The Molecular Basis of the Interactions of Rhabdoviruses with Their Insect and Plant Hosts

Total Page:16

File Type:pdf, Size:1020Kb

The Molecular Basis of the Interactions of Rhabdoviruses with Their Insect and Plant Hosts THE MOLECULAR BASIS OF THE INTERACTIONS OF RHABDOVIRUSES WITH THEIR INSECT AND PLANT HOSTS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Chi-Wei Tsai, M.S. * * * * * The Ohio State University 2006 Dissertation Committee: Professor Saskia A. Hogenhout, Adviser Approved by Professor David M. Francis Professor Margaret G. Redinbaugh ________________________________ Professor Thomas G. Wilson Adviser Graduate Program in Entomology ABSTRACT Maize fine streak virus (MFSV) and Maize mosaic virus (MMV) are insect transmitted plant rhabdoviruses. Many rhabdoviruses are economically important pathogens of human, livestock, and crops worldwide. Insects transmit many animal and all plant rhabdoviruses. These viruses invade and replicate in cells of various tissues in insects, vertebrates, and plants. Therefore, insects are not only vectors but also replication hosts for rhabdoviruses. Sigma rhabdovirus only infects Drosophila flies and is transmitted to the progeny of flies through germinal cells. D. melanogaster is extensively used as a model organism because of its traceable genetics and fully sequenced genome. MFSV, MMV, and Sigma virus, and interactions with their hosts provide unique systems for characterization of molecular factors determining rhabdovirus host ranges. First, I completed the genome sequences of two maize-infecting rhabdoviruses, MFSV and MMV. The MFSV genome encodes seven genes on the antigenomic strand, whereas the MMV genome encodes six genes. More information about possible functions of MFVS and MMV proteins was obtained through in planta cellular localization of fluorescent-protein fusions. The results showed that the MFSV N, P4, M, and MMV P proteins target the nuclei of plant cells, whereas the MFSV P, P3, and MMV N, P3, M proteins do not. These findings are consistent with the presence of nuclear localization ii signals (NLSs) only in nuclear targeting proteins. Co-introductions of rhabdovirus proteins revealed that the rhabdovirus N and P proteins interact in which the P proteins follow the distribution of the N proteins, and that the N and P protein interaction is specific to cognate proteins of each virus. MFVS and MMV replicate in the nucleus and assemble at the inner nuclear membrane in insect and plant cells, and therefore nuclear import of viral proteins is critical to complete virus morphogenesis. Using virus-induced gene silencing (VIGS) combined with in planta cellular localization experiments, I discovered that silencing of Importin αs in plant cells inhibits the nuclear localization of the MFSV N protein and the MFSV N-P complex in plant cells, suggesting that the MFSV N protein and the MFSV N-P complex are dependent on Importin αs for nuclear import in plants. In addition, the MFSV N protein and the MFSV N-P complex also targeted the nuclei of insect cells, consistent with the hypothesis that the MFSV proteins interact with conserved nuclear import pathways of plants and insects. Studies to determine whether the Importin αs are involved in nuclear import of the MFSV N protein and the MFSV N-P complex into the nuclei of drosophila cells are ongoing. To investigate the drosophila response to Sigma virus infection, hybridization experiments with RNAs from virus-infected and virus-free drosophila adults and cDNA microarrays that contain whole drosophila genome were conducted. The Imd signaling pathway was identified as the main component of the drosophila anti-Sigma virus iii response, whereas there were no indications of activation of the Toll pathway. This is in contrast with Drosophila C virus (DCV) and Drosophila X virus (DXV), which mainly activate the Jak-STAT and Toll pathways, respectively. This is the first comparative study showing that viruses can induce different immune pathways in drosophila, similarly to Gram-negative bacteria and Gram-positive bacteria, which predominantly activate the Imd and Toll pathways, respectively. These findings and future studies of Sigma virus-drosophila interactions with will help to elucidate innate immune response pathways against enveloped viruses in vertebrates. A comparison of how different insects, including drosophila, leafhoppers and planthoppers, respond to rhabdovirus infections should prove interesting. iv ACKNOWLEDGMENTS I am grateful to my advisor, Dr. Saskia A. Hogenhout, for her intellectual guidance, encouragement, and constant support for this project, and for her assistance in editing this dissertation. I would like to thank my advisory committee members, Drs. David M. Francis, Margaret G. Redinbaugh, and Thomas G. Wilson, for their advice and support of my graduate study. I am also grateful for the assistance of Drs. El-Desouky Ammar, Xiaodong Bai, Ralf G. Dietzgen, Roy E. Gingery, Michael M. Goodin, Sophien Kamoun, John A. Lindbo, Elizabeth A. McGraw, Tea Meulia, Scott L. O’Neill, Markus Riegler, Anna E. Whitfield, and Joe Win. I also thank John J. Abt, Valdir R. Correa, Tatiana Fazzolari, Dave E. Fulton, Mark W. Jones, Roger Mitchell, Sharon E. Reed, Angela D. Strock, William E. Styer, Jane C. Todd, Tania Y. Toruno, and Kristen J. Willie for their help and friendship. This research was supported by the OARDC Graduate Research Enhancement Grant Program, the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service Grant 2002-35302-12653, and the Australian Research Council Linkages International Grant LX0452397. v VITA 1995 ........................................................... B.S. Entomology, National Taiwan University 1997 ........................................................... M.S. Entomology, National Taiwan University 1997-1999 .................................................. Second lieutenant, Army Reserve Officers' Training Corps (ROTC), Taiwan 1999-2001 .................................................. Research assistant, Department of Entomology, National Taiwan University 2001-present ............................................... Graduate Research Associate, The Ohio State University PUBLICATIONS 1. Tsai CW, Redinbaugh MG, Willie KJ, Reed S, Goodin M, and Hogenhout SA. 2005. Complete genome sequence and in planta subcellular localization of Maize fine streak virus proteins. J. Virol. 79:5304-5314. 2. Reed SE, Tsai CW, Willie K, Redinbaugh MG, and Hogenhout SA. 2005. Shotgun sequencing of the negative-sense RNA genome of the rhabdovirus Maize mosaic virus. J. Virol. Methods 129:91-96. 3. Tsai CW and Lee HJ. 2001. Analysis of specific adaptation to a domicile habitat: a comparative study of two closely related cockroach species. J. Medical Entomol. 38:245-252. vi 4. Tsai CW and Lee HJ. 2000. Circadian locomotor rhythm masked by the female reproduction cycle in cockroaches. Physiol. Entomol. 25:63-73. 5. Tsai CW and Lee HJ. 1997. Volatile pheromone detection and calling behavior exhibition: secondary mate-finding strategy of the German cockroach, Blattella germanica (L.). Zoological Studies 36:325-332. FIELDS OF STUDY Major Field: Entomology vii TABLE OF CONTENTS Page Abstract ………………………………………..……….…………….…………... ii Acknowledgements …………………………..……….………………….………. v Vita …………………………………………..……….…………….…………….. vi List of Tables ………………………………………………………………….….. x List of Figures ………………...……………………………………………...…… xi Chapters: 1. Literature Review …………………………………………………...…….. 1 1.1 Abstract ...………………………………………………………...…… 2 1.2 Introduction ……………………………………………………..……. 3 1.3 MFSV and MMV genome organization ……………...……........……. 6 1.4 Gene expression and genome replication ……………...…...…….…... 7 1.5 Protein function ………………………………………......…………... 9 1.6 Virus-insect interactions ………………………………...….…...……. 15 1.7 Virus-plant interactions ………………………………...……....…….. 22 1.8 Research objectives ……………………………….……….......……... 23 1.9 References …………………………………………………......……... 25 2. Complete genome sequence and in planta subcellular localization of Maize fine streak virus proteins …………..…….………………………… 36 2.1 Abstract ………………………..……………………………………… 37 2.2 Introduction …………………………………………………………… 38 2.3 Materials and methods ………………………………………………... 40 2.4 Results ………………………………………………………………… 48 2.5 Discussion …………………………………………………………….. 54 2.6 Acknowledgments …………………………………………………….. 58 2.7 References……………………………………………………………... 60 viii 3. Shotgun sequencing of the negative-sense RNA genome of the rhabdovirus Maize mosaic virus …………..……………………………… 74 3.1 Abstract ………………………..……………………………………… 75 3.2 Introduction …………………………………………………………… 76 3.3 Materials and methods ………………………………………………... 77 3.4 Results and discussion ……….……………………..………………… 80 3.5 Acknowledgments …………………………………………………….. 87 3.6 References……………………………………………………………... 88 4. Subcellular localization and nuclear import of Maize fine streak virus and Maize mosaic virus proteins …………..……………………….…………. 96 4.1 Abstract ………………………..……………………………………… 97 4.2 Introduction …………………………………………………………… 98 4.3 Materials and methods ………………………………………………... 100 4.4 Results ………………………………………………………………… 105 4.5 Discussion …………………………………………………………….. 110 4.6 Acknowledgments …………………………………………………….. 113 4.7 References……………………………………………………………... 114 5. Sigma rhabdovirus activates the innate immune response of drosophila …. 123 5.1 Abstract ………………………..……………………………………… 124 5.2 Introduction …………………………………………………………… 125 5.3 Materials and methods ………………………………………………... 128 5.4 Results ………………………………………………………………… 132 5.5 Discussion …………………………………………………………….. 138 5.6 Acknowledgments …………………………………………………….. 143 5.7 References……………………………………………………………..
Recommended publications
  • Virus Replication
    Introduction • Encompasses > 150 viruses Rhabdoviridae •Rabies –only important human Brian Wells pathogen • One of the most lethal of all infectious diseases History History • Adapted from Latin meaning “to rage” • 1885 – Louis Pasteur – rabies vaccine • Greeks – lyssa – “frenzy” – Attenuated form of virus produced by inoculation of rabbit spinal cord • Rabies represents one of the oldest and most feared diseases • Occurs throughout the world except in Australia, Japan, Great Britain, • Recognized in Egypt before 2300 B.C. and islands such as Hawaii • Well described by Aristotle • “Reportable” disease • Iliad – “canine madness” Taxonomy Viral Structure • 3 Genera – Ephemerovirus, Lyssavirus, • 170 nm x 70 nm Vesiculovirus • Bullet-shaped enveloped virion • Infect vertebrates, invertebrates, and – Glycoprotein peplomers & matrix protein plants under envelope • Genus Lyssavirus comprises rabies • Helical symmetry virus and 3 rabies-like viruses • Linear minus sense ssRNA – 11-12 kb • Each capable of causing rabies-like • Glycoprotein spikes in outer membrane disease in humans bilayer 1 Virus Replication • Receptor-mediated endocytosis • Uncoat and release nucleocapsid into cytoplasm • Production of 5 monocistronic mRNA species - N, P (NS), M, G, L – by L+P viral transcriptase • Each mRNA capped and poly-A’ed • dsRNA replicative intermediate Virus Replication Virus Replication • N+P+L and (-) ssRNA form core • M forms matrix around core • Virus buds from glycoprotein area of plasma membrane and thus acquires its envelope Transmission • Unstable
    [Show full text]
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • (LRV1) Pathogenicity Factor
    Antiviral screening identifies adenosine analogs PNAS PLUS targeting the endogenous dsRNA Leishmania RNA virus 1 (LRV1) pathogenicity factor F. Matthew Kuhlmanna,b, John I. Robinsona, Gregory R. Bluemlingc, Catherine Ronetd, Nicolas Faseld, and Stephen M. Beverleya,1 aDepartment of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; bDepartment of Medicine, Division of Infectious Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; cEmory Institute for Drug Development, Emory University, Atlanta, GA 30329; and dDepartment of Biochemistry, University of Lausanne, 1066 Lausanne, Switzerland Contributed by Stephen M. Beverley, December 19, 2016 (sent for review November 21, 2016; reviewed by Buddy Ullman and C. C. Wang) + + The endogenous double-stranded RNA (dsRNA) virus Leishmaniavirus macrophages infected in vitro with LRV1 L. guyanensis or LRV2 (LRV1) has been implicated as a pathogenicity factor for leishmaniasis Leishmania aethiopica release higher levels of cytokines, which are in rodent models and human disease, and associated with drug-treat- dependent on Toll-like receptor 3 (7, 10). Recently, methods for ment failures in Leishmania braziliensis and Leishmania guyanensis systematically eliminating LRV1 by RNA interference have been − infections. Thus, methods targeting LRV1 could have therapeutic ben- developed, enabling the generation of isogenic LRV1 lines and efit. Here we screened a panel of antivirals for parasite and LRV1 allowing the extension of the LRV1-dependent virulence paradigm inhibition, focusing on nucleoside analogs to capitalize on the highly to L. braziliensis (12). active salvage pathways of Leishmania, which are purine auxo- A key question is the relevancy of the studies carried out in trophs.
    [Show full text]
  • A Persistent Giant Algal Virus, with a Unique Morphology, Encodes An
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A persistent giant algal virus, with a unique morphology, encodes an 2 unprecedented number of genes involved in energy metabolism 3 4 Romain Blanc-Mathieu1,2, Håkon Dahle3, Antje Hofgaard4, David Brandt5, Hiroki 5 Ban1, Jörn Kalinowski5, Hiroyuki Ogata1 and Ruth-Anne Sandaa6* 6 7 1: Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan 8 2: Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, 9 CNRS, INRA, IRIG, Grenoble, France 10 3: Department of Biological Sciences and K.G. Jebsen Center for Deep Sea Research, 11 University of Bergen, Bergen, Norway 12 4: Department of Biosciences, University of Oslo, Norway 13 5: Center for Biotechnology, Universität Bielefeld, Bielefeld, 33615, Germany 14 6: Department of Biological Sciences, University of Bergen, Bergen, Norway 15 *Corresponding author: Ruth-Anne Sandaa, +47 55584646, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Abstract 17 Viruses have long been viewed as entities possessing extremely limited metabolic 18 capacities.
    [Show full text]
  • Characterization of Farmington Virus, a Novel Virus from Birds That Is Distantly Related to Members of the Family Rhabdoviridae
    Palacios et al. Virology Journal 2013, 10:219 http://www.virologyj.com/content/10/1/219 RESEARCH Open Access Characterization of Farmington virus, a novel virus from birds that is distantly related to members of the family Rhabdoviridae Gustavo Palacios1†, Naomi L Forrester2,3,4†, Nazir Savji5,7†, Amelia P A Travassos da Rosa2, Hilda Guzman2, Kelly DeToy5, Vsevolod L Popov2,4, Peter J Walker6, W Ian Lipkin5, Nikos Vasilakis2,3,4 and Robert B Tesh2,4* Abstract Background: Farmington virus (FARV) is a rhabdovirus that was isolated from a wild bird during an outbreak of epizootic eastern equine encephalitis on a pheasant farm in Connecticut, USA. Findings: Analysis of the nearly complete genome sequence of the prototype CT AN 114 strain indicates that it encodes the five canonical rhabdovirus structural proteins (N, P, M, G and L) with alternative ORFs (> 180 nt) in the N and G genes. Phenotypic and genetic characterization of FARV has confirmed that it is a novel rhabdovirus and probably represents a new species within the family Rhabdoviridae. Conclusions: In sum, our analysis indicates that FARV represents a new species within the family Rhabdoviridae. Keywords: Farmington virus (FARV), Family Rhabdoviridae, Next generation sequencing, Phylogeny Background Results Therhabdovirusesarealargeanddiversegroupofsingle- Growth characteristics stranded, negative sense RNA viruses that infect a wide Three litters of newborn (1–2 day old) ICR mice with aver- range of vertebrates, invertebrates and plants [1]. The family agesizeof10pupswereinoculated intracerebrally (ic) with Rhabdoviridae is currently divided into nine approved ge- 15–20 μl, intraperitoneally (ip) with 100 μlorsubcutane- nera (Vesiculovirus, Perhavirus, Ephemerovirus, Lyssavirus, ously (sc) with 100 μlofastockofVero-grownFARV(CT Tibrovirus, Sigmavirus, Nucleorhabdovirus, Cytorhabdovirus AN 114) virus containing approximately 107 plaque and Novirhabdovirus);however,alargenumberofanimal forming units (PFU) per ml.
    [Show full text]
  • Data Mining Cdnas Reveals Three New Single Stranded RNA Viruses in Nasonia (Hymenoptera: Pteromalidae)
    Insect Molecular Biology Insect Molecular Biology (2010), 19 (Suppl. 1), 99–107 doi: 10.1111/j.1365-2583.2009.00934.x Data mining cDNAs reveals three new single stranded RNA viruses in Nasonia (Hymenoptera: Pteromalidae) D. C. S. G. Oliveira*, W. B. Hunter†, J. Ng*, Small viruses with a positive-sense single-stranded C. A. Desjardins*, P. M. Dang‡ and J. H. Werren* RNA (ssRNA) genome, and no DNA stage, are known as *Department of Biology, University of Rochester, picornaviruses (infecting vertebrates) or picorna-like Rochester, NY, USA; †United States Department of viruses (infecting non-vertebrates). Recently, the order Agriculture, Agricultural Research Service, US Picornavirales was formally characterized to include most, Horticultural Research Laboratory, Fort Pierce, FL, USA; but not all, ssRNA viruses (Le Gall et al., 2008). Among and ‡United States Department of Agriculture, other typical characteristics – e.g. a small icosahedral Agricultural Research Service, NPRU, Dawson, GA, capsid with a pseudo-T = 3 symmetry and a 7–12 kb USA genome made of one or two RNA segments – the Picor- navirales genome encodes a polyprotein with a replication Abstractimb_934 99..108 module that includes a helicase, a protease, and an RNA- dependent RNA polymerase (RdRp), in this order (see Le We report three novel small RNA viruses uncovered Gall et al., 2008 for details). Pathogenicity of the infections from cDNA libraries from parasitoid wasps in the can vary broadly from devastating epidemics to appar- genus Nasonia. The genome of this kind of virus ently persistent commensal infections. Several human Ј is a positive-sense single-stranded RNA with a 3 diseases, from hepatitis A to the common cold (e.g.
    [Show full text]
  • The LUCA and Its Complex Virome in Another Recent Synthesis, We Examined the Origins of the Replication and Structural Mart Krupovic , Valerian V
    PERSPECTIVES archaea that form several distinct, seemingly unrelated groups16–18. The LUCA and its complex virome In another recent synthesis, we examined the origins of the replication and structural Mart Krupovic , Valerian V. Dolja and Eugene V. Koonin modules of viruses and posited a ‘chimeric’ scenario of virus evolution19. Under this Abstract | The last universal cellular ancestor (LUCA) is the most recent population model, the replication machineries of each of of organisms from which all cellular life on Earth descends. The reconstruction of the four realms derive from the primordial the genome and phenotype of the LUCA is a major challenge in evolutionary pool of genetic elements, whereas the major biology. Given that all life forms are associated with viruses and/or other mobile virion structural proteins were acquired genetic elements, there is no doubt that the LUCA was a host to viruses. Here, by from cellular hosts at different stages of evolution giving rise to bona fide viruses. projecting back in time using the extant distribution of viruses across the two In this Perspective article, we combine primary domains of life, bacteria and archaea, and tracing the evolutionary this recent work with observations on the histories of some key virus genes, we attempt a reconstruction of the LUCA virome. host ranges of viruses in each of the four Even a conservative version of this reconstruction suggests a remarkably complex realms, along with deeper reconstructions virome that already included the main groups of extant viruses of bacteria and of virus evolution, to tentatively infer archaea. We further present evidence of extensive virus evolution antedating the the composition of the virome of the last universal cellular ancestor (LUCA; also LUCA.
    [Show full text]
  • Characterization of Infectious Bursal Disease Viruses Isolated from Commercial Chickens
    CHARACTERIZATION OF INFECTIOUS BURSAL DISEASE VIRUSES ISOLATED FROM COMMERCIAL CHICKENS by Jacqueline Marie Harris A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the Degree of Master of Science in Animal and Food Sciences Spring 2010 Copyright 2010 Jacqueline Marie Harris All Rights Reserved i CHARACTERIZATION OF INFECTIOUS BURSAL DISEASE VIRUSES ISOLATED FROM COMMERCIAL CHICKENS by Jacqueline Marie Harris Approved:_______________________________________________________________ Jack Gelb, Jr., Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved:_______________________________________________________________ Jack Gelb, Jr., Ph.D. Chairperson of the Department of Animal and Food Sciences Approved:_______________________________________________________________ Robin W. Morgan, Ph.D. Dean of the College of Agriculture and Natural Resources Approved:_______________________________________________________________ Debra Hess Norris, M.S. Vice Provost for Graduate and Professional Education ii ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor, Dr. Jack Gelb, Jr., for his continual guidance, encouragement, and academic support throughout my graduate education. I would like to give special thanks to the members of my graduate committee for their excellent advice and contributions during my research project, especially Dr. Daral Jackwood for his VP2 sequence analysis and Dr. Egbert Mundt for his monoclonal antibody testing. I am deeply indepted to Brian Ladman whose valuable knowledge and assistance enriched my growth as a student and researcher. I am truly grateful for all of his patience and support throughout my graduate career. In addition, I would like to thank Ruud Hein’s Intervet/Schering Plough lab group, Bruce Kingham, Joanne Kramer, Dr. Conrad Pope, Marcy Troeber, Dr.
    [Show full text]
  • Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies
    viruses Review Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies Varvara I. Maliogka 1,* ID , Angelantonio Minafra 2 ID , Pasquale Saldarelli 2, Ana B. Ruiz-García 3, Miroslav Glasa 4 ID , Nikolaos Katis 1 and Antonio Olmos 3 ID 1 Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] 2 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/D, 70126 Bari, Italy; [email protected] (A.M.); [email protected] (P.S.) 3 Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia, Spain; [email protected] (A.B.R.-G.); [email protected] (A.O.) 4 Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovak Republic; [email protected] * Correspondence: [email protected]; Tel.: +30-2310-998716 Received: 23 July 2018; Accepted: 13 August 2018; Published: 17 August 2018 Abstract: Perennial crops, such as fruit trees, are infected by many viruses, which are transmitted through vegetative propagation and grafting of infected plant material. Some of these pathogens cause severe crop losses and often reduce the productive life of the orchards. Detection and characterization of these agents in fruit trees is challenging, however, during the last years, the wide application of high-throughput sequencing (HTS) technologies has significantly facilitated this task. In this review, we present recent advances in the discovery, detection, and characterization of fruit tree viruses and virus-like agents accomplished by HTS approaches.
    [Show full text]
  • Virus Goes Viral: an Educational Kit for Virology Classes
    Souza et al. Virology Journal (2020) 17:13 https://doi.org/10.1186/s12985-020-1291-9 RESEARCH Open Access Virus goes viral: an educational kit for virology classes Gabriel Augusto Pires de Souza1†, Victória Fulgêncio Queiroz1†, Maurício Teixeira Lima1†, Erik Vinicius de Sousa Reis1, Luiz Felipe Leomil Coelho2 and Jônatas Santos Abrahão1* Abstract Background: Viruses are the most numerous entities on Earth and have also been central to many episodes in the history of humankind. As the study of viruses progresses further and further, there are several limitations in transferring this knowledge to undergraduate and high school students. This deficiency is due to the difficulty in designing hands-on lessons that allow students to better absorb content, given limited financial resources and facilities, as well as the difficulty of exploiting viral particles, due to their small dimensions. The development of tools for teaching virology is important to encourage educators to expand on the covered topics and connect them to recent findings. Discoveries, such as giant DNA viruses, have provided an opportunity to explore aspects of viral particles in ways never seen before. Coupling these novel findings with techniques already explored by classical virology, including visualization of cytopathic effects on permissive cells, may represent a new way for teaching virology. This work aimed to develop a slide microscope kit that explores giant virus particles and some aspects of animal virus interaction with cell lines, with the goal of providing an innovative approach to virology teaching. Methods: Slides were produced by staining, with crystal violet, purified giant viruses and BSC-40 and Vero cells infected with viruses of the genera Orthopoxvirus, Flavivirus, and Alphavirus.
    [Show full text]
  • Epidemiology of White Spot Syndrome Virus in the Daggerblade Grass Shrimp (Palaemonetes Pugio) and the Gulf Sand Fiddler Crab (Uca Panacea)
    The University of Southern Mississippi The Aquila Digital Community Dissertations Fall 12-2016 Epidemiology of White Spot Syndrome Virus in the Daggerblade Grass Shrimp (Palaemonetes pugio) and the Gulf Sand Fiddler Crab (Uca panacea) Muhammad University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/dissertations Part of the Animal Diseases Commons, Disease Modeling Commons, Epidemiology Commons, Virology Commons, and the Virus Diseases Commons Recommended Citation Muhammad, "Epidemiology of White Spot Syndrome Virus in the Daggerblade Grass Shrimp (Palaemonetes pugio) and the Gulf Sand Fiddler Crab (Uca panacea)" (2016). Dissertations. 895. https://aquila.usm.edu/dissertations/895 This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. EPIDEMIOLOGY OF WHITE SPOT SYNDROME VIRUS IN THE DAGGERBLADE GRASS SHRIMP (PALAEMONETES PUGIO) AND THE GULF SAND FIDDLER CRAB (UCA PANACEA) by Muhammad A Dissertation Submitted to the Graduate School and the School of Ocean Science and Technology at The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Approved: ________________________________________________ Dr. Jeffrey M. Lotz, Committee Chair Professor, Ocean Science and Technology ________________________________________________ Dr. Darrell J. Grimes, Committee Member Professor, Ocean Science and Technology ________________________________________________ Dr. Wei Wu, Committee Member Associate Professor, Ocean Science and Technology ________________________________________________ Dr. Reginald B. Blaylock, Committee Member Associate Research Professor, Ocean Science and Technology ________________________________________________ Dr. Karen S. Coats Dean of the Graduate School December 2016 COPYRIGHT BY Muhammad* 2016 Published by the Graduate School *U.S.
    [Show full text]
  • Opportunistic Intruders: How Viruses Orchestrate ER Functions to Infect Cells
    REVIEWS Opportunistic intruders: how viruses orchestrate ER functions to infect cells Madhu Sudhan Ravindran*, Parikshit Bagchi*, Corey Nathaniel Cunningham and Billy Tsai Abstract | Viruses subvert the functions of their host cells to replicate and form new viral progeny. The endoplasmic reticulum (ER) has been identified as a central organelle that governs the intracellular interplay between viruses and hosts. In this Review, we analyse how viruses from vastly different families converge on this unique intracellular organelle during infection, co‑opting some of the endogenous functions of the ER to promote distinct steps of the viral life cycle from entry and replication to assembly and egress. The ER can act as the common denominator during infection for diverse virus families, thereby providing a shared principle that underlies the apparent complexity of relationships between viruses and host cells. As a plethora of information illuminating the molecular and cellular basis of virus–ER interactions has become available, these insights may lead to the development of crucial therapeutic agents. Morphogenesis Viruses have evolved sophisticated strategies to establish The ER is a membranous system consisting of the The process by which a virus infection. Some viruses bind to cellular receptors and outer nuclear envelope that is contiguous with an intri‑ particle changes its shape and initiate entry, whereas others hijack cellular factors that cate network of tubules and sheets1, which are shaped by structure. disassemble the virus particle to facilitate entry. After resident factors in the ER2–4. The morphology of the ER SEC61 translocation delivering the viral genetic material into the host cell and is highly dynamic and experiences constant structural channel the translation of the viral genes, the resulting proteins rearrangements, enabling the ER to carry out a myriad An endoplasmic reticulum either become part of a new virus particle (or particles) of functions5.
    [Show full text]