Intuitionistic Type Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Proof Interpretations and Linear Logic
On Proof Interpretations and Linear Logic On Proof Interpretations and Linear Logic Paulo Oliva Queen Mary, University of London, UK ([email protected]) Heyting Day Utrecht, 27 February 2015 To Anne Troelstra and Dick de Jongh 6 ?? - !A ::: - !A - ! ILLp ILLp ILLp = Intuit. predicate linear logic (!-free) On Proof Interpretations and Linear Logic Overview - ! IL ::: - IL interpretations IL = Intuitionistic predicate logic 6 ?? - !A ::: - !A On Proof Interpretations and Linear Logic Overview - ! IL ::: - IL interpretations - ! ILLp ILLp IL = Intuitionistic predicate logic ILLp = Intuit. predicate linear logic (!-free) ?? - !A ::: - !A On Proof Interpretations and Linear Logic Overview - ! IL ::: - IL interpretations 6 - ! ILLp ILLp IL = Intuitionistic predicate logic ILLp = Intuit. predicate linear logic (!-free) - !A ::: - !A On Proof Interpretations and Linear Logic Overview - ! IL ::: - IL interpretations 6 ?? - ! ILLp ILLp IL = Intuitionistic predicate logic ILLp = Intuit. predicate linear logic (!-free) On Proof Interpretations and Linear Logic Overview - ! IL ::: - IL interpretations 6 ?? - ! ILLp ILLp - !A ::: - !A IL = Intuitionistic predicate logic ILLp = Intuit. predicate linear logic (!-free) On Proof Interpretations and Linear Logic Outline 1 Proof Interpretations 2 Linear Logic 3 Unified Interpretation of Linear Logic On Proof Interpretations and Linear Logic Proof Interpretations Outline 1 Proof Interpretations 2 Linear Logic 3 Unified Interpretation of Linear Logic E.g. the set of prime numbers is infinite The book \Proofs from THE BOOK" contains six beautiful proofs of this Non-theorems map to the empty set E.g. the set of even numbers is finite Need to fix the formal system On Proof Interpretations and Linear Logic Proof Interpretations Formulas as Sets of Proofs Formulas as set of proofs A 7! fπ : π ` Ag The book \Proofs from THE BOOK" contains six beautiful proofs of this Non-theorems map to the empty set E.g. -
The Logic of Brouwer and Heyting
THE LOGIC OF BROUWER AND HEYTING Joan Rand Moschovakis Intuitionistic logic consists of the principles of reasoning which were used in- formally by L. E. J. Brouwer, formalized by A. Heyting (also partially by V. Glivenko), interpreted by A. Kolmogorov, and studied by G. Gentzen and K. G¨odel during the first third of the twentieth century. Formally, intuitionistic first- order predicate logic is a proper subsystem of classical logic, obtained by replacing the law of excluded middle A ∨¬A by ¬A ⊃ (A ⊃ B); it has infinitely many dis- tinct consistent axiomatic extensions, each necessarily contained in classical logic (which is axiomatically complete). However, intuitionistic second-order logic is inconsistent with classical second-order logic. In terms of expressibility, the intu- itionistic logic and language are richer than the classical; as G¨odel and Gentzen showed, classical first-order arithmetic can be faithfully translated into the nega- tive fragment of intuitionistic arithmetic, establishing proof-theoretical equivalence and clarifying the distinction between the classical and constructive consequences of mathematical axioms. The logic of Brouwer and Heyting is effective. The conclusion of an intuitionistic derivation holds with the same degree of constructivity as the premises. Any proof of a disjunction of two statements can be effectively transformed into a proof of one of the disjuncts, while any proof of an existential statement contains an effec- tive prescription for finding a witness. The negation of a statement is interpreted as asserting that the statement is not merely false but absurd, i.e., leads to a contradiction. Brouwer objected to the general law of excluded middle as claim- ing a priori that every mathematical problem has a solution, and to the general law ¬¬A ⊃ A of double negation as asserting that every consistent mathematical statement holds. -
Finite Type Arithmetic
Finite Type Arithmetic Computable Existence Analysed by Modified Realisability and Functional Interpretation H Klaus Frovin Jørgensen Master’s Thesis, March 19, 2001 Supervisors: Ulrich Kohlenbach and Stig Andur Pedersen Departments of Mathematics and Philosohy University of Roskilde Abstract in English and Danish Motivated by David Hilbert’s program and philosophy of mathematics we give in the context of natural deduction an introduction to the Dialectica interpretation and compare the interpre- tation with modified realisability. We show how the interpretations represent two structurally different methods for unwinding computable information from proofs which may use certain prima facie non-constructive (ideal) elements of mathematics. Consequently, the two inter- pretations also represent different views on what is to be regarded as constructive relative to arithmetic. The differences show up in the interpretations of extensionality, Markov’s prin- ciple and restricted forms of independence-of-premise. We show that it is computationally a subtle issue to combine these ideal elements and prove that Markov’s principle is computa- tionally incompatible with independence-of-premise for negated purely universal formulas. In the context of extracting computational content from proofs in typed classical arith- metic we also compare in an extensional context (i) the method provided by negative trans- lation + Dialectica interpretation with (ii) the method provided by negative translation + ω A-translation + modified realisability. None of these methods can be applied fully to E-PA , since E-HAω is not closed under Markov’s rule, whereas the method based on the Dialectica interpretation can be used if only weak extensionality is required. Finally, we present a new variant of the Dialectica interpretation in order to obtain (the well-known) existence property, disjunction property and other closure results for typed in- tuitionistic arithmetic and extensions hereof. -
Epistemic Modality, Mind, and Mathematics
Epistemic Modality, Mind, and Mathematics Hasen Khudairi June 20, 2017 c Hasen Khudairi 2017, 2020 All rights reserved. 1 Abstract This book concerns the foundations of epistemic modality. I examine the nature of epistemic modality, when the modal operator is interpreted as con- cerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality relates to the compu- tational theory of mind; metaphysical modality; deontic modality; the types of mathematical modality; to the epistemic status of undecidable proposi- tions and abstraction principles in the philosophy of mathematics; to the apriori-aposteriori distinction; to the modal profile of rational propositional intuition; and to the types of intention, when the latter is interpreted as a modal mental state. Each essay is informed by either epistemic logic, modal and cylindric algebra or coalgebra, intensional semantics or hyperin- tensional semantics. The book’s original contributions include theories of: (i) epistemic modal algebras and coalgebras; (ii) cognitivism about epistemic modality; (iii) two-dimensional truthmaker semantics, and interpretations thereof; (iv) the ground-theoretic ontology of consciousness; (v) fixed-points in vagueness; (vi) the modal foundations of mathematical platonism; (vii) a solution to the Julius Caesar problem based on metaphysical definitions availing of notions of ground and essence; (viii) the application of epistemic two-dimensional semantics to the epistemology of mathematics; and (ix) a modal logic for rational intuition. I develop, further, a novel approach to conditions of self-knowledge in the setting of the modal µ-calculus, as well as novel epistemicist solutions to Curry’s and the liar paradoxes. -
The Consistency of Arithmetic
The Consistency of Arithmetic Timothy Y. Chow July 11, 2018 In 2010, Vladimir Voevodsky, a Fields Medalist and a professor at the Insti- tute for Advanced Study, gave a lecture entitled, “What If Current Foundations of Mathematics Are Inconsistent?” Voevodsky invited the audience to consider seriously the possibility that first-order Peano arithmetic (or PA for short) was inconsistent. He briefly discussed two of the standard proofs of the consistency of PA (about which we will say more later), and explained why he did not find either of them convincing. He then said that he was seriously suspicious that an inconsistency in PA might someday be found. About one year later, Voevodsky might have felt vindicated when Edward Nelson, a professor of mathematics at Princeton University, announced that he had a proof not only that PA was inconsistent, but that a small fragment of primitive recursive arithmetic (PRA)—a system that is widely regarded as implementing a very modest and “safe” subset of mathematical reasoning—was inconsistent [11]. However, a fatal error in his proof was soon detected by Daniel Tausk and (independently) Terence Tao. Nelson withdrew his claim, remarking that the consistency of PA remained “an open problem.” For mathematicians without much training in formal logic, these claims by Voevodsky and Nelson may seem bewildering. While the consistency of some axioms of infinite set theory might be debatable, is the consistency of PA really “an open problem,” as Nelson claimed? Are the existing proofs of the con- sistency of PA suspect, as Voevodsky claimed? If so, does this mean that we cannot be sure that even basic mathematical reasoning is consistent? This article is an expanded version of an answer that I posted on the Math- Overflow website in response to the question, “Is PA consistent? do we know arXiv:1807.05641v1 [math.LO] 16 Jul 2018 it?” Since the question of the consistency of PA seems to come up repeat- edly, and continues to generate confusion, a more extended discussion seems worthwhile. -
Indexed Induction-Recursion
Indexed Induction-Recursion Peter Dybjer a;? aDepartment of Computer Science and Engineering, Chalmers University of Technology, 412 96 G¨oteborg, Sweden Email: [email protected], http://www.cs.chalmers.se/∼peterd/, Tel: +46 31 772 1035, Fax: +46 31 772 3663. Anton Setzer b;1 bDepartment of Computer Science, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK, Email: [email protected], http://www.cs.swan.ac.uk/∼csetzer/, Tel: +44 1792 513368, Fax: +44 1792 295651. Abstract An indexed inductive definition (IID) is a simultaneous inductive definition of an indexed family of sets. An inductive-recursive definition (IRD) is a simultaneous inductive definition of a set and a recursive definition of a function from that set into another type. An indexed inductive-recursive definition (IIRD) is a combination of both. We present a closed theory which allows us to introduce all IIRDs in a natural way without much encoding. By specialising it we also get a closed theory of IID. Our theory of IIRDs includes essentially all definitions of sets which occur in Martin-L¨of type theory. We show in particular that Martin-L¨of's computability predicates for dependent types and Palmgren's higher order universes are special kinds of IIRD and thereby clarify why they are constructively acceptable notions. We give two axiomatisations. The first and more restricted one formalises a prin- ciple for introducing meaningful IIRD by using the data-construct in the original version of the proof assistant Agda for Martin-L¨of type theory. The second one admits a more general form of introduction rule, including the introduction rule for the intensional identity relation, which is not covered by the restricted one. -
Master of Science in Advanced Mathematics and Mathematical Engineering
Master of Science in Advanced Mathematics and Mathematical Engineering Title: Logic and proof assistants Author: Tomás Martínez Coronado Advisor: Enric Ventura Capell Department: Matemàtiques Academic year: 2015 - 2016 An introduction to Homotopy Type Theory Tom´asMart´ınezCoronado June 26, 2016 Chapter 1 Introduction We give a short introduction first to the philosophical motivation of Intuitionistic Type Theories such as the one presented in this text, and then we give some considerations about this text and the structure we have followed. Philosophy It is hard to overestimate the impact of the problem of Foundations of Mathematics in 20th century philos- ophy. For instance, arguably the most influential thinker in the last century, Ludwig Wittgenstein, began its philosophical career inspired by the works of Frege and Russell on the subject |although, to be fair, he quickly changed his mind and quit working about it. Mathematics have been seen, through History, as the paradigma of absolute knowledge: Locke, in his Essay concerning Human Understanding, had already stated that Mathematics and Theology (sic!) didn't suffer the epistemological problems of empirical sciences: they were, each one in its very own way, provable knowledge. But neither Mathematics nor Theology had a good time trying to explain its own inconsistencies in the second half of the 19th century, the latter due in particular to the works of Charles Darwin. The problem of the Foundations of Mathematics had been the elephant in the room for quite a long time: the necessity of relying on axioms and so-called \evidences" in order to state the invulnerability of the Mathematical system had already been criticized by William Frend in the late 18th century, and the incredible Mathematical works of the 19th century, the arrival of new geometries which were \as consistent as Euclidean geometry", and a bunch of well-known paradoxes derived of the misuse of the concept of infinity had shown the necessity of constructing a logical structure complete enough to sustain the entire Mathematical building. -
The Unintended Interpretations of Intuitionistic Logic
THE UNINTENDED INTERPRETATIONS OF INTUITIONISTIC LOGIC Wim Ruitenburg Department of Mathematics, Statistics and Computer Science Marquette University Milwaukee, WI 53233 Abstract. We present an overview of the unintended interpretations of intuitionis- tic logic that arose after Heyting formalized the “observed regularities” in the use of formal parts of language, in particular, first-order logic and Heyting Arithmetic. We include unintended interpretations of some mild variations on “official” intuitionism, such as intuitionistic type theories with full comprehension and higher order logic without choice principles or not satisfying the right choice sequence properties. We conclude with remarks on the quest for a correct interpretation of intuitionistic logic. §1. The Origins of Intuitionistic Logic Intuitionism was more than twenty years old before A. Heyting produced the first complete axiomatizations for intuitionistic propositional and predicate logic: according to L. E. J. Brouwer, the founder of intuitionism, logic is secondary to mathematics. Some of Brouwer’s papers even suggest that formalization cannot be useful to intuitionism. One may wonder, then, whether intuitionistic logic should itself be regarded as an unintended interpretation of intuitionistic mathematics. I will not discuss Brouwer’s ideas in detail (on this, see [Brouwer 1975], [Hey- ting 1934, 1956]), but some aspects of his philosophy need to be highlighted here. According to Brouwer mathematics is an activity of the human mind, a product of languageless thought. One cannot be certain that language is a perfect reflection of this mental activity. This makes language an uncertain medium (see [van Stigt 1982] for more details on Brouwer’s ideas about language). In “De onbetrouwbaarheid der logische principes” ([Brouwer 1981], pp. -
Intuitionistic Three-Valued Logic and Logic Programming Informatique Théorique Et Applications, Tome 25, No 6 (1991), P
INFORMATIQUE THÉORIQUE ET APPLICATIONS J. VAUZEILLES A. STRAUSS Intuitionistic three-valued logic and logic programming Informatique théorique et applications, tome 25, no 6 (1991), p. 557-587 <http://www.numdam.org/item?id=ITA_1991__25_6_557_0> © AFCET, 1991, tous droits réservés. L’accès aux archives de la revue « Informatique théorique et applications » im- plique l’accord avec les conditions générales d’utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Informatique théorique et Applications/Theoretical Informaties and Applications (vol. 25, n° 6, 1991, p. 557 à 587) INTUITIONISTIC THREE-VALUED LOGIC AMD LOGIC PROGRAMM1NG (*) by J. VAUZEILLES (*) and A. STRAUSS (2) Communicated by J. E. PIN Abstract. - In this paper, we study the semantics of logic programs with the help of trivalued hgic, introduced by Girard in 1973. Trivalued sequent calculus enables to extend easily the results of classical SLD-resolution to trivalued logic. Moreover, if one allows négation in the head and in the body of Hom clauses, one obtains a natural semantics for such programs regarding these clauses as axioms of a theory written in the intuitionistic fragment of that logic. Finally^ we define in the same calculus an intuitionistic trivalued version of Clark's completion, which gives us a déclarative semantics for programs with négation in the body of the clauses, the évaluation method being SLDNF-resolution. Resumé. — Dans cet article, nous étudions la sémantique des programmes logiques à l'aide de la logique trivaluée^ introduite par Girard en 1973. -
Types, Sets and Categories
TYPES, SETS AND CATEGORIES John L. Bell This essay is an attempt to sketch the evolution of type theory from its begin- nings early in the last century to the present day. Central to the development of the type concept has been its close relationship with set theory to begin with and later its even more intimate relationship with category theory. Since it is effectively impossible to describe these relationships (especially in regard to the latter) with any pretensions to completeness within the space of a comparatively short article, I have elected to offer detailed technical presentations of just a few important instances. 1 THE ORIGINS OF TYPE THEORY The roots of type theory lie in set theory, to be precise, in Bertrand Russell’s efforts to resolve the paradoxes besetting set theory at the end of the 19th century. In analyzing these paradoxes Russell had come to find the set, or class, concept itself philosophically perplexing, and the theory of types can be seen as the outcome of his struggle to resolve these perplexities. But at first he seems to have regarded type theory as little more than a faute de mieux. In June 1901 Russell learned of the set-theoretic paradox, known to Cantor by 1899, that issued from applying the latter’s theorem concerning power sets to the class V of all sets. According to that theorem the class of all subclasses of V would, impossibly, have to possess a cardinality exceeding that of V . This stimulated Russell to formulate the paradox that came to bear his name (although it was independently discovered by Zermelo at about the same time) concerning the class of all classes not containing themselves (or predicates not predicable of themselves). -
Formal Systems: Combinatory Logic and -Calculus
INTRODUCTION APPLICATIVE SYSTEMS USEFUL INFORMATION FORMAL SYSTEMS:COMBINATORY LOGIC AND λ-CALCULUS Andrew R. Plummer Department of Linguistics The Ohio State University 30 Sept., 2009 INTRODUCTION APPLICATIVE SYSTEMS USEFUL INFORMATION OUTLINE 1 INTRODUCTION 2 APPLICATIVE SYSTEMS 3 USEFUL INFORMATION INTRODUCTION APPLICATIVE SYSTEMS USEFUL INFORMATION COMBINATORY LOGIC We present the foundations of Combinatory Logic and the λ-calculus. We mean to precisely demonstrate their similarities and differences. CURRY AND FEYS (KOREAN FACE) The material discussed is drawn from: Combinatory Logic Vol. 1, (1958) Curry and Feys. Lambda-Calculus and Combinators, (2008) Hindley and Seldin. INTRODUCTION APPLICATIVE SYSTEMS USEFUL INFORMATION FORMAL SYSTEMS We begin with some definitions. FORMAL SYSTEMS A formal system is composed of: A set of terms; A set of statements about terms; A set of statements, which are true, called theorems. INTRODUCTION APPLICATIVE SYSTEMS USEFUL INFORMATION FORMAL SYSTEMS TERMS We are given a set of atomic terms, which are unanalyzed primitives. We are also given a set of operations, each of which is a mode for combining a finite sequence of terms to form a new term. Finally, we are given a set of term formation rules detailing how to use the operations to form terms. INTRODUCTION APPLICATIVE SYSTEMS USEFUL INFORMATION FORMAL SYSTEMS STATEMENTS We are given a set of predicates, each of which is a mode for forming a statement from a finite sequence of terms. We are given a set of statement formation rules detailing how to use the predicates to form statements. INTRODUCTION APPLICATIVE SYSTEMS USEFUL INFORMATION FORMAL SYSTEMS THEOREMS We are given a set of axioms, each of which is a statement that is unconditionally true (and thus a theorem). -
The Development of Mathematical Logic from Russell to Tarski: 1900–1935
The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu Richard Zach Calixto Badesa The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu (University of California, Berkeley) Richard Zach (University of Calgary) Calixto Badesa (Universitat de Barcelona) Final Draft—May 2004 To appear in: Leila Haaparanta, ed., The Development of Modern Logic. New York and Oxford: Oxford University Press, 2004 Contents Contents i Introduction 1 1 Itinerary I: Metatheoretical Properties of Axiomatic Systems 3 1.1 Introduction . 3 1.2 Peano’s school on the logical structure of theories . 4 1.3 Hilbert on axiomatization . 8 1.4 Completeness and categoricity in the work of Veblen and Huntington . 10 1.5 Truth in a structure . 12 2 Itinerary II: Bertrand Russell’s Mathematical Logic 15 2.1 From the Paris congress to the Principles of Mathematics 1900–1903 . 15 2.2 Russell and Poincar´e on predicativity . 19 2.3 On Denoting . 21 2.4 Russell’s ramified type theory . 22 2.5 The logic of Principia ......................... 25 2.6 Further developments . 26 3 Itinerary III: Zermelo’s Axiomatization of Set Theory and Re- lated Foundational Issues 29 3.1 The debate on the axiom of choice . 29 3.2 Zermelo’s axiomatization of set theory . 32 3.3 The discussion on the notion of “definit” . 35 3.4 Metatheoretical studies of Zermelo’s axiomatization . 38 4 Itinerary IV: The Theory of Relatives and Lowenheim’s¨ Theorem 41 4.1 Theory of relatives and model theory . 41 4.2 The logic of relatives .