pisum sativum L.); no fall color develops. Flower: Long peduncled axillary cymes of white perfect flowers on new growth; corolla tubular with five flaring individual narrow lobes opening to a 1O to 1½O diameter; calyx subtending the flower and becoming persistent; stamens long exerted; fragrant; very showy en masse. Fruit: Roundish drupe; aO to ½O in diameter; blue at maturity subtended by a persistent fleshy red calyx; attractive in fruit. Stem / Bark: Stems — new growth covered in a whitish tomentose; variably flattened at the nodes; medium thickness; green becoming brown; odiferous if scratched; Buds — small, 1/16O or less long; green to brownish covered in a white pubescence; Bark — brown. Habit: Growth habit is highly dependent upon the cultural environment; plants in warmer regions will develop into irregular upright oval to upright rounded large shrubs or small trees, 10' to 15' (20') tall, while plants in colder environments will be irregular suckering herbaceous perennials; plants are medium coarse to coarse in texture.
    [Show full text]
  • Further Disintegration and Redefinition of Clerodendrum (Lamiaceae): Implications for the Understanding of the Evolution of an Intriguing Breeding Strategy
    TAXON 59 (1) • February 2010: 125–133 Yuan & al. • Phylogeny of Clerodendrum and allied genera Further disintegration and redefinition of Clerodendrum (Lamiaceae): Implications for the understanding of the evolution of an intriguing breeding strategy Yao-Wu Yuan,1,2 David J. Mabberley,3,4 Dorothy A. Steane5 & Richard G. Olmstead1 1 Department of Biology, University of Washington, Box 355325, Seattle, Washington 98195-5325, U.S.A. 2 Current address: 4504 Miller Plant Sciences Building, Department of Plant Biology, University of Georgia, Athens, Georgia 30602, U.S.A. 3 University of Washington Botanic Gardens, College of Forest Resources, Box 354115, Seattle, Washington 98195-4115, U.S.A. 4 Current address: Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, U.K. 5 School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia Author for correspondence: Yao-Wu Yuan, [email protected] Abstract The genus Clerodendrum s.l. is polyphyletic. Although recent studies have resulted in C. subg. Cyclonema and C. sect. Konocalyx being removed to the resurrected genus Rotheca, and the unispecific genus Huxleya being sunk into Clerodendrum, it has been unclear whether Clerodendrum as currently circumscribed is monophyletic, particularly in relation to the American genera Aegiphila, Amasonia, and Tetraclea. This phylogenetic study employs four relatively fast-evolving chloroplast DNA re- gions, trnT-L, trnL-F, trnD-T, and trnS-fM, to clarify the generic boundaries of Clerodendrum and its relationship to allied genera. The results corroborate previous studies that there are three well-supported clades in the currently recognized Clerodendrum: an Asian clade, an African clade, and a Pantropical Coastal clade.
    [Show full text]
  • Clerodendrum Quadriloculare)
    Invasive Species Fact Sheet Pacific Islands Area Bronze-leaved clerodendrum (Clerodendrum quadriloculare) Scientific name & Code: Clerodendrum quadriloculare (Blanco) Merr., CLQU2 Synonyms – Ligustrum quadriloculare Blanco Family: Verbenaceae – Verbena Family Duration/Growth Habit: Perennial Shrub Common names: English – bronze-leaved clerodendrum, fireworks, Philippine glorybower, shooting star, starburst bush Origin: New Guinea, Philippines Description: An erect, glabrous, or nearly glabrous shrub or small tree 2-5 m high. Leaves paired, oblong, 15-20 cm long, apex acuminate, base rounded, the upper surface green, the lower surface usually dark-purple. Flowers in many-flowered terminal panicled cymes, in showy large clusters with a narrow pink tube to 7 cm long, ending in 5-lobed white oblong-elliptic lobes about 1.5 cm long. Propagation: Produces large amounts of viable seed and suckers profusely from the roots. Seeds mostly distributed by birds and other animals. Distribution: Identified in Hawaii, Guam, CNMI (Rota, Tinian), American Samoa, Chuuk, Kosrae, Pohnpei, Yap, Palau (main island group). Habitat/Ecology: Suckers and sprouts profusely. Mostly found along roads and disturbed areas. Forms dense thickets. Very shade tolerant. Requires specialist pollinators (very long corolla tube). Tolerates, or benefits from, mutilation, cultivation, or fire. Environmental impact: Can form monotypic thickets in forests (tolerates full shade). Management: Physical – Very difficult to control manually by pulling. Chemical – For young plants, triclopyr
    [Show full text]
  • Gardens and Stewardship
    GARDENS AND STEWARDSHIP Thaddeus Zagorski (Bachelor of Theology; Diploma of Education; Certificate 111 in Amenity Horticulture; Graduate Diploma in Environmental Studies with Honours) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy October 2007 School of Geography and Environmental Studies University of Tasmania STATEMENT OF AUTHENTICITY This thesis contains no material which has been accepted for any other degree or graduate diploma by the University of Tasmania or in any other tertiary institution and, to the best of my knowledge and belief, this thesis contains no copy or paraphrase of material previously published or written by other persons, except where due acknowledgement is made in the text of the thesis or in footnotes. Thaddeus Zagorski University of Tasmania Date: This thesis may be made available for loan or limited copying in accordance with the Australian Copyright Act of 1968. Thaddeus Zagorski University of Tasmania Date: ACKNOWLEDGEMENTS This thesis is not merely the achievement of a personal goal, but a culmination of a journey that started many, many years ago. As culmination it is also an impetus to continue to that journey. In achieving this personal goal many people, supervisors, friends, family and University colleagues have been instrumental in contributing to the final product. The initial motivation and inspiration for me to start this study was given by Professor Jamie Kirkpatrick, Dr. Elaine Stratford, and my friend Alison Howman. For that challenge I thank you. I am deeply indebted to my three supervisors Professor Jamie Kirkpatrick, Dr. Elaine Stratford and Dr. Aidan Davison. Each in their individual, concerted and special way guided me to this omega point.
    [Show full text]