Quantum Spin Hall Effect in Topological Insulators

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Spin Hall Effect in Topological Insulators Racah Institute of Physics Hebrew University of Jerusalem Quantum spin Hall effect in topological insulators Edouard Sonin 7KH&DSUL6SULQJ6FKRRORQ7UDQVSRUWLQ1DQRljUXFWXUHV&DSUL$SULO Content Spin Hall effect Topological Insulator Quantum spin Hall effect: (i) Was it really observed? (ii) If not, how and whether could it be observed? Spin Hall effect ! ! !"#$%&%' ( )*+*, -./0.1 23+456 -.///1 Spin balance @S h + J = G Spin: SpinS = balance( y ) @t ri i 2 h Spin current: @S h Ji = ( y{ vi + vi } ) Spin: S = ( y ) 4 + iJi = G 2 Spin@t balancer Spin balance ~v is the group-velocity operator h Spin current: J = ( y{ vSonin+ v" } ) @S i h i i @S Adv.4 Phys. 59, 181 (2010)h " + iJ = G Rashba model: Spin: S = Spin:( y S ) = ( y ) i + iJi = G 2 @t r h @t r ~v is the group-velocity operator 2 ~v = ( i~ +h [^z ~]) Spin current: h mSpin Jcurrent:ir= ( y{ Jvi =+ vi( }y {) Rashbav + v model:} ) 4 i 4 i i i h2 h Torque: G~ v =is the group-velocity y{[~ operator[^z~v = ~ ]]( i}~ + [^{z[[~ ~])z^] ~] y} 2m ~v is the group-velocity rm roperator r n o Rashba model: 2 Rashbai h model: ~ ~ 2 h Torque: G = 2 y{[~ [^z ]] } {[[ z^] ~] y} ih ~ h h 2m r r Ji = ~v(= y ( i +~v =[^iz y(~ ]) i~) + [^z ( ~y])n{ [~ z^]i +[~ z^]i } ) o 4m m r r r m r 4m 2 i h i ihh22 h2 G = y{[~ [^z ~ ]] } {[[~ z^] ~] y} Torque: Torque: G Ji== ( yy { [~i [^z i ~ ]]y }) { [[(~ y{z^] [~~] z^ ]iy+[} ~ z^]i } ) 2m 24mm r r r rr 4m r n n o o ih2 2 h2 2 ih h Ji = ( Jy = i ( i yy ) (y y{ ) [~ z^](i +[y{~ [~z^]iz^ ]} +[) ~ z^] } ) 4m i r 4mr ri r4mi 4m i i Are spin currents observable? Electrodynamics (Griffiths, Introduction to Electrodynamics, Prentice–Hall,1999, Problem 12.62) A moving magnetic moment generates an electric field Vacuum: Rasba medium: Inverse spin Hall effect: Valenzuela and Tinkham, Nature, 442,176 (2006) - spin diffusion current Jungfleisch et al., arXiv: 1011.0889 - magnon spin current Spin accumulation by a spin current (Dyakonov & Perel, 1971) Spin diffusion current Bulk spin current: Spin diffusion current: Bulk spin current Spin balance equation: At the border: Experimental detection of the spin Hall effect: spin accumulation at sample edges !"#$%& '()$#'*#+ *,"#(%)(- ./00 *11*-"2 :;)*#</"($% $1 "=* !>(% ./00 ?11*-" (% !*@(-$%'A-"$#) B/"$+ CD*#)+ E$))/#'+ /%' FG)=/0$@ !-(*%-*+ !"#+ 3435 675589 WeakWeak disorder, disorder, intrinsic extrinsic spin Hall Hall effect: effect: PHYSICAL REVIEW LETTERS week ending PRL 94, 047204 (2005) 4 FEBRUARY 2005 Experimental Observation of the Spin-Hall Effect in aTwo-Dimensional Spin-Orbit Coupled Semiconductor System J. Wunderlich,1 B. Kaestner,1,2 J. Sinova,3 and T. Jungwirth4,5 1Hitachi Cambridge Laboratory, Cambridge CB3 0HE, United Kingdom 2National Physical Laboratory,Teddington T11 0LW, United Kingdom 3Department of Physics, Texas A&M University, College Station, Texas 77843-4242, USA 4Institute of Physics ASCR, Cukrovarnicka´ 10, 162 53 Praha 6, Czech Republic 5School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom Is spin accumulation is a good probe of the spin current? Spin current without spin accumulation: Equilibrium spin currents, spin torque instead of spin accumulation Spin accumulation without spin current: Intrinsic spin Hall effect in the Rashba model Sonin, PRL 99, 266602 (2007) Topological insulators 3 2 2 1 1 0 0 - 1 - 1 - 2 2 - 3 - 1.5 -1.0 - 0.5 0.0 0.5 1.0 1.5 - 2 -1 0 1 2 Kane and Mele, PRL 95, 146802; ibid., 226801 (2005). BHZ model [Bernevig, Hughes, and Zhang, Science 314, 1757 (2006)]: kp theory Eigenstates: Edge states Boundary condition: What «spin» (moment) are we going to study? p-type valence band: s-type conduction band: Magnetic moment: Mechanical moment: Operator of the effective moment: Moment current: Operator of the group velocity: Transverse moment currents induced by an electric field Plane-wave presentation Corrected plane-wave eigenstate: Transverse moment current: Topological term: The total transverse moment current is proportional to the Chern numbr: Chern number !"#$% %&'(#$ )* !"#$% %&'(#$ )+ RESEARCH ARTICLES Quantum Spin Hall Insulator State in HgTe Quantum Wells Markus König,1 Steffen Wiedmann,1 Christoph Brüne,1 Andreas Roth,1 Hartmut Buhmann,1 Laurens W. Molenkamp,1* Xiao-Liang Qi,2 Shou-Cheng Zhang2 AUTHORS’ SUMMARY he discovery more than 25 Conductance theoretically that the electronic years ago of the quantum channel with structure of inverted HgTe quan- THall effect (1), in which the up-spin charge tum wells exhibits the properties “Hall,” or “transverse electrical” con- carriers that should enable an observation ductance of a material is quantized, of the quantum spin Hall insula- came as a total surprise to the physics tor state. Our experimental obser- community. This effect occurs in vations confirm this. layered metals at high magnetic These experiments only be- fields and results from the forma- came possible after the devel- tion of conducting one-dimensional opment of quantum wells of channels that develop at the edges sufficiently high carrier mobility, on July 15, 2010 of the sample. Each of these edge combined with the lithographic channels, in which the current moves techniques needed to pattern the only in one direction, exhibits a quan- sample. The patterning is espe- tized conductance that is character- Conductance cially difficult because of the very istic of one-dimensional transport. The channel with high volatility of Hg. Moreover, number of edge channels in the sam- Quantum down-spin we have developed a special low– ple is directly related to the value of well charge carriers deposition temperature Si-O-N the quantum Hall conductance. More- Schematic of the spin-polarized edge channels in a quantum spin Hall gate insulator (7), which allows over, the charge carriers in these chan- us to control the Fermi level (the insulator. www.sciencemag.org nels are very resistant to scattering. energy level up to which all Not only can the quantum Hall effect be observed in macroscopic samples electronics states are filled) in the quantum well from the conduction band, for this reason, but within the channels, charge carriers can be transported through the insulating gap, and into the valence band. Using both electron without energy dissipation. Therefore, quantum Hall edge channels may be beam and optical lithography, we have fabricated simple rectangular useful for applications in integrated circuit technology, where power dis- structures in various sizes from quantum wells of varying width and sipation is becoming more and more of a problem as devices become smaller. measured the conductance as a function of gate voltage. Of course, there are some formidable obstacles to overcome—the quantum We observe that samples made from narrow quantum wells with a Hall effect only occurs at low temperatures and high magnetic fields. “normal” electronic structure basically show zero conductance when the Downloaded from In the past few years, theoretical physicists have suggested that Fermi level is inside the gap. Quantum wells with an inverted electronic edge channel transport of current might be possible in the absence of a structure, by contrast, show a conductance close to what is expected for the magnetic field. They predicted (2–4) that in insulators with suitable edge channel transport in a quantum spin Hall insulator. This interpretation electronic structure, edge states would develop where—and this is is further corroborated by magnetoresistance data. For example, high– different from the quantum Hall effect—the carriers with opposite magnetic field data on samples with an inverted electronic structure show a spins move in opposite directions on a given edge, as shown sche- very unusual insulator-metal-insulator transition as a function of field, matically in the figure. This is the quantum spin Hall effect, and its which we demonstrate is a direct consequence of the electronic structure. observation has been hotly pursued in the field. The spin-polarized character of the edge channels still needs to be Although there are many insulators in nature, most of them do not have unequivocably demonstrated. For applications of the effect in actual the right structural properties to allow the quantum spin Hall effect to be microelectronic technology, this low-temperature effect (we observe it observed. This is where HgTe comes in. Bulk HgTe is a II-VI semi- below 10 K) will have to be demonstrated at room temperature, which may conductor, but has a peculiar electronic structure: In most such materials, be possible in wells with wider gaps. the conduction band usually derives from s-states located on the group II atoms, and the valence band from p-states at the VI atoms. In HgTe this Summary References order is inverted, however (5). Using molecular beam epitaxy, we can 1. K. v. Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980). grow thin HgTe quantum wells, sandwiched between (Hg,Cd)Te barriers, 2. S. Murakami, N. Nagaosa, S.-C. Zhang, Phys. Rev. Lett. 93, 156804 (2004). 3. C. L. Kane, E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005). SCIENCE that offer a unique way to tune the electronic structure of the material: When = the quantum well is wide, the electronic structure in the well remains 4. B. A. Bernevig, S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006). 5. A. Novik et al., Phys. Rev. B 72, 035321 (2005). BICKEL inverted. However, for narrow wells, it is possible to obtain a “normal” 6. B. A. Bernevig, T. L. Hughes, S.-C. Zhang, Science 314, 1757 (2006). : alignment of the quantum well states. Recently, Bernevig et al.(6)predicted 7. J. Hinz et al., Semicond. Sci. Technol. 21, 501 (2006). CREDIT: C 766 2 NOVEMBER 2007 VOL 318 SCIENCE www.sciencemag.org Quantum spin Hall effect: Quantum spin conductivity: Quantum conductance of a ballistic conductor (Landauer-Buttiker theory): Quantum charge conductance: Accumulation at edge states &! &! &! &! Moment accumulation without bulk moment current: !"!#$% !"!#$% electrode electrode !"!#$% !"!#$% < If there are magnetic impurities at edges: Taking into account the boundary condition Sonin, Phys.
Recommended publications
  • View Publication
    Spin-orbit physics of j=1/2 Mott insulators on the triangular lattice Michael Becker,1 Maria Hermanns,1 Bela Bauer,2 Markus Garst,1 and Simon Trebst1 1Institute for Theoretical Physics, Cologne University, Zulpicher¨ Straße 77, 50937 Cologne, Germany 2Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA (Dated: April 16, 2015) The physics of spin-orbital entanglement in effective j = 1=2 Mott insulators, which have been experi- mentally observed for various 5d transition metal oxides, has sparked an interest in Heisenberg-Kitaev (HK) models thought to capture their essential microscopic interactions. Here we argue that the recently synthesized Ba3IrTi2O9 is a prime candidate for a microscopic realization of the triangular HK model – a conceptually interesting model for its interplay of geometric and exchange frustration. We establish that an infinitesimal Ki- taev exchange destabilizes the 120◦ order of the quantum Heisenberg model. This results in the formation of an extended Z2-vortex crystal phase in the parameter regime most likely relevant to the real material, which can be experimentally identified with spherical neutron polarimetry. Moreover, using a combination of analytical and numerical techniques we map out the entire phase diagram of the model, which further includes various ordered phases as well as an extended nematic phase around the antiferromagnetic Kitaev point. I. INTRODUCTION yond the hexagonal lattice, triggered mainly by the synthe- sis of novel Iridate compounds, which includes e.g. the sis- 16 17 ter compounds β-Li2IrO3 and γ-Li2IrO3 that form three- The physics of transition metal oxides with partially filled dimensional Ir lattice structures.
    [Show full text]
  • Quantum Spin Hall Effect and Topological Insulators for Light
    Quantum spin Hall effect and topological insulators for light Konstantin Y. Bliokh1,2 and Franco Nori1,3 1Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198, Japan 2Nonlinear Physics Centre, RSPhysE, The Australian National University, ACT 0200, Australia 3Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA We show that free-space light has intrinsic quantum spin-Hall effect (QSHE) properties. These are characterized by a non-zero topological spin Chern number, and manifest themselves as evanescent modes of Maxwell equations. The recently discovered transverse spin of evanescent modes demonstrates spin-momentum locking stemming from the intrinsic spin-orbit coupling in Maxwell equations. As a result, any interface between free space and a medium supporting surface modes exhibits QSHE of light with opposite transverse spins propagating in opposite directions. In particular, we find that usual isotropic metals with surface plasmon- polariton modes represent natural 3D topological insulators for light. Several recent experiments have demonstrated transverse spin-momentum locking and spin- controlled unidirectional propagation of light at various interfaces with evanescent waves. Our results show that all these experiments can be interpreted as observations of the QSHE of light. 1. Introduction Solid-state physics exhibits a family of Hall effects with remarkable physical properties. The usual Hall effect (HE) and quantum Hall effect (QHE) appear in the presence of an external magnetic field, which breaks the time-reversal ( T ) symmetry of the system. The HE represents charge-dependent deflection of electrons orthogonal to the magnetic field, whereas the QHE [1] offers distinct topological electron states, with unidirectional edge modes (charge-momentum locking), characterized by the topological Chern number [2].
    [Show full text]
  • Room Temperature Electrically Pumped Topological Insulator Lasers
    ARTICLE https://doi.org/10.1038/s41467-021-23718-4 OPEN Room temperature electrically pumped topological insulator lasers Jae-Hyuck Choi1, William E. Hayenga1,2, Yuzhou G. N. Liu 1, Midya Parto 2, Babak Bahari1, ✉ Demetrios N. Christodoulides 2 & Mercedeh Khajavikhan 1,2 Topological insulator lasers (TILs) are a recently introduced family of lasing arrays in which phase locking is achieved through synthetic gauge fields. These single frequency light source 1234567890():,; arrays operate in the spatially extended edge modes of topologically non-trivial optical lat- tices. Because of the inherent robustness of topological modes against perturbations and defects, such topological insulator lasers tend to demonstrate higher slope efficiencies as compared to their topologically trivial counterparts. So far, magnetic and non-magnetic optically pumped topological laser arrays as well as electrically pumped TILs that are oper- ating at cryogenic temperatures have been demonstrated. Here we present the first room temperature and electrically pumped topological insulator laser. This laser array, using a structure that mimics the quantum spin Hall effect for photons, generates light at telecom wavelengths and exhibits single frequency emission. Our work is expected to lead to further developments in laser science and technology, while opening up new possibilities in topological photonics. 1 Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA. 2 CREOL, The College of Optics ✉ and Photonics,
    [Show full text]
  • The Quantum Spin Hall Effect and Topological Insulators Xiao-Liang Qi, and Shou-Cheng Zhang
    The quantum spin Hall effect and topological insulators Xiao-Liang Qi, and Shou-Cheng Zhang Citation: Physics Today 63, 1, 33 (2010); doi: 10.1063/1.3293411 View online: https://doi.org/10.1063/1.3293411 View Table of Contents: http://physicstoday.scitation.org/toc/pto/63/1 Published by the American Institute of Physics Articles you may be interested in Foundational theories in topological physics garner Nobel Prize Physics Today 69, 14 (2016); 10.1063/PT.3.3381 Two-dimensional van der Waals materials Physics Today 69, 38 (2016); 10.1063/PT.3.3297 Topological phases and quasiparticle braiding Physics Today 65, 38 (2012); 10.1063/PT.3.1641 Surprises from the spin Hall effect Physics Today 70, 38 (2017); 10.1063/PT.3.3625 Topological quantum computation Physics Today 59, 32 (2006); 10.1063/1.2337825 Fifty years of Anderson localization Physics Today 62, 24 (2009); 10.1063/1.3206091 The quantum spin Hall effect and feature topological insulators Xiao-Liang Qi and Shou-Cheng Zhang In topological insulators, spin–orbit coupling and time-reversal symmetry combine to form a novel state of matter predicted to have exotic physical properties. Xiao-Liang Qi is a research associate at the Stanford Institute for Materials and Energy Science and Shou-Cheng Zhang is a professor of physics at Stanford University in Stanford, California. In the quantum world, atoms and their electrons can crystals.6–8 QSH systems are insulating in the bulk—they have form many different states of matter, such as crystalline solids, an energy gap separating the valence and conduction bands— magnets, and superconductors.
    [Show full text]
  • Download Ultrasonic Spectroscopy Applications in Condensed Matter
    ULTRASONIC SPECTROSCOPY APPLICATIONS IN CONDENSED MATTER PHYSICS AND MATERIALS SCIENCE 1ST EDITION DOWNLOAD FREE BOOK Robert G Leisure | --- | --- | --- | 9781107154131 | --- | --- Condensed matter physics Built by scientists, for scientists. My research interests are motivated by this remarkable observation. One example is the incorporation of multiple functionalities such as superconductivity, magnetism, and ferroelectricity into a single material platform in search of multifunctionality. Cold atoms in optical lattices are used as quantum simulatorsthat is, they act as controllable systems that can model behavior of more complicated systems, such as frustrated magnets. One major project involves studies of ultrathin dielectrics silicon oxynitrides and metaloxides for nanoelectronic devices. Optical absorption and fluorescence spectroscopy measurements have become an important tool for structure-based characterization and DNA- assisted manipulation of carbon nanotubes. Other vigorous areas of research include such phenomena as metal-insulator transition, two- dimensional electron systems, magnetism, and quantum fluids and solids. In these systems, density currents propagating in chiral edge states are protected from scattering with disorder, which is a clear advantage for exciton based optical circuits. Branch of physics. Introduction to Many Body Physics. We can also create novel multiferroic, superconducting or ferroelectric materials by means of atomic-scale crystal-symmetry engineering. The methods are suitable to study defects, diffusion,
    [Show full text]
  • Imaging Currents in Hgte Quantum Wells in the Quantum Spin Hall Regime Katja C
    Imaging currents in HgTe quantum wells in the quantum spin Hall regime Katja C. Nowack2,3*, Eric M. Spanton1,3, Matthias Baenninger1,3, Markus König1,3, John R. Kirtley2, Beena Kalisky2,4, C. Ames5, Philipp Leubner5, Christoph Brüne5, Hartmut Buhmann5, Laurens W. Molenkamp5, David Goldhaber-Gordon1,3, Kathryn A. Moler1,2,3 1Department of Physics, Stanford University, Stanford, California 94305, USA 2Department of Applied Physics, Stanford University, Stanford, California 94305, USA 3Stanford Institute for Materials and Energy Science, Stanford University, Stanford, California 94305, USA 4Department of Physics, Nano-magnetism Research Center, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel. 5Physikalisches Institut (EP3), Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany *To whom correspondence should be addressed. Email: [email protected] The quantum spin Hall (QSH) state is a genuinely new state of matter characterized by a non-trivial topology of its band structure1-5. Its key feature is conducting edge channels whose spin polarization has potential for spintronic and quantum information applications. The QSH state was predicted6 and experimentally demonstrated7 to exist in HgTe quantum wells. The existence of the edge channels has been inferred from the fact that local and non- local conductance values in sufficiently small devices are close to the quantized values expected for ideal edge channels7,8 and from signatures of the spin polarization9. The robustness of the edge channels in larger devices and the interplay between the edge channels and a conducting bulk are relatively unexplored experimentally, and are difficult to assess via transport measurements. Here we image the current in large Hallbars made from HgTe quantum wells by probing the magnetic field generated by the current using a scanning superconducting quantum interference device (SQUID)10.
    [Show full text]
  • What Is the Quantum Spin Hall Effect? What Is the Quantum Spin Hall Effect?
    What is the quantum spin Hall effect? What is the quantum spin Hall effect? Fir! paper on "in Hal e$ect: D’yakonov and Perel ’, 1971 What is the quantum spin Hall effect? Recall the quantum Hall effect... Recall the quantum Hall effect... impurity scattering broadening of Landau levels into bands of localized states bulk insulator Recall the quantum Hall effect... What carries the current?! Recall the quantum Hall effect... What carries the current?! “skipping currents”! Recall the quantum Hall effect... 1 “skipping currents” conducting edge states quantization Halperin (1982) e2 No channel for backscattering ballistic transport = iv :R† (x)∂ R (x)::L† (x)∂ L (x): G = ν Hτ − F τ x τ τ x τ h 2ik0 (x+a/2) $ % 2∆R cos(Qx) e− F R† (x)L (x)+H.c.(6), − τ τ A QH state is stable against local perturbations $ % M 100 meV c ≈ τ = D. Grundler, Phys. Rev. Lett. 84, 6074 (2000) ± W. H¨ausler, L. Kecke, and A. H. MacDonald, Phys. Rev. B 65, 085104 (2002) q0 11 !α0 2 10− eV m " × y H = i (γ + γ cos (Qna)) c† σ c H.c. Λ 0.5 eV R − 0 1 n,µ µν n+1,ν − " n,µ,ν v 1 106 m/s & ' ( F " × Kc + Ks 1.8 " 1 γj = αja− (j = 0, 1) HR ϕc (ϕ+ + ϕ )/√2 (7) ≡ − H = dx [ + ] Hc Hs ϕs (ϕ+ ϕ )/√2 (8) ! ≡ − − v m = i [(∂ ϕ )2 +(∂ ϑ )2] i cos( 2πK ϕ ), (1) Hi 2 x i x i − πa i i int = g1 :Rτ† Lτ L† τ R τ : + g˜2τ :R+† R+Lτ† Lτ : " H − − − g4τ + (:R+† R+Rτ† Rτ : + R L) (9) ∆R = γ1 sin(q0a) 2 ↔ with vi and Ki functions of g1τ , g˜2τ and g4τ g˜ g δ g (10) 2τ ≡ 2τ − τ+ 1τ Λ bandwidth (2) ∼ with vi and K functions of g1τ , g2τ , g3τ (11) ϕc (ϕ+ + ϕ )/√2 (3) ≡ − (+, ) ( , ) in ”g-ology” notation (12) − ↔ ) ⊥ ϕs (ϕ+ ϕ )/√2 (4) ≡ − − ∂tϕτ = vF ∂xϑτ Rτ† and Lτ† create excitations at the Fermi points of the right- and left-moving branches with spin projection τ R (x) = η exp i√π[ϕ (x) + ϑ (x)] /√2πa (5) τ τ τ τ $ % L+ L (x) = η¯ exp i√π[ϕ (x) ϑ (x)] /√2πa τ τ − τ − τ $ % 2 2 vF = 2a t + γ0 and ∆R = γ1 sin(q0a) ητ , η¯τ Klein factors # Can a system be stable against local perturbations without breaking time-reversal invariance? Consider a Gedanken experiment..
    [Show full text]
  • Extreme Mechanics Letters Programmable Elastic Valley Hall
    Extreme Mechanics Letters 28 (2019) 76–80 Contents lists available at ScienceDirect Extreme Mechanics Letters journal homepage: www.elsevier.com/locate/eml Programmable elastic valley Hall insulator with tunable interface propagation routes ∗ Quan Zhang, Yi Chen, Kai Zhang, Gengkai Hu Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China article info a b s t r a c t Article history: A challenge in the area of topologically protected edge waves in elastic media is how to tune the Received 28 December 2018 topological interface propagation route as needed. This paper proposes a tunable elastic valley Hall Received in revised form 25 January 2019 insulator, whose unit cell consists of two cavities and magnetic fluid with the same volume as the Accepted 12 March 2019 cavity. Interface route with arbitrary shape for propagating topologically protected edge waves can Available online 15 March 2019 be achieved by controlling the distribution of magnetic fluid in each unit cell through a designed Keywords: programmable magnet lifting array. As demonstrated through numerical simulations and experimental Elastic topological insulator testing, the flexural wave is confined to propagate along the topological interface routes of different Programmable interface propagation route configurations. Finally, it is indicated that the proposed valley Hall insulator can be applied to achieve Topologically protected edges wave desired localized elastic energy which is robust to defects, sharp corners and so on. Wave guiding ' 2019 Elsevier Ltd. All rights reserved. 1. Introduction needed to break time-reversal symmetry (TRS). In acoustic/elastic system, the mostly common used method to break TRS is by During the past decades, manipulating wave propagation in exploiting rotating inclusions, such as spinning rotors [12,14] or periodic materials has attracted significant interest.
    [Show full text]
  • Photonic Analogue of Quantum Spin Hall Effect Cheng He1*, Xiao
    Photonic analogue of quantum spin Hall effect Cheng He1*, Xiao-Chen Sun1*, Xiao-ping Liu1,Ming-Hui Lu1†, YulinChen2, Liang Feng3 and Yan-Feng Chen1† 1National Laboratory of Solid State Microstructures& Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China 2Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK 3Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA *These authors contributed equally to this work. †Correspondence and request for materials should be addressed to M. H. Lu ([email protected]) and Y. F. Chen ([email protected]). Symmetry-protected photonic topological insulator exhibiting robust pseudo-spin-dependent transportation1-5, analogous to quantum spin Hall (QSH) phases6,7 and topological insulators8,9, are of great importance in fundamental physics. Such transportation robustness is protected by time-reversal symmetry. Since electrons (fermion) and photons (boson) obey different statistics rules and associate with different time-reversal operators (i.e., Tf and Tb, respectively), whether photonic counterpart of Kramers degeneracy is topologically protected by bosonic Tb remains unidentified. Here, we construct the degenerate gapless edge states of two photonic pseudo-spins (left/right circular polarizations) 1 in the band gap of a two-dimensional photonic crystal with strong magneto-electric coupling. We further demonstrated that the topological edge states are in fact protected by Tf rather than commonly believed Tb and their pseudo-spin dependent transportation is robust against Tf invariant impurities, discovering for the first time the topological nature of photons. Our results will pave a way towards novel photonic topological insulators and revolutionize our understandings in topological physics of fundamental particles.
    [Show full text]
  • UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title A Study of d-Density Wave States in Strongly Correlated Electron Systems Permalink https://escholarship.org/uc/item/5vd202j4 Author Hsu, Chen-Hsuan Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles A Study of d-Density Wave States in Strongly Correlated Electron Systems A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Chen-Hsuan Hsu 2014 ⃝c Copyright by Chen-Hsuan Hsu 2014 ABSTRACT OF THE DISSERTATION A Study of d-Density Wave States in Strongly Correlated Electron Systems by Chen-Hsuan Hsu Doctor of Philosophy in Physics University of California, Los Angeles, 2014 Professor Sudip Chakravarty, Chair Particle-hole condensates in the angular momentum ` = 2 channel, known as d-density wave or- ders, have been suggested to be realized in strongly correlated electron systems. In this dissertation, we study singlet and triplet d-density wave orders with a form factor of dx2−y2 as well as a novel topological mixed singlet-triplet d-density wave with a form factor of (iσdx2−y2 +dxy), and discuss the connections of these states to high-temperature superconductors and heavy-fermion materials. In Chapter 2, we discuss the spin susceptibility of the singlet d-density wave, triplet d-density wave, and spin density wave orders with hopping anisotropies. From the numerical calculation, we find nearly vertical dispersion relations for spin excitations with anisotropic incommensurability at low energies in agreement with the inelastic neutron scattering experiments in the pseudogap state of the high-temperature superconductor YBa2Cu3O6:6.
    [Show full text]
  • Quantum Spin Hall Effect in Two-Dimensional Transition Metal Dichalcogenides Xiaofeng Qian Et Al
    RESEARCH | REPORTS magnitude too slow to produce v-weakening, 3. S. Siman-Tov, E. Aharonov, A. Sagy, S. Emmanuel, Geology 41, 22. J.-P. Gratier, D. K. Dysthe, F. Renard, Adv. Geophys. 54,47–179 except perhaps at temperatures of 500° to 700°C 703–706 (2013). (2013). 4. S. A. F. Smith et al., Geology 41,63–66 (2013). 23. J. R. Farver, R. A. Yund, Contrib. Mineral. Petrol. 123,77–91 reached in experiments at coseismic slip veloc- – 4 5 14 19 5. M. Fondriest et al., Geology 41, 1175 1178 (2013). (1996). ities ( , , , ). 6. J. D. Kirkpatrick, C. D. Rowe, J. C. White, E. E. Brodsky, Geology 24. N. R. Tao et al., Acta Mater. 50, 4603–4616 (2002). The internal polycrystalline substructure of 41, 1015–1018 (2013). 25. L. A. Kennedy, J. C. White, Geology 29, 1027–1030 (2001). the nanospherules and nanofibers that we ob- 7. J. P. Evans, M. R. Prante, S. U. Janecke, A. K. Ault, D. L. Newell, 26. R. L. Penn, J. F. Banfield, Science 281, 969–971 (1998). Geology 42, 623–626 (2014). 27. H. Zhang, J. F. Banfield, CrystEngComm 16, 1568–1578 served bears a striking similarity to microstruc- – 24 8. C. H. Scholz, Nature 391,37 42 (1998). (2014). tures found in shocked ductile metals ( ). As 9. B. A. Verberne, C. He, C. J. Spiers, Bull. Seismol. Soc. Am. 100, 28. N. Gehrke, H. Cölfen, N. Pinna, M. Antonietti, N. Nassif, in metals, the well-known ductility of calcite 2767–2790 (2010). Cryst. Growth Des. 5, 1317–1319 (2005).
    [Show full text]
  • Spin Valley and Giant Quantum Spin Hall Gap of Hydrofluorinated
    www.nature.com/scientificreports OPEN Spin valley and giant quantum spin Hall gap of hydrofuorinated bismuth nanosheet Received: 1 February 2018 Heng Gao1, Wei Wu1, Tao Hu1, Alessandro Stroppa2,1, Xinran Wang3, Baigeng Wang4, Feng Accepted: 23 April 2018 Miao 4 & Wei Ren1,5 Published: xx xx xxxx Spin-valley and electronic band topological properties have been extensively explored in quantum material science, yet their coexistence has rarely been realized in stoichiometric two-dimensional (2D) materials. We theoretically predict the quantum spin Hall efect (QSHE) in the hydrofuorinated bismuth (Bi2HF) nanosheet where the hydrogen (H) and fuorine (F) atoms are functionalized on opposite sides of bismuth (Bi) atomic monolayer. Such Bi2HF nanosheet is found to be a 2D topological insulator with a giant band gap of 0.97 eV which might host room temperature QSHE. The atomistic structure of Bi2HF nanosheet is noncentrosymmetric and the spontaneous polarization arises from the hydrofuorinated morphology. The phonon spectrum and ab initio molecular dynamic (AIMD) calculations reveal that the proposed Bi2HF nanosheet is dynamically and thermally stable. The inversion symmetry breaking together with spin-orbit coupling (SOC) leads to the coupling between spin and valley in Bi2HF nanosheet. The emerging valley-dependent properties and the interplay between intrinsic dipole and SOC are investigated using frst-principles calculations combined with an efective Hamiltonian model. The topological invariant of the Bi2HF nanosheet is confrmed by using Wilson loop method and the calculated helical metallic edge states are shown to host QSHE. The Bi2HF nanosheet is therefore a promising platform to realize room temperature QSHE and valley spintronics.
    [Show full text]