Researcharticles

Total Page:16

File Type:pdf, Size:1020Kb

Researcharticles RESEARCH ARTICLES Quantum Spin Hall Insulator State in HgTe Quantum Wells Markus König,1 Steffen Wiedmann,1 Christoph Brüne,1 Andreas Roth,1 Hartmut Buhmann,1 Laurens W. Molenkamp,1* Xiao-Liang Qi,2 Shou-Cheng Zhang2 AUTHORS’ SUMMARY he discovery more than 25 Conductance theoretically that the electronic years ago of the quantum channel with structure of inverted HgTe quan- THall effect (1), in which the up-spin charge tum wells exhibits the properties “Hall,” or “transverse electrical” con- carriers that should enable an observation ductance of a material is quantized, of the quantum spin Hall insula- came as a total surprise to the physics tor state. Our experimental obser- community. This effect occurs in vations confirm this. layered metals at high magnetic These experiments only be- fields and results from the forma- came possible after the devel- tion of conducting one-dimensional opment of quantum wells of channels that develop at the edges sufficiently high carrier mobility, on April 6, 2015 of the sample. Each of these edge combined with the lithographic channels, in which the current moves techniques needed to pattern the only in one direction, exhibits a quan- sample. The patterning is espe- tized conductance that is character- Conductance cially difficult because of the very istic of one-dimensional transport. The channel with high volatility of Hg. Moreover, number of edge channels in the sam- Quantum down-spin we have developed a special low– ple is directly related to the value of well charge carriers deposition temperature Si-O-N the quantum Hall conductance. More- Schematic of the spin-polarized edge channels in a quantum spin Hall gate insulator (7), which allows over, the charge carriers in these chan- insulator. us to control the Fermi level (the www.sciencemag.org nels are very resistant to scattering. energy level up to which all Not only can the quantum Hall effect be observed in macroscopic samples electronics states are filled) in the quantum well from the conduction band, for this reason, but within the channels, charge carriers can be transported through the insulating gap, and into the valence band. Using both electron without energy dissipation. Therefore, quantum Hall edge channels may be beam and optical lithography, we have fabricated simple rectangular useful for applications in integrated circuit technology, where power dis- structures in various sizes from quantum wells of varying width and sipation is becoming more and more of a problem as devices become smaller. measured the conductance as a function of gate voltage. Of course, there are some formidable obstacles to overcome—the quantum We observe that samples made from narrow quantum wells with a Hall effect only occurs at low temperatures and high magnetic fields. “normal” electronic structure basically show zero conductance when the Downloaded from In the past few years, theoretical physicists have suggested that Fermi level is inside the gap. Quantum wells with an inverted electronic edge channel transport of current might be possible in the absence of a structure, by contrast, show a conductance close to what is expected for the magnetic field. They predicted (2–4) that in insulators with suitable edge channel transport in a quantum spin Hall insulator. This interpretation electronic structure, edge states would develop where—and this is is further corroborated by magnetoresistance data. For example, high– different from the quantum Hall effect—the carriers with opposite magnetic field data on samples with an inverted electronic structure show a spins move in opposite directions on a given edge, as shown sche- very unusual insulator-metal-insulator transition as a function of field, matically in the figure. This is the quantum spin Hall effect, and its which we demonstrate is a direct consequence of the electronic structure. observation has been hotly pursued in the field. The spin-polarized character of the edge channels still needs to be Although there are many insulators in nature, most of them do not have unequivocably demonstrated. For applications of the effect in actual the right structural properties to allow the quantum spin Hall effect to be microelectronic technology, this low-temperature effect (we observe it observed. This is where HgTe comes in. Bulk HgTe is a II-VI semi- below 10 K) will have to be demonstrated at room temperature, which may conductor, but has a peculiar electronic structure: In most such materials, be possible in wells with wider gaps. the conduction band usually derives from s-states located on the group II atoms, and the valence band from p-states at the VI atoms. In HgTe this Summary References order is inverted, however (5). Using molecular beam epitaxy, we can 1. K. v. Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980). grow thin HgTe quantum wells, sandwiched between (Hg,Cd)Te barriers, 2. S. Murakami, N. Nagaosa, S.-C. Zhang, Phys. Rev. Lett. 93, 156804 (2004). Phys. Rev. Lett. 3. C. L. Kane, E. J. Mele, 95, 146802 (2005). SCIENCE that offer a unique way to tune the electronic structure of the material: When = 4. B. A. Bernevig, S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006). the quantum well is wide, the electronic structure in the well remains 5. A. Novik et al., Phys. Rev. B 72, 035321 (2005). “ ” BICKEL inverted. However, for narrow wells, it is possible to obtain a normal 6. B. A. Bernevig, T. L. Hughes, S.-C. Zhang, Science 314, 1757 (2006). : alignment of the quantum well states. Recently, Bernevig et al.(6) predicted 7. J. Hinz et al., Semicond. Sci. Technol. 21, 501 (2006). CREDIT: C 766 2 NOVEMBER 2007 VOL 318 SCIENCE www.sciencemag.org RESEARCH ARTICLES quantum phase transition has also been inves- FULL-LENGTH ARTICLE tigated in more realistic models beyond the simple four-band model presented here, reach- Recent theory predicted that the quantum spin Hall effect, a fundamentally new quantum state of ing the same conclusion (11). matter that exists at zero external magnetic field, may be realized in HgTe/(Hg,Cd)Te quantum wells. The QSH phase occurs in the inverted re- We fabricated such sample structures with low density and high mobility in which we could tune, gime where M < 0, i.e., when d > dc. The through an external gate voltage, the carrier conduction from n-type to p-type, passing through an sample edge can be viewed as a domain wall insulating regime. For thin quantum wells with well width d < 6.3 nanometers, the insulating regime of the mass parameter M, separating the topo- showed the conventional behavior of vanishingly small conductance at low temperature. However, logically nontrivial phase with M < 0 from for thicker quantum wells (d > 6.3 nanometers), the nominally insulating regime showed a the topologically trivial phase with M >0, plateau of residual conductance close to 2e2/h, where e is the electron charge and h is Planck’s which is adiabatically connected to the vac- constant. The residual conductance was independent of the sample width, indicating that it is caused uum (12). Massless helical states are confined by edge states. Furthermore, the residual conductance was destroyed by a small external magnetic on the sample edge. The sample has a finite field. The quantum phase transition at the critical thickness, d = 6.3 nanometers, was also conductance even when the Fermi level lies independently determined from the magnetic field–induced insulator-to-metal transition. These inside the bulk insulating gap. Therefore, as observations provide experimental evidence of the quantum spin Hall effect. suggested in (6), the QSH state can be ex- perimentally detected by measuring a residual he theoretical prediction of the intrinsic alization of the quantum spin Hall effect (6). conductance plateau as one varies the gate spin Hall effect in metals and insulators In zincblende-type semiconductor QWs, there voltage in the nominally insulating regime. T(1–3) has generated great interest in the are four relevant bands close to the Fermi Furthermore, because the current is carried by field of spintronics, because this effect allows level. The E1 band consists of the two spin the edge states, the conductance should be direct electric manipulation of the spin de- states of the s orbital, whereas the HH1 band independent of sample width. Protected by grees of freedom without a magnetic field, consists of the |px + ipy, ↑〉 and | −(px − ipy), ↓〉 the time-reversal symmetry, nonmagnetic im- and the resulting spin current can flow with- orbitals. The effective Hamiltonian near the G purities or any other time-reversal invariant out dissipation. These properties could lead to point, the center of the Brillouin zone, is local perturbations cannot cause elastic back- promising spintronic devices with low power given by scattering of the helical edge states, which war- dissipation. rants the topological robustness of the edge state However, beyond the potential technolog- ð HðkÞ 0 Þ conductance. However, the presence of a mag- H ðk ,k Þ¼ ∗ , ical applications, the intrinsic spin Hall effect eff x y 0 H ð−kÞ netic field breaks time-reversal symmetry and has guided us in the search for new and topo- therefore can open up a gap in the energy spec- H ¼ eðkÞþd ðkÞs ð1Þ logically nontrivial states of matter. The quan- i i trum of the edge states and remove the residual tum Hall state is the first, and so far the only conductance due to the edge states. example, of a topologically nontrivial state of where si are the Pauli matrices, and Experimental details. We set out to test these theoretical predictions by measuring matter, where the quantization of the Hall con- þ ¼ ð þ Þ ≡ ductance is protected by a topological invar- d1 id2 A kx iky Akþ the transport properties of HgTe/(Hg,Cd)Te iant.
Recommended publications
  • Spin Hall Angles in Solids Exhibiting a Giant Spin Hall Effect
    Spin Hall Angles in Solids Exhibiting a Giant Spin Hall Effect BROWN Jamie Holber Thesis Advisor: Professor Gang Xiao Department of Physics Brown University A thesis submitted in fulfillment for the degree of Bachelor of Science in Physics April 2019 Abstract The Spin Hall Effect enables the conversion of charge current into spin current and provides a method for electrical control of the magnetization of a ferromagnet, enabling future applications in the transmission, storage, and control of information. The experimental values found for the Spin Hall Angle (ΘSH ), a way of quantifying the Spin Hall Effect in a nonmagnetic material, are studied in this thesis in regards to a variety of parameters including the atomic number, the fullness of the orbital, the spin diffusion length, thin film thickness, resistivity, temperature, and composition of alloys. We observed that the spin Hall angle dependence on atomic number, the fullness of the orbital, the spin diffusion length, and the resistivity aligned with the theory. The dependence on thickness and temperature was found to vary based on the material and more research is needed to determine larger trends. We found that alloys provide opportunities to create materials with large spin hall angles with lower resistivities. In particular, Au alloyed with other elements is a promising candidate. i Acknowledgements Thanks to my advisor, Professor Gang Xiao for his time and guidance working on my thesis. I would also like to thank the other members of my lab group who helped me and helped work on the project, Lijuan Qian, Wenzhe Chen, Guanyang He, Yiou Zhang, and Kang Wang.
    [Show full text]
  • View Publication
    Spin-orbit physics of j=1/2 Mott insulators on the triangular lattice Michael Becker,1 Maria Hermanns,1 Bela Bauer,2 Markus Garst,1 and Simon Trebst1 1Institute for Theoretical Physics, Cologne University, Zulpicher¨ Straße 77, 50937 Cologne, Germany 2Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA (Dated: April 16, 2015) The physics of spin-orbital entanglement in effective j = 1=2 Mott insulators, which have been experi- mentally observed for various 5d transition metal oxides, has sparked an interest in Heisenberg-Kitaev (HK) models thought to capture their essential microscopic interactions. Here we argue that the recently synthesized Ba3IrTi2O9 is a prime candidate for a microscopic realization of the triangular HK model – a conceptually interesting model for its interplay of geometric and exchange frustration. We establish that an infinitesimal Ki- taev exchange destabilizes the 120◦ order of the quantum Heisenberg model. This results in the formation of an extended Z2-vortex crystal phase in the parameter regime most likely relevant to the real material, which can be experimentally identified with spherical neutron polarimetry. Moreover, using a combination of analytical and numerical techniques we map out the entire phase diagram of the model, which further includes various ordered phases as well as an extended nematic phase around the antiferromagnetic Kitaev point. I. INTRODUCTION yond the hexagonal lattice, triggered mainly by the synthe- sis of novel Iridate compounds, which includes e.g. the sis- 16 17 ter compounds β-Li2IrO3 and γ-Li2IrO3 that form three- The physics of transition metal oxides with partially filled dimensional Ir lattice structures.
    [Show full text]
  • Electrodynamics of Topological Insulators
    Electrodynamics of Topological Insulators Author: Michael Sammon Advisor: Professor Harsh Mathur Department of Physics Case Western Reserve University Cleveland, OH 44106-7079 May 2, 2014 0.1 Abstract Topological insulators are new metamaterials that have an insulating interior, but a conductive surface. The specific nature of this conducting surface causes a mixing of the electric and magnetic fields around these materials. This project, investigates this effect to deepen our understanding of the electrodynamics of topological insulators. The first part of the project focuses on the fields that arise when a current carrying wire is brought near a topological insulator slab and a cylindrical topological insulator. In both problems, the method of images was able to be used. The result were image electric and magnetic currents. These magnetic currents provide the manifestation of an effect predicted by Edward Witten for Axion particles. Though the physics is extremely different, the overall result is the same in which fields that seem to be generated by magnetic currents exist. The second part of the project begins an analysis of a topological insulator in constant electric and magnetic fields. It was found that both fields generate electric and magnetic dipole like responses from the topological insulator, however the electric field response within the material that arise from the applied fields align in opposite directions. Further investigation into the effect this has, as well as the overall force that the topological insulator experiences in these fields will be investigated this summer. 1 List of Figures 0.4.1 Dyon1 fields of a point charge near a Topological Insulator .
    [Show full text]
  • Introduction to Spin Hall Effect Spin-Dependent Lorentz Force Our
    The spin Hall effect in a quantum gas M. C. Beeler*, R. A. Williams, K. Jimenez-Garcia, L. J. LeBlanc, A. R. Perry, I. B. Spielman Joint Quantum Institute, National Institute of Standards and Technology and Department of Physics, University of Maryland, Gaithersburg, MD 20899, USA Introduction to spin Hall effect Our system Spin currents Vector potential gradient • Spin Hall effect is separation of Vector potential is electron spins perpendicular to current proportional to flow coupling strength (intensity) • No external magnetic field needed – spin-orbit coupling drives effect Adjust equilibrium Current Flow Current position of BEC along • Effect is integral for spintronic devices Gaussian intensity and topological insulators gradient of Raman Color indicates predominant spin composition.1 beams 87 • Rb atoms in F = 1 ground state, confined in 90° cross-beam This is the first observation of the spin Hall effect in a optical dipole trap (ODT) Snapping off Raman cold atom system. beams gives electric • λ =790.21 nm Raman beams (Δω/2π = 15 MHz) couple mF = 0 field kick Spin-Dependent Lorentz Force and mF = -1 spin states, with large bias magnetic field along ez In intensity gradient, Lorentz Force • Adjustment of acousto-optic modulator frequency allows kick is spatially 퐹 = force dynamic control of BEC y-position by displacing one ODT beam dependent, shearing 퐹 = 푞 v × 퐵 q = charge the cloud after 2 v = velocity • No crystal structure, but system has spin-orbit coupling expansion • Cross product means that 퐵 = magnetic field particles always move • Atoms play the role of electrons, with spin coupling to linear Shear is opposite for perpendicular to velocity and 퐵 momentum along ex two pseudo-spins field.
    [Show full text]
  • Modulation of Crystal and Electronic Structures in Topological Insulators by Rare-Earth Doping
    Modulation of crystal and electronic structures in topological insulators by rare-earth doping Zengji Yue*, Weiyao Zhao, David Cortie, Zhi Li, Guangsai Yang and Xiaolin Wang* 1. Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW 2500, Australia 2. ARC Centre for Future Low-Energy Electronics Technologies (FLEET), University of Wollongong, Wollongong, NSW 2500, Australia Email: [email protected]; [email protected]; Abstract We study magnetotransport in a rare-earth-doped topological insulator, Sm0.1Sb1.9Te3 single crystals, under magnetic fields up to 14 T. It is found that that the crystals exhibit Shubnikov– de Haas (SdH) oscillations in their magneto-transport behaviour at low temperatures and high magnetic fields. The SdH oscillations result from the mixed contributions of bulk and surface states. We also investigate the SdH oscillations in different orientations of the magnetic field, which reveals a three-dimensional Fermi surface topology. By fitting the oscillatory resistance with the Lifshitz-Kosevich theory, we draw a Landau-level fan diagram that displays the expected nontrivial phase. In addition, the density functional theory calculations shows that Sm doping changes the crystal structure and electronic structure compared with pure Sb2Te3. This work demonstrates that rare earth doping is an effective way to manipulate the Fermi surface of topological insulators. Our results hold potential for the realization of exotic topological effects
    [Show full text]
  • Observation of the Magnon Hall Effect
    Observation of the magnon Hall effect [One-sentence summary] We have observed the Hall effect of magnons for the first time in terms of transverse thermal transport in a ferromagnetic insulator Lu2V2O7 with pyrochlore structure. Y. Onose,1,2 † T. Ideue,1 H. Katsura, 3 Y. Shiomi,1,4 N. Nagaosa,1, 4 and Y. Tokura1, 2, 4 1Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan 2 Multiferroics Project, ERATO, Japan Science and Technology Agency (JST), c/o Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan 3Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA 4Cross-Correlated Materials Research Group (CMRG) and Correlated Electron Research Group (CERG), Advanced Science Institute, RIKEN, Wako,351-0198, Japan † To whom correspondence should be addressed E-mail: [email protected] [abstract] The Hall effect usually occurs when the Lorentz force acts on a charge current in a conductor in the presence of perpendicular magnetic field. On the other hand, neutral quasi-particles such as phonons and spins can carry heat current and potentially show the Hall effect without resorting to the Lorentz force. We report experimental evidence for the anomalous thermal Hall effect caused by spin excitations (magnons) in an insulating ferromagnet with a pyrochlore lattice structure. Our theoretical analysis indicates that the propagation of the spin wave is influenced by the Dzyaloshinskii-Moriya spin-orbit interaction, which plays the role of the vector potential as in the intrinsic anomalous Hall effect in metallic ferromagnets. [text] Electronics based on the spin degree of freedom, (spintronics), holds promise for new developments beyond Si-based-technologies (1), and avoids the dissipation from Joule heating by replacing charge currents with currents of the magnetic moment (spin currents).
    [Show full text]
  • Terahertz Spin Currents and Inverse Spin Hall Effect in Thin-Film Heterostructures Containing Complex Magnetic Compounds
    Terahertz spin currents and inverse spin Hall effect in thin-film heterostructures containing complex magnetic compounds T. Seifert1, U. Martens2, S. Günther3, M. A. W. Schoen4, F. Radu5, X. Z. Chen6, I. Lucas7 , R. Ramos8, M. H. Aguirre9, P. A. Algarabel10, A. Anadón9, H. Körner4, J. Walowski2, C. Back4, M. R. Ibarra7, L. Morellón7, E. Saitoh8, M. Wolf1, C. Song6, K. Uchida11, M. Münzenberg2, I. Radu5, T. Kampfrath1,* 1Physical Chemistry, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany 2Institute of Physics, Ernst Moritz Arndt University, 17489 Greifswald, Germany 3Multifunctional Ferroic Materials Group, ETH Zürich, 8093 Zürich, Switzerland 4Institute for Experimental and Applied Physics, University of Regensburg, 93053 Regensburg, Germany 5Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany 6Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084 Beijing, China 7Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50018 Zaragoza, Spain 8WPI Advanced Institute for Materials Research, Tohoku University, 980-8577 Sendai, Japan 9Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain 10Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, E- 50009 Zaragoza, Spain 11National Institute for Materials Science, 305-0047 Tsukuba, Japan * E-mail: [email protected] Abstract: Terahertz emission spectroscopy of ultrathin multilayers of magnetic and heavy metals has recently attracted much interest. This method not only provides fundamental insights into photoinduced spin transport and spin-orbit interaction at highest frequencies but has also paved the way to applications such as efficient and ultrabroadband emitters of terahertz electromagnetic radiation.
    [Show full text]
  • Quantum Hall Effect on Top and Bottom Surface States of Topological
    Quantum Hall Effect on Top and Bottom Surface States of Topological Insulator (Bi1−xSbx)2Te 3 Films R. Yoshimi1*, A. Tsukazaki2,3, Y. Kozuka1, J. Falson1, K. S. Takahashi4, J. G. Checkelsky1, N. Nagaosa1,4, M. Kawasaki1,4 and Y. Tokura1,4 1 Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656, Japan 2 Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan 3 PRESTO, Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0075, Japan 4 RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan. * Corresponding author: [email protected] 1 The three-dimensional (3D) topological insulator (TI) is a novel state of matter as characterized by two-dimensional (2D) metallic Dirac states on its surface1-4. Bi-based chalcogenides such as Bi2Se3, Bi2Te 3, Sb2Te 3 and their combined/mixed compounds like Bi2Se2Te and (Bi1−xSbx)2Te 3 are typical members of 3D-TIs which have been intensively studied in forms of bulk single crystals and thin films to verify the topological nature of the surface states5-12. Here, we report the realization of the Quantum Hall effect (QHE) on the surface Dirac states in (Bi1−xSbx)2Te 3 films (x = 0.84 and 0.88). With electrostatic gate-tuning of the Fermi level in the bulk band gap under magnetic fields, the quantum Hall states with filling factor ν = ± 1 are resolved with 2 quantized Hall resistance of Ryx = ± h/e and zero longitudinal resistance, owing to chiral edge modes at top/bottom surface Dirac states.
    [Show full text]
  • Electromagnetism - Lecture 13
    Electromagnetism - Lecture 13 Waves in Insulators Refractive Index & Wave Impedance • Dispersion • Absorption • Models of Dispersion & Absorption • The Ionosphere • Example of Water • 1 Maxwell's Equations in Insulators Maxwell's equations are modified by r and µr - Either put r in front of 0 and µr in front of µ0 - Or remember D = r0E and B = µrµ0H Solutions are wave equations: @2E µ @2E 2E = µ µ = r r r r 0 r 0 @t2 c2 @t2 The effect of r and µr is to change the wave velocity: 1 c v = = pr0µrµ0 prµr 2 Refractive Index & Wave Impedance For non-magnetic materials with µr = 1: c c v = = n = pr pr n The refractive index n is usually slightly larger than 1 Electromagnetic waves travel slower in dielectrics The wave impedance is the ratio of the field amplitudes: Z = E=H in units of Ω = V=A In vacuo the impedance is a constant: Z0 = µ0c = 377Ω In an insulator the impedance is: µrµ0c µr Z = µrµ0v = = Z0 prµr r r For non-magnetic materials with µr = 1: Z = Z0=n 3 Notes: Diagrams: 4 Energy Propagation in Insulators The Poynting vector N = E H measures the energy flux × Energy flux is energy flow per unit time through surface normal to direction of propagation of wave: @U −2 @t = A N:dS Units of N are Wm In vacuo the amplitudeR of the Poynting vector is: 1 1 E2 N = E2 0 = 0 0 2 0 µ 2 Z r 0 0 In an insulator this becomes: 1 E2 N = N r = 0 0 µ 2 Z r r The energy flux is proportional to the square of the amplitude, and inversely proportional to the wave impedance 5 Dispersion Dispersion occurs because the dielectric constant r and refractive index
    [Show full text]
  • Dielectric Optical Cloak
    Dielectric Optical Cloak Jason Valentine1*, Jensen Li1*, Thomas Zentgraf1*, Guy Bartal1 and Xiang Zhang1,2 1NSF Nano-scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA 2Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 *These authors contributed equally to this work Invisibility or cloaking has captured human’s imagination for many years. With the recent advancement of metamaterials, several theoretical proposals show cloaking of objects is possible, however, so far there is a lack of an experimental demonstration at optical frequencies. Here, we report the first experimental realization of a dielectric optical cloak. The cloak is designed using quasi-conformal mapping to conceal an object that is placed under a curved reflecting surface which imitates the reflection of a flat surface. Our cloak consists only of isotropic dielectric materials which enables broadband and low-loss invisibility at a wavelength range of 1400-1800 nm. 1 For years, cloaking devices with the ability to render objects invisible were the subject of science fiction novels while being unattainable in reality. Nevertheless, recent theories including transformation optics (TO) and conformal mapping [1-4] proposed that cloaking devices are in principle possible, given the availability of the appropriate medium. The advent of metamaterials [5-7] has provided such a medium for which the electromagnetic material properties can be tailored at will, enabling precise control over the spatial variation in the material response (electric permittivity and magnetic permeability). The first experimental demonstration of cloaking was recently achieved at microwave frequencies [8] utilizing metallic rings possessing spatially varied magnetic resonances with extreme permeabilities.
    [Show full text]
  • Quantum Spin Hall Effect in Topological Insulators
    Racah Institute of Physics Hebrew University of Jerusalem Quantum spin Hall effect in topological insulators Edouard Sonin 7KH&DSUL6SULQJ6FKRRORQ7UDQVSRUWLQ1DQRljUXFWXUHV&DSUL$SULO Content Spin Hall effect Topological Insulator Quantum spin Hall effect: (i) Was it really observed? (ii) If not, how and whether could it be observed? Spin Hall effect ! ! !"#$%&%' ( )*+*, -./0.1 23+456 -.///1 Spin balance @S h + J = G Spin: SpinS = balance( y ) @t ri i 2 h Spin current: @S h Ji = ( y{ vi + vi } ) Spin: S = ( y ) 4 + iJi = G 2 Spin@t balancer Spin balance ~v is the group-velocity operator h Spin current: J = ( y{ vSonin+ v" } ) @S i h i i @S Adv.4 Phys. 59, 181 (2010)h " + iJ = G Rashba model: Spin: S = Spin:( y S ) = ( y ) i + iJi = G 2 @t r h @t r ~v is the group-velocity operator 2 ~v = ( i~ +h [^z ~]) Spin current: h mSpin Jcurrent:ir= ( y{ Jvi =+ vi( }y {) Rashbav + v model:} ) 4 i 4 i i i h2 h Torque: G~ v =is the group-velocity y{[~ operator[^z~v = ~ ]]( i}~ + [^{z[[~ ~])z^] ~] y} 2m ~v is the group-velocity rm roperator r n o Rashba model: 2 Rashbai h model: ~ ~ 2 h Torque: G = 2 y{[~ [^z ]] } {[[ z^] ~] y} ih ~ h h 2m r r Ji = ~v(= y ( i +~v =[^iz y(~ ]) i~) + [^z ( ~y])n{ [~ z^]i +[~ z^]i } ) o 4m m r r r m r 4m 2 i h i ihh22 h2 G = y{[~ [^z ~ ]] } {[[~ z^] ~] y} Torque: Torque: G Ji== ( yy { [~i [^z i ~ ]]y }) { [[(~ y{z^] [~~] z^ ]iy+[} ~ z^]i } ) 2m 24mm r r r rr 4m r n n o o ih2 2 h2 2 ih h Ji = ( Jy = i ( i yy ) (y y{ ) [~ z^](i +[y{~ [~z^]iz^ ]} +[) ~ z^] } ) 4m i r 4mr ri r4mi 4m i i Are spin currents
    [Show full text]
  • Metal-Insulator-Insulator-Metal Plasmonic Waveguides and Devices Jing Chen
    University of New Mexico UNM Digital Repository Electrical and Computer Engineering ETDs Engineering ETDs 11-18-2009 Metal-insulator-insulator-metal plasmonic waveguides and devices Jing Chen Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds Recommended Citation Chen, Jing. "Metal-insulator-insulator-metal plasmonic waveguides and devices." (2009). https://digitalrepository.unm.edu/ ece_etds/48 This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. METAL-INSULATOR-METAL PLASMONIC WAVEGUIDES AND DEVICES BY JING CHEN B.S., Physics, Hunan Normal University, 1994 M.S., Electromagnetics and Microwave Technology, Beijing University of Posts and Telecommunications, 1997 M.S., Electrical Engineering, University of New Mexico, 2003 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Engineering The University of New Mexico Albuquerque, New Mexico August, 2009 ©2009, Jing Chen iii To my parents, my husband Songhe Cai and son Daniel Cai. iv ACKNOWLEDGMENTS It is my great pleasure to thank all the people that have supported me during my dissertation work and beyond. First and foremost, I would like to thank my advisor, Professor Kevin Malloy, for his guidance, constant support and encouragements during these years. I am greatly benefited from his knowledge. I want to express my sincere thanks to Prof. Steve Brueck for his valuable advices. I am grateful to Dr. Gennady Smolyakov for his code.
    [Show full text]