Cyanobacteria and Cyanotoxin Ecology in Lakes and Drinking Water Chelsea Weirich University of Wisconsin-Milwaukee

Total Page:16

File Type:pdf, Size:1020Kb

Cyanobacteria and Cyanotoxin Ecology in Lakes and Drinking Water Chelsea Weirich University of Wisconsin-Milwaukee University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations May 2017 Cyanobacteria and Cyanotoxin Ecology in Lakes and Drinking Water Chelsea Weirich University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Environmental Health Commons Recommended Citation Weirich, Chelsea, "Cyanobacteria and Cyanotoxin Ecology in Lakes and Drinking Water" (2017). Theses and Dissertations. 1553. https://dc.uwm.edu/etd/1553 This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. CYANOBACTERIA AND CYANOTOXIN ECOLOGY IN LAKES AND DRINKING WATER by Chelsea Weirich A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Environmental Health Sciences at The University of Wisconsin-Milwaukee May 2017 ABSTRACT CYANOBACTERIA AND CYANOTOXIN ECOLOGY IN LAKES AND DRINKING WATER by Chelsea Weirich The University of Wisconsin-Milwaukee, 2017 Under the Supervision of Professor Todd Miller, PhD Freshwater harmful algal blooms (FHABs) present a threat to ecological and public health in inland lakes. Problems associated with FHABs include human and animal illness, production of taste and odor compounds, and declining water quality and property values. Despite increased awareness and research on FHABs in recent decades, questions remain regarding long-term growth and diversity of FHABs in lakes that have taken measures toward slowing or reversing eutrophication, environmental factors impacting toxin occurrence, the most appropriate toxin analysis methods for protecting public health, and evidence for cyanotoxins detected in finished drinking water as a connection to exposure for potentially causing disease; this dissertation research seeks to add evidence to the field for answering such questions. Chapter 1 proposes maximum acceptable concentrations for a variety of cyanotoxins, in advance of recent US Environmental Protection Agency guidelines, and reviews childrens’ risk to cyanotoxin exposure, as well as possible clinical biomarkers. A long-term analysis of major FHAB-forming cyanobacteria and cyanobacterial community composition (CCC) in Chapter 2 demonstrates connections to organic nitrogen, changes in ice cover, total phosphorus, Schmidt stability and rainfall correlating with cyanobacterial abundance ii and CCC. Chapter 3 presents novel preservation methods for cyanotoxins in lake water samples for intercontinental shipping or storage, as well as describes patterns of occurrence for 13 cyanopeptides (e.g. microcystins, anabaenopeptins, cyanopeptolins, nodularin, microginin) in 22 lakes on a semi-global scale using liquid chromatography with tandem mass spectrometry quantification methods. These patterns in cyanotoxin occurrence are then analyzed based on characteristics of their lakes, including mussel invasion, dominant surrounding land usage, trophic status, and lake size. Finally, Chapter 4 characterizes amounts and types of cyanopeptides in raw and finished drinking water and efficiency of their removal among four drinking water treatment process trains. The resulting work demonstrates that other peptides are as common as microcystins in lakes and drinking water, and a variety of cyanopeptides at low doses are detectable in finished water from modern water treatment plants, while providing novel storage, extraction, and detection methods and defining parameters of interannual cyanobacterial dominance in a eutrophic lake with suggested future directions for monitoring. iii Dedication I dedicate these writings to my parents, Joseph Weirich and Catherine Breider, who encouraged me to study science with passion and persistence, and to my boyfriend, Nathaniel Kuhl, my source of endurance and inspiration. iv TABLE OF CONTENTS Dedication iv Table of Contents v List of Figures viii List of Tables ix List of Abbreviations xi Acknowledgements xv 1 Freshwater Harmful Algal Blooms: Toxins and Children’s Health 1.1 Introduction 1 1.2 FHAB toxins, mechanism of action, and symptoms 5 1.3 Children are at greatest risk for FHAB toxicosis 17 1.4 Exposure to FHABs through drinking water 24 1.5 FHAB toxins in food 30 1.6 Detecting algal toxins in clinical settings 31 1.7 Conclusions 35 2 Interannual Correlates of Cyanobacterial Community Composition and Total Biovolume over Two Decades in a Eutrophic Lake 2.1 Introduction 37 2.2 Study site description 41 2.3 Use of long-term datasets 42 2.4 Statistical analyses 46 2.5 Results 51 2.6 Factors Affecting Cyanobacterial Biovolume and Composition 61 v 2.7 Potential Effects of Climate Change 66 3 Large-Scale Spatiotemporal Perspective on Cyanotoxin Occurrence in Freshwater Lakes 3.1 Introduction 71 3.2 Sample collection 75 3.3 Reagents and Materials 76 3.4 Extraction of Cyanobacterial Peptides from Frozen Water Samples 79 3.5 Algal Toxin Detection Using Liquid Chromatographic Separation Coupled with Tandem Mass Spectrometry 80 3.6 Study Areas 81 3.7 Statistical Analyses 84 3.8 Spike-recovery analysis 85 3.9 Cyanopeptide occurrence 87 3.10 Cyanopeptides differentiated by environmental factors 92 3.11 Extraction Recovery 104 3.12 Cyanopeptide Preservation in Field Samples 105 3.13 Cyanopeptide Occurrence and Relations to Lake Characteristics 105 4 Cyanopeptides in Four Wisconsin Drinking Water Treatment Plants 4.1 Introduction 110 4.2 Drinking Water Source & Sample Collection 113 4.3 Cyanopeptide Extraction from Drinking Water Samples 120 4.6 Statistical Analyses 122 4.7 Cyanopeptide Detection Through Four DWTPs 123 vi 4.8 Daily Sampling at DWTP 4 129 4.9 Calculating Removal Efficiency of Cyanopeptides 131 4.10 Discussion 133 5 Conclusions and Future Directions for the Study of CyanoHABs and Cyanobacterial Secondary Metabolites 138 6 References 148 Appendix A: Chapter 2 Supplemental Data 190 Appendix B: Chapter 3 Supplemental Data 199 Appendix C: Reference Materials and Solutions 205 Appendix D: Detailed Protocols 210 Curriculum Vitae 237 vii LIST OF FIGURES Figure 1.1 Examples of structures of cyanobacterial toxins 11 Figure 2.1 Average biovolume of cyanobacterial taxa from 1995-2014 43 Figure 2.2 Dendrogram heat map of annual average BV for all cyanobacterial taxa counted in Lake Mendota 53 Figure 2.3 Detrended correspondence analysis correlating annual average cyanobacteria and environmental driver variables 55 Figure 2.4 Annual trends of environmental factors significantly correlated with cyanobacterial biovolume 58 Figure 3.1 Area, volume, trophic status, and max depth of lakes 83 Figure 3.2 Boxplot of cyanopeptides detected in all analyzed samples 88 Figure 3.3 Cyanopeptide detection in lakes in the United States 90 Figure 3.4 Cyanopeptide detection in lakes in Europe, Canada, Argentina 91 Figure 3.5 Average cyanopeptide concentrations by trophic state, land usage, and mussel colonization 96 Figure 3.6 Average cyanopeptide concentrations by elevation, lake mixing, and surface area 98 Figure 3.7 Average cyanopeptide concentrations by lake volume and depth 102 Figure 4.1 Lake Winnebago Pool 115 Figure 4.2 Treatment trains at Winnebago DWTPs 1 and 2 116 Figure 4.3 Treatment trains at Winnebago DWTPs 3 and 4 118 Figure 4.4 Mean cyanopeptides throughout drinking water treatment processes 134 Figure 5.1 Microcystins and Chlorophyll-a in Northern Lake Winnebago 140 viii LIST OF TABLES Table 1.1 Major FHAB toxins, target organs, symptoms, effect levels, and observed environmental concentrations 7-9 Table 1.2 Maximum acceptable concentration (MAC) in μg/L for common FHAB toxins 19 Table 2.1 Average Biovolume of Cyanobacterial Genera Detected More Than Five Years in Lake Mendota from 1995-2014 48 Table 2.2 Variables Used for Analysis of Long Term (1995-2014) Effects of Climate and Physical Limnology on Cyanobacterial Biovolume and CCC in Lake Mendota 49 Table 2.3 Variables Used for Analysis of Long Term (1995-2014) Effects of Nutrient Availability on Cyanobacterial Biovolume and CCC in Lake Mendota 50 Table 2.4 Significant Interannual Correlations Between Cyanobacterial Biovolume and Environmental Variables 57 Table 3.1 Characteristics of Samples Collected 77-78 Table 3.2 Descriptive Characteristics of Lakes Comparing Toxin Profiles 82 Table 3.3 Percent Recovery of Cyanobacterial Peptides from Tested Extraction Methods 86 Table 3.4 Mean, Standard Deviation, and Frequency of Cyanopeptide Detection 89 Table 3.5 Kruskal-Wallis Results Comparing Cyanopeptides Among Mesotrophic Lake Characteristics 94 Table 3.6 Cyanopeptides in Eutrophic and Hypereutrophic Lakes by Environmental Characteristics According to a Kruskal-Wallis Test 95 ix Table 4.1. Cyanopeptide Occurrence in Weekly Raw and Finished Water Samples from Four DWTPs 124 Table 4.2 Descriptive Statistics for Weekly Microcystin Occurrence After Each Plant Treatment Phase 125 Table 4.3 Descriptive Statistics for Weekly Cyanopeptolin Occurrence After Each Plant Treatment Phase 128 Table 4.4 Descriptive Statistics for Weekly Anabaenopeptin Occurrence After Each Plant Treatment Phase 180 Table 4.5 Descriptive Statistics for Cyanopeptides from All (Weekly and Daily) DWTP 4 Samples 130 Table 4.6 Percent Cyanopeptide Removal (PCR) After Major Treatment Phases 132 Table 5.1 Lillinonah Samples with Elevated Microcystins Not Associated with Poor Water Quality 142 x LIST OF ABBREVIATIONS AC – activated carbon ACE – angiotensin-converting enzyme ACN – acetonitrile
Recommended publications
  • Guidelines for Design and Sampling for Cyanobacterial Toxin and Taste-And-Odor Studies in Lakes and Reservoirs
    Guidelines for Design and Sampling for Cyanobacterial Toxin and Taste-and-Odor Studies in Lakes and Reservoirs Scientific Investigations Report 2008–5038 U.S. Department of the Interior U.S. Geological Survey Photo 1 Photo 3 Photo 2 Front cover. Photograph 1: Beach sign warning of the presence of a cyanobacterial bloom, June 29, 2006 (photograph taken by Jennifer L. Graham, U.S. Geological Survey). Photograph 2: Sampling a near-shore accumulation of Microcystis, August 8, 2006 (photograph taken by Jennifer L. Graham, U.S. Geological Survey). Photograph 3: Mixed bloom of Anabaena, Aphanizomenon, and Microcystis, August 10, 2006 (photograph taken by Jennifer L. Graham, U.S. Geological Survey). Background photograph: Near-shore accumulation of Microcystis, August 8, 2006 (photograph taken by Jennifer L. Graham, U.S. Geological Survey). Guidelines for Design and Sampling for Cyanobacterial Toxin and Taste-and-Odor Studies in Lakes and Reservoirs By Jennifer L. Graham, Keith A. Loftin, Andrew C. Ziegler, and Michael T. Meyer Scientific Investigations Report 2008–5038 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Lake Mendota
    wendot2gounty2rk pox qovF2xelson hr2reights gherokee tte2rk gonservtion ry fluff r S yx vke i2 rk vx f 5 xs e xq2yyh2 e 2 i 5 5 r g x e w wendot w y T 5 riivi2hF g qovernor9s sslnd gonttD2pility2nd2eess 5 uiX ht2evised2PHHQ F h 2 E2smproved2fot2vunhD2rking2vot v y y r g E2fot2vunhD2xo2rking2vot rner2rk 5 E2grryEsn2gnoeGmll2fot2ite 5 E2lkEsn2pishing2eess Q E2pishing2ier 5 hunn9s2fr E2eessile2pishing2ier R 5 U E2eessile2fot2vunh wple2fluff E2esonl2estroom 5 5 feh 5 E2tte2rk2ermit2equired V E2vunh2pee2equired furrows2rk E2uli2hone E2gmping wrshll2rk 5 B2por22detiled2desription2of2eh E2feh 229hore2pishing2votion9Y2refer2to 224hore2pishing2on2the2wdison 5 x 22ere2vkesF42evilleD2free2of E2wrin 22hrge2from2the2hr2pishing 5 22glu282hne2gounty2rksF 5 P R E2hore2pishing2votionB 5 i i rieex gevi fexgr 2 vke2wendot I42a2QDSHH9 peies i 5 u wendot e of2pish v WVRP2eres wxF2hepth2VP9 H9 IDPSH9 QDSHH9 eundnt gommon resent wuskie xF2ike 5 lleye 5 IH enney2rk wonon 5 vFwF2fss I 5 5 ingr FwF2fss W 5 nfish igle rout 5 5 reights syv 5 ues e 5 g vke2wps2re2not2intended 5 for2nvigtion2purposesF 5 5 frerly 5 ht2is22pish2gric tF2frs uegons ood2llets 5 gement2floks 5 5 5 @ll2nded2togetherA toney qiddings2rk oint por2pish2gri2votions2plese2ontt gommodore 5 the2isonsin2heprtment2of2xturl fr vke2fottom2ymolsX esoures2pish2wngerX ini 2222222222222222@THVA2PUQESWRT tmes2wdison F et frF fedrok pring prutshi oint FF2wemoril2 nion wkF wuk fF foulders pring2rror rror wuenn eond rk gF gly tumps282ngs feh oint oint erreGroofers2entls idgewter wF wrl hngerous2xvigtion
    [Show full text]
  • Cyanobacterial Toxins: Saxitoxins
    WHO/SDE/WSH/xxxxx English only Cyanobacterial toxins: Saxitoxins Background document for development of WHO Guidelines for Drinking-water Quality and Guidelines for Safe Recreational Water Environments Version for Public Review Nov 2019 © World Health Organization 20XX Preface Information on cyanobacterial toxins, including saxitoxins, is comprehensively reviewed in a recent volume to be published by the World Health Organization, “Toxic Cyanobacteria in Water” (TCiW; Chorus & Welker, in press). This covers chemical properties of the toxins and information on the cyanobacteria producing them as well as guidance on assessing the risks of their occurrence, monitoring and management. In contrast, this background document focuses on reviewing the toxicological information available for guideline value derivation and the considerations for deriving the guideline values for saxitoxin in water. Sections 1-3 and 8 are largely summaries of respective chapters in TCiW and references to original studies can be found therein. To be written by WHO Secretariat Acknowledgements To be written by WHO Secretariat 5 Abbreviations used in text ARfD Acute Reference Dose bw body weight C Volume of drinking water assumed to be consumed daily by an adult GTX Gonyautoxin i.p. intraperitoneal i.v. intravenous LOAEL Lowest Observed Adverse Effect Level neoSTX Neosaxitoxin NOAEL No Observed Adverse Effect Level P Proportion of exposure assumed to be due to drinking water PSP Paralytic Shellfish Poisoning PST paralytic shellfish toxin STX saxitoxin STXOL saxitoxinol
    [Show full text]
  • Phytoplankton and Primary Production
    Phytoplankton and Primary Production Phagotrophic dinoflagellates Cryptomonads & photosynthetic Chain Forming diatoms Diatoms Green algae Blue Green algae (Cyanobacteria) Anabaena Productivity: rate at which organic matter is produced Microcystis Production: Total organic matter produced Relationship Between Primary Productivity Lakes are Categorized According to their Level of and Phytoplankton Biomass (Production) Productivity or “Trophic State” More Productive For conditions in which nutrients are limited Less Productive Biomass Productivity g Carbon . m-3. day-1 (Production) Oligotrophic Mesotrophic Eutrophic g Carbon . m-3 Greater Water Clarity : 10 m Less Water Clarity: 2.5 m Less Algae : 1.7 µg/L Chl a More Algae : > 14 µg/L Chl a Lower Phosphorus : < 8 µg/L More Phosphorus: 16 µg/L time PHOSPHORUS AND CHLOROPHYLL CONCENTRATIONS AND SECCHI DISK DEPTHS CHARACTERISTIC OF THE TROPHIC CLASSIFICATION OF LAKES Phosphorus Concentrations Vary Across the Western Finger Lakes MEASURED PARAMETER Oligotrophic Mesotrophic Eutrophic Total Phosphorus (µg/L) AVG 8 26.7 84.4 Range 3.0- 17.7 10.7- 95.6 16-386 Chlorophyll a (µg/L) AVG 1.7 4.7 14.3 Range 0.3 - 4.5 3 – 11 3 – 78 Secchi Disk Depth (m) AVG 9.9 4.2 2.45 Range 5.4 - 28.3 1.5 – 8.1 0.8 – 7.0 Table I – Data from Wetzel, 1983 Source: CSLAP data Chlorophyll Concentrations Are Relatively Low In Conesus Lake Cycle of Phytoplankton Production and Biomass in Temperate Lakes Source: CSLAP data Start of Spring bloom Autumn bloom fall Summer turnover Dry Period & fallout Surface temperature in a
    [Show full text]
  • TIEE Teaching Issues and Experiments in Ecology - Volume 3, April 2005
    TIEE Teaching Issues and Experiments in Ecology - Volume 3, April 2005 ISSUES : DATA SET Changes in Lake Ice: Ecosystem Response to Global Change Robert E. Bohanan, Center for Biology Education, University of Wisconsin – Madison, Madison, WI 53706, [email protected] Marianne Krasny, Department of Natural Resources, Cornell University, Ithaca, NY, 14853, [email protected] Adam Welman, Center for the Environment, Cornell University, Ithaca, NY, 14853 THE ECOLOGICAL QUESTION: Is there evidence for global warming in long term data on changes in dates of ice cover in three Wisconsin Lakes? ECOLOGICAL CONTENT: Effects of climate change on ecological systems. WHAT STUDENTS DO: Students plot more than 100 years of data on dates of "ice on" and "ice off" and duration of ice cover for three Wisconsin Lakes. They examine patterns of variation at different time scales to see the importance of long-term data. SKILLS: Interpreting data, making inferences from trends or patterns in data, making spatial and temporal comparisons of ecological systems. ASSESSABLE OUTCOMES: Interpretation of data, analyzing trends and patterns in spatial and temporal data, and constructing explanations about the links between abiotic and biotic factors on ecological systems from large-scale data. SOURCE: North Temperate Lakes LTER archive (http://lterquery.limnology.wisc.edu/abstract_new.jsp?id=PHYS) TIEE, Volume 3 © 2005 - Robert E. Bohanan and the Ecological Society of America. Teaching Issues and Experiments in Ecology (TIEE) is a project of the Education and Human Resources Committee of the Ecological Society of America (http://tiee.ecoed.net). page 2 Robert E. Bohanan, Marianne Krasny, Adam Welman TIEE Volume 3, April 2005 OVERVIEW Note: the overview is written for faculty but can be used as the basis for an introduction to the data set for students.
    [Show full text]
  • Microbial Biobanking Cyanobacteria
    Microbial Biobanking Cyanobacteria-rich topsoil facilitates mine rehabilitation Wendy Williams1, Angela Chilton2, Mel Schneemilch1, Stephen Williams1, Brett Neilan3, Colin Driscoll4 5 1. School of Agriculture and Food Sciences, The University of Queensland, Gatton Campus 4343 Australia 2. Australian Centre for Astrobiology and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia 3. School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia 10 4. Hunter Eco, PO Box 1047, Toronto, NSW, 2283 Correspondence to: [email protected] Abstract Restoration of soils post-mining requires key solutions to complex issues where the disturbance of topsoil incorporating soil microbial communities can result in a modification to ecosystem function. This research was in collaboration with Iluka 15 Resources at Jacinth-Ambrosia (J-A) mineral sand mine located in a semi-arid chenopod shrubland in southern Australia. At J-A, assemblages of microorganisms and microflora inhabit at least half of the soil surfaces and are collectively known as biocrusts. This research encompassed a polyphasic approach to soil microbial community profiling focused on ‘biobanking’ viable cyanobacteria in topsoil stockpiles to facilitate rehabilitation. We found that cyanobacterial communities were compositionally diverse topsoil microbiomes. There was no significant difference in cyanobacterial community structure 20 across soil types. As hypothesised, cyanobacteria were central to soil micro-processes, strongly supported by species richness and diversity. Cyanobacteria were a significant component of all three successional stages with 21 species identified from ten sites. Known nitrogen-fixing cyanobacteria Symploca, Scytonema, Porphyrosiphon, Brasilonema, Nostoc and Gloeocapsa comprised more than 50% of the species richness at each site and 61% of the total community richness.
    [Show full text]
  • Lakes in Winter
    NORTH AMERICAN LAKE NONPROFIT ORG. MANAGEMENT SOCIETY US POSTAGE 1315 E. Tenth Street PAID Bloomington, IN 47405-1701 Bloomington, IN Permit No. 171 Lakes in Winter in Lakes L L INE Volume 34, No. 4 • Winter 2014 Winter • 4 No. 34, Volume AKE A publication of the North American Lake Management Society Society Management Lake American North the of publication A AKE INE Contents L L Published quarterly by the North American Lake Management Society (NALMS) as a medium for exchange and communication among all those Volume 34, No. 4 / Winter 2014 interested in lake management. Points of view expressed and products advertised herein do not necessarily reflect the views or policies of NALMS or its Affiliates. Mention of trade names and commercial products shall not constitute 4 From the Editor an endorsement of their use. All rights reserved. Standard postage is paid at Bloomington, IN and From the President additional mailing offices. 5 NALMS Officers 6 NALMS 2014 Symposium Highlights President 11 2014 NALMS Awards Reed Green Immediate Past-President 15 2014 NALMS Photo Contest Winners Terry McNabb President-Elect 16 2014 NALMS Election Results Julie Chambers Secretary Sara Peel Lakes in Winter Treasurer Michael Perry 18 Lake Ice: Winter, Beauty, Value, Changes, and a Threatened NALMS Regional Directors Future Region 1 Wendy Gendron 28 Fish in Winter – Changes in Latitudes, Changes in Attitudes Region 2 Chris Mikolajczyk Region 3 Imad Hannoun Region 4 Jason Yarbrough 32 A Winter’s Tale: Aquatic Plants Under Ice Region 5 Melissa Clark Region 6 Julie Chambers 38 A Winter Wonderland . of Algae Region 7 George Antoniou Region 8 Craig Wolf 44 Water Monitoring Region 9 Todd Tietjen Region 10 Frank Wilhelm 48 Winter Time Fishery at Lake Pyhäjärvi Region 11 Anna DeSellas Region 12 Ron Zurawell At-Large Nicki Bellezza Student At-Large Ted Harris 51 Literature Search LakeLine Staff Editor: William W.
    [Show full text]
  • The Spatial and Temporal Distribution and Environmental Drivers Of
    THE SPATIAL AND TEMPORAL DISTRIBUTION AND POTENTIAL ENVIRONMENTAL DRIVERS OF SAXITOXIN IN NORTHWEST OHIO Callie A. Nauman A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2020 Committee: Timothy Davis, Advisor George Bullerjahn Justin Chaffin © 2020 Callie A. Nauman All Rights Reserved iii ABSTRACT Timothy Davis, Advisor Cyanobacterial harmful algal blooms threaten freshwater quality and human health around the world. One specific threat is the ability of some cyanobacteria to produce multiple types of toxins, including a range of neurotoxins called saxitoxins. While it is not completely understood, the general consensus is environmental factors like phosphorus, nitrogen, and light availability, may be driving forces in saxitoxin production. Recent surveys have determined saxitoxin and potential saxitoxin producing cyanobacterial species in both lakes and rivers across the United States and Ohio. Research evaluating benthic cyanobacterial blooms determined benthic cyanobacteria as a source for saxitoxin production in systems, specifically rivers. Currently, little is known about when, where, why, or who is producing saxitoxin in Ohio, and even less is known about the role benthic cyanobacterial blooms play in Ohio waterways. With increased detections of saxitoxin, the saxitoxin biosynthesis gene sxtA, and saxitoxin producing species in both the Western Basin of Lake Erie and the lake’s major tributary the Maumee River, seasonal sampling was conducted to monitor saxitoxin in both systems. The sampling took place from late spring to early autumn of 2018 and 2019. Monitoring including bi-/weekly water column sampling in the Maumee River and Lake Erie and Nutrient Diffusing Substrate (NDS) Experiments, were completed to evaluate saxitoxin, sxtA, potential environmental drivers, and benthic production.
    [Show full text]
  • AMENDMENT Aquatic Plant Management Plan, Lake Mendota, Lower Rock River Basin, Dane County Wisconsin
    AMENDMENT Aquatic Plant Management Plan, Lake Mendota, Lower Rock River Basin, Dane County Wisconsin Approved by the Dane County Lakes and Watershed Commission on April 10, 2014 and by the Wisconsin Department of Natural Resources on March 27, 2014 Prepared by Sue Jones, Dane County Office of Lakes and Watersheds, with assistance from Jim Leverance, Darren Marsh, and Pat Sheahan. Mapping by Michelle Richardson, Dane County Land and Water Resources Department, Administration Division. Plant surveys conducted by James Scharl of Stantec Consulting Services Inc. (2011) for the Dane County Office of Lakes and Watersheds. The Wisconsin Department of Natural Resources provided funding to the Office of Lakes and Watersheds to support this plan amendment. Introduction This is an update to the Aquatic Plant Management Plan, Lake Mendota, Lower Rock River Basin, Dane County Wisconsin, published in January 2007 by the Dane County Office of Lakes and Watersheds. The Wisconsin Department of Natural Resources approved the 2007 plan on March 17, 2007 and the Dane County Lakes and Watershed Commission approved the plan on April 12, 2007. Aquatic Plant Management Plans are required under NR 109.04(d), Wisconsin Administrative Code, to guide mechanical harvesting activities and the effective management of aquatic plants in water bodies. This plan is prepared in support of Dane County’s permit for its mechanical aquatic plant harvesting program, operated in accordance with NR 109 Wisconsin Administrative Code. Individuals and groups that propose herbicide treatments of aquatic plants in Dane County waters would need to go through a separate planning and permitting process with the Wisconsin Department of Natural Resources.
    [Show full text]
  • Aerofytické Sinice Kamerunu: Studium Morfologické Variability U Vybraných Druhů
    Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra botaniky Aerofytické sinice Kamerunu: studium morfologické variability u vybraných druhů Diplomová práce Bc. Tereza Řezáčová Studijní obor: Matematika – Biologie Forma studia: prezenční Vedoucí diplomové práce Doc. RNDr. Petr Hašler, Ph.D. Olomouc 2016 Prohlašuji, že jsem zadanou diplomovou práci vypracovala samostatně a že jsem veškerou použitou literaturu řádně citovala v seznamu na konci práce. V Olomouci dne: ………………………………. Tereza Řezáčová Poděkování Během svého působení jako studentka na Přírodovědecké fakultě jsem zažívala dobré i špatné období. Poslední rok mi velmi pomohl můj přítel, bez kterého bych neměla energii ani chuť svou práci dokončit. Těmito pár slovy bych mu chtěla poděkovat, stejně jako mojí rodině za aktivní podporu v dobách mého studia. Důležitou roli hrála i psychická podpora mojí kamarádky, spolužačky a „sparing- partnera“ Veroniky Petřekové. Samozřejmě největší dík patří člověku, který mi vůbec dal šanci psát tuhle diplomovou práci a spolupracovat s lidmi, na které budu s radostí vzpomínat - můj vedoucí diplomové práce Doc. RNDr. Petr Hašler, Ph.D. Je to člověk, který mi ukázal, že když člověk dře a maká, tak nakonec z jeho práce vzjede něco pěkného a i když se zprvu zdá, že se něco nedaří, vyplatí se vydržet. Bibliografická identifikace Jméno a příjmení autora: Tereza Řezáčová Název práce: Aerofytické sinice Kamerunu: studium morfologické variability u vybraných druhů Typ práce: Diplomová práce Pracoviště: Katedra botaniky Vedoucí diplomové práce: Doc. RNDr. Petr Hašler, Ph.D. Rok obhajoby: 2016 Abstrakt: Tato diplomová práce má za úkol srovnat působení roztoků s různými koncentracemi živin na vybrané sinice Kamerunu. První část, konkrétně úvod, popisuje, co jsou to sinice.
    [Show full text]
  • Harmful Algal Blooms (Habs) and Desalination: a Guide to Impacts, Monitoring, and Management
    Manuals and Guides 78 Harmful Algal Blooms (HABs) and Desalination: A Guide to Impacts, Monitoring, and Management Edited by: Donald M. Anderson, Siobhan F.E. Boerlage, Mike B. Dixon UNESCO Manuals and Guides 78 Intergovernmental Oceanographic Commission Harmful Algal Blooms (HABs) and Desalination: A Guide to Impacts, Monitoring and Management Edited by: Donald M. Anderson* Biology Department, Woods Hole Oceanographic Institution Woods Hole, MA 02543 USA Siobhan F. E. Boerlage Boerlage Consulting Gold Coast, Queensland, Australia Mike B. Dixon MDD Consulting, Kensington Calgary, Alberta, Canada *Corresponding Author’s email: [email protected] UNESCO 2017 Bloom prevention and control 7 BLOOM PREVENTION AND CONTROL Clarissa R. Anderson1, Kevin G. Sellner2, and Donald M. Anderson3 1University of California, Santa Cruz, Santa Cruz, CA USA 2Chesapeake Research Consortium, Edgewater MD USA 3Woods Hole Oceanographic Institution, Woods Hole MA USA 7.1 Introduction ........................................................................................................................................... 205 7.2 Bloom prevention .................................................................................................................................. 207 7.2.1 Nutrient load reduction .................................................................................................................. 207 7.2.2 Nutrient load .................................................................................................................................
    [Show full text]
  • Cyanobacteria and Cyanotoxin Analysis and Testing Services [As of 3/15/2016]
    Cyanobacteria/Cyanotoxin Testing Services List Developed by the NEIWPCC HAB Workgroup (Northeast state health and environmental agency staff). The New England Interstate Water Pollution Control Commission is a non-profit organization established through an act of Congress in 1947. NEIWPCC strives to: coordinate activities and forums that encourage cooperation among the states; educate the public about key environmental issues; support research projects, train environmental professionals, and provide overall leadership in the management and protection of water quality. Cyanobacteria and Cyanotoxin Analysis and Testing Services [As of 3/15/2016] Disclaimer: Individuals and/or companies listed below have been identified as performing services related to cyanobacteria and cyanotoxin analysis. This should not be considered an endorsement by NEIWPCC or any state agency of their qualifications. Public Water Systems considering contracting with any individual or company should verify that they have the adequate training and are competent to perform the work for which they are being considered. Prices should be viewed as guidelines of what to expect for each lab, rather than final quotes – many offer discounts, e.g., for bulk samples. Academy of Natural Sciences – Phycology Section Patrick Center for Environmental Research 1900 Benjamin Franklin Parkway Philadelphia, PA 19103 Tel: (215) 299-1080 Fax: (215) 299-1079 Email General: [email protected] Email Don Charles: [email protected] Email Frank Acker (primary soft-algae taxonomist): [email protected] Services: Identification of algae and algal measurements/biovolume, cell counts, chlorophyll Pricing: (Can give estimate based on sample, and separate the phytoplankton and periphyton in terms of how they are processed) Semiquantitative count (relative abundance, five-point scale, rare to abundant) – $150-200 Algal identification (cell count, biovolume) – $440-550 Chlorophyll (fluorometer) – Call for cost Diatom count – $300 Aquatic Services, Wayne Carmichael, Ph.D.
    [Show full text]