The Vertex Coloring Problem and Bipartite Graphs Vertex-Coloring Problem Vertex-Coloring Problem Applications of the Vertex-Colo

Total Page:16

File Type:pdf, Size:1020Kb

The Vertex Coloring Problem and Bipartite Graphs Vertex-Coloring Problem Vertex-Coloring Problem Applications of the Vertex-Colo Vertex-coloring problem The Vertex coloring problem and bipartite graphs Tyler Moore CSE 3353, SMU, Dallas, TX Lecture 8 Some slides created by or adapted from Dr. Kevin Wayne. For more information see http://www.cs.princeton.edu/~wayne/kleinberg-tardos. Graph-coloring of registers adapted from Stanford’s CS143 (Aiken, Treichler). 2 / 32 Vertex-coloring problem Applications of the vertex-coloring problem Apart from working at National Geographic, when might you encounter a vertex-coloring problem? Vertex-coloring problems arise in scheduling problems, where access The vertex-coloring problem seeks to assign a label (aka color) to to shared resources must be coordinated each vertex of a graph such that no edge links any two vertices of the Example: register allocation by compilers same color Variables are used forfixed timespan (after initialization, beforefinal Trivial solution: assign each vertex a different color use) However, goal is usually to use as few colors as possible Two variables with intersecting lifespans can’t be put in the same register We can build a graph with variables assigned to vertices and edges drawn between vertices if the variables’ lifespan intersects Color the graph, and assign variables to the same register if their vertices have the same color 3 / 32 4 / 32 Vertex-coloring problem special case: two colors ��������������������� Many graph problems become: A bipartite graph is an undirected graph UV �Easier if the underlying graph is bipartite (matching). whose vertices can be divided into disjoint �Tractable if the underlying graph is bipartite (independent set). setsU andV such that every edge connects a vertex inU to one inV. Before attempting to design an algorithm, we need to understand structure of bipartite graphs. Bipartite graphs arise in matching problems: matching workers to jobs, matching kidney donors with recipients, v2 v2 v3 finding heterosexual mates v1 If we can color a graph’s vertices using just v4 v v6 v5 v4 3 two colors, then we have a bipartite graph v5 Problem: given a graph,find its v6 v7 v1 two-coloring or report that a two-coloring is v7 not possible ������������������� �������������������� 27 5 / 32 6 / 32 ������������������������������� ���������������� Lemma. If a graph � is bipartite, it cannot contain an odd length cycle. Lemma. Let � be a connected graph, and let ��������� be the layers produced by BFS starting at node �. Exactly one of the following holds. Pf. Not possible to 2-color the odd cycle, let alone �. (i) No edge of � joins two nodes of the same layer, and � is bipartite. (ii) An edge of � joins two nodes of the same layer, and � contains an odd-length cycle (and hence is not bipartite). ��������� ������������� ������������� ����������������� L L L L1 L2 L3 1 2 3 ���� ��� ��������� 28 29 7 / 32 8 / 32 ������������������� ���������������� Property. Let � be a BFS tree of ����������, and let ������ be an edge of �. Lemma. Let � be a connected graph, and let ��������� be the layers produced Then, the level of � and � differ by at most 1. by BFS starting at node �. Exactly one of the following holds. (i) No edge of � joins two nodes of the same layer, and � is bipartite. (ii) An edge of � joins two nodes of the same layer, and � contains an odd-length cycle (and hence is not bipartite). Pf. (i) �Suppose no edge joins two nodes in adjacent layers. �By previous lemma, this implies all edges join nodes on same level. Bipartition: red = nodes on odd levels, blue = nodes on even levels. L0 � L1 L2 L3 L1 L2 L3 ���� ��� 19 30 9 / 32 10 / 32 ���������������� ������������������������������������� Lemma. Let � be a connected graph, and let ��������� be the layers produced Corollary. A graph � is bipartite iff it contain no odd length cycle. by BFS starting at node �. Exactly one of the following holds. (i) No edge of � joins two nodes of the same layer, and � is bipartite. (ii) An edge of � joins two nodes of the same layer, and � contains an odd-length cycle (and hence is not bipartite). Pf. (ii) Suppose is an edge with , in same level . � ������ � � �� �Let ��������������� lowest common ancestor. z = lca(x, y) 5-cycle C Let be level containing . � �� � �Consider cycle that takes edge from � to �, then path from � to �, then path from � to �. Its length is ����������������������������, which is odd. ▪ � ��������� ������������� (x, y) path from path from ������������� ����������������� y to z z to x 31 32 11 / 32 12 / 32 Two-coloring algorithm Two-coloring algorithm example 1 Undirected Graph Breadth-First Search Tree 1 Suppose there are two colors: blue and red. a a 2 Color thefirst vertex blue. 3 1 2 3 Do a breadth-first traversal. For each newly-discovered node, color it the opposite of the parent (i.e., red if parent is blue) b c d b c d 4 4 5 7 If the child node has already been discovered, check if the colors are 6 the same as the parent. If so, then the graph isn’t bipartite. e f e f 5 If the traversal completes without any conflicting colors, then the graph is bipartite. 9 g g 13 / 32 14 / 32 Two-coloring algorithm example 2 Exercise: Check for bipartness Undirected Graph Breadth-First Search Tree a a 3 1 2 b c d b c d 4 5 7 6 8 e f e f CONFLICT 9 g g 15 / 32 16 / 32 Global OpVmizaVon Register Interference Graph � Consider the following the following IL: � Use liveness analysis to compute a register interference graph (RIG) ��������� ������������������� � Each variable is a node in the RIG ������������� ���������� ���� � An edge exists between two nodes (variables) if: ��������� � at ANY point in program, both variables are live ���� ������������� � Directly connected nodes are variables that ������������������� cannot share a register �������� Sean Treichler CS143 – Summer 2014 – Lecture 13 7 Sean Treichler CS143 – Summer 2014 – Lecture 13 46 17 / 32 18 / 32 RIG Example Graph Coloring b, w, z � A coloring of a graph is a assignment of colors to { } �� �� nodes: ������� � ������ such that node that share an edge have different b, w, x, z b, x colors { } { } ����������� ������� �� �� b, x, y � A k-­‐coloring is a coloring that uses at most k { } different colors a, b, x, y ����������� { } ������ b, x, y { } �� �� � A k-­‐colorable graph is a graph for which there ������ exists at least one k-­‐coloring ; Sean Treichler CS143 – Summer 2014 – Lecture 13 47 Sean Treichler CS143 – Summer 2014 – Lecture 13 48 19 / 32 20 / 32 Register AllocaVon via Coloring Our HeurisVc � A k-­‐coloring of a RIG is a valid register � Start with full RIG allocaVon for k registers: � While graph is not empty: � Each color is a register � Select a node with minimum number of edges � Variables with the same color are never live at the � Remove node from graph, place on stack same Vme � While stack is not empty: � Pop node from stack, put back in graph � Graph coloring is a hard problem (NP-­‐hard) � Add back any edges to other nodes in graph � Pick a color for the node that doesn’t match any neighbor � Have to use heurisVcs � Pick a new color if necessary Sean Treichler CS143 – Summer 2014 – Lecture 13 49 Sean Treichler CS143 – Summer 2014 – Lecture 13 50 21 / 32 22 / 32 Example Coloring Example Coloring Graph: Stack: Graph: Stack: �� �� �� �� �� �� �� �� �� �� �� �� �� Sean Treichler CS143 – Summer 2014 – Lecture 13 51 Sean Treichler CS143 – Summer 2014 – Lecture 13 57 23 / 32 24 / 32 Example Coloring Example Coloring Graph: Stack: Graph: Stack: �� �� �� �� �� �� �� �� �� �� �� �� �� �� Sean Treichler CS143 – Summer 2014 – Lecture 13 58 Sean Treichler CS143 – Summer 2014 – Lecture 13 59 25 / 32 26 / 32 Example Coloring Example Coloring Graph: Stack: Graph: Stack: �� �� �� �� �� �� �� �� �� �� �� �� �� �� Sean Treichler CS143 – Summer 2014 – Lecture 13 60 Sean Treichler CS143 – Summer 2014 – Lecture 13 61 27 / 32 28 / 32 Example Coloring Example Coloring Graph: Stack: Graph: Stack: �� �� �� �� �� �� �� �� �� �� �� �� �� �� Sean Treichler CS143 – Summer 2014 – Lecture 13 62 Sean Treichler CS143 – Summer 2014 – Lecture 13 63 29 / 32 30 / 32 Example Coloring Example Coloring Graph: Code: Graph: Code: ��������� ���������� �� �� �� �� ������������������� �������������������� ������������� �� ���� ������ ���������� ���������� ���� ���� �� �� �� �� ��������� �� ������� ���� ���� ������������� ��������������� ������������������� ��������������������� �� �� �������� �� �� ������ Sean Treichler CS143 – Summer 2014 – Lecture 13 65 Sean Treichler CS143 – Summer 2014 – Lecture 13 66 31 / 32 32 / 32.
Recommended publications
  • Counting Independent Sets in Graphs with Bounded Bipartite Pathwidth∗
    Counting independent sets in graphs with bounded bipartite pathwidth∗ Martin Dyery Catherine Greenhillz School of Computing School of Mathematics and Statistics University of Leeds UNSW Sydney, NSW 2052 Leeds LS2 9JT, UK Australia [email protected] [email protected] Haiko M¨uller∗ School of Computing University of Leeds Leeds LS2 9JT, UK [email protected] 7 August 2019 Abstract We show that a simple Markov chain, the Glauber dynamics, can efficiently sample independent sets almost uniformly at random in polynomial time for graphs in a certain class. The class is determined by boundedness of a new graph parameter called bipartite pathwidth. This result, which we prove for the more general hardcore distribution with fugacity λ, can be viewed as a strong generalisation of Jerrum and Sinclair's work on approximately counting matchings, that is, independent sets in line graphs. The class of graphs with bounded bipartite pathwidth includes claw-free graphs, which generalise line graphs. We consider two further generalisations of claw-free graphs and prove that these classes have bounded bipartite pathwidth. We also show how to extend all our results to polynomially-bounded vertex weights. 1 Introduction There is a well-known bijection between matchings of a graph G and independent sets in the line graph of G. We will show that we can approximate the number of independent sets ∗A preliminary version of this paper appeared as [19]. yResearch supported by EPSRC grant EP/S016562/1 \Sampling in hereditary classes". zResearch supported by Australian Research Council grant DP190100977. 1 in graphs for which all bipartite induced subgraphs are well structured, in a sense that we will define precisely.
    [Show full text]
  • On the Archimedean Or Semiregular Polyhedra
    ON THE ARCHIMEDEAN OR SEMIREGULAR POLYHEDRA Mark B. Villarino Depto. de Matem´atica, Universidad de Costa Rica, 2060 San Jos´e, Costa Rica May 11, 2005 Abstract We prove that there are thirteen Archimedean/semiregular polyhedra by using Euler’s polyhedral formula. Contents 1 Introduction 2 1.1 RegularPolyhedra .............................. 2 1.2 Archimedean/semiregular polyhedra . ..... 2 2 Proof techniques 3 2.1 Euclid’s proof for regular polyhedra . ..... 3 2.2 Euler’s polyhedral formula for regular polyhedra . ......... 4 2.3 ProofsofArchimedes’theorem. .. 4 3 Three lemmas 5 3.1 Lemma1.................................... 5 3.2 Lemma2.................................... 6 3.3 Lemma3.................................... 7 4 Topological Proof of Archimedes’ theorem 8 arXiv:math/0505488v1 [math.GT] 24 May 2005 4.1 Case1: fivefacesmeetatavertex: r=5. .. 8 4.1.1 At least one face is a triangle: p1 =3................ 8 4.1.2 All faces have at least four sides: p1 > 4 .............. 9 4.2 Case2: fourfacesmeetatavertex: r=4 . .. 10 4.2.1 At least one face is a triangle: p1 =3................ 10 4.2.2 All faces have at least four sides: p1 > 4 .............. 11 4.3 Case3: threefacesmeetatavertes: r=3 . ... 11 4.3.1 At least one face is a triangle: p1 =3................ 11 4.3.2 All faces have at least four sides and one exactly four sides: p1 =4 6 p2 6 p3. 12 4.3.3 All faces have at least five sides and one exactly five sides: p1 =5 6 p2 6 p3 13 1 5 Summary of our results 13 6 Final remarks 14 1 Introduction 1.1 Regular Polyhedra A polyhedron may be intuitively conceived as a “solid figure” bounded by plane faces and straight line edges so arranged that every edge joins exactly two (no more, no less) vertices and is a common side of two faces.
    [Show full text]
  • Density Theorems for Bipartite Graphs and Related Ramsey-Type Results
    Density theorems for bipartite graphs and related Ramsey-type results Jacob Fox Benny Sudakov Princeton UCLA and IAS Ramsey’s theorem Definition: r(G) is the minimum N such that every 2-edge-coloring of the complete graph KN contains a monochromatic copy of graph G. Theorem: (Ramsey-Erdos-Szekeres,˝ Erdos)˝ t/2 2t 2 ≤ r(Kt ) ≤ 2 . Question: (Burr-Erd˝os1975) How large is r(G) for a sparse graph G on n vertices? Ramsey numbers for sparse graphs Conjecture: (Burr-Erd˝os1975) For every d there exists a constant cd such that if a graph G has n vertices and maximum degree d, then r(G) ≤ cd n. Theorem: 1 (Chv´atal-R¨odl-Szemer´edi-Trotter 1983) cd exists. 2αd 2 (Eaton 1998) cd ≤ 2 . βd αd log2 d 3 (Graham-R¨odl-Ruci´nski2000) 2 ≤ cd ≤ 2 . Moreover, if G is bipartite, r(G) ≤ 2αd log d n. Density theorem for bipartite graphs Theorem: (F.-Sudakov) Let G be a bipartite graph with n vertices and maximum degree d 2 and let H be a bipartite graph with parts |V1| = |V2| = N and εN edges. If N ≥ 8dε−d n, then H contains G. Corollary: For every bipartite graph G with n vertices and maximum degree d, r(G) ≤ d2d+4n. (D. Conlon independently proved that r(G) ≤ 2(2+o(1))d n.) Proof: Take ε = 1/2 and H to be the graph of the majority color. Ramsey numbers for cubes Definition: d The binary cube Qd has vertex set {0, 1} and x, y are adjacent if x and y differ in exactly one coordinate.
    [Show full text]
  • Constrained Representations of Map Graphs and Half-Squares
    Constrained Representations of Map Graphs and Half-Squares Hoang-Oanh Le Berlin, Germany [email protected] Van Bang Le Universität Rostock, Institut für Informatik, Rostock, Germany [email protected] Abstract The square of a graph H, denoted H2, is obtained from H by adding new edges between two distinct vertices whenever their distance in H is two. The half-squares of a bipartite graph B = (X, Y, EB ) are the subgraphs of B2 induced by the color classes X and Y , B2[X] and B2[Y ]. For a given graph 2 G = (V, EG), if G = B [V ] for some bipartite graph B = (V, W, EB ), then B is a representation of G and W is the set of points in B. If in addition B is planar, then G is also called a map graph and B is a witness of G [Chen, Grigni, Papadimitriou. Map graphs. J. ACM, 49 (2) (2002) 127-138]. While Chen, Grigni, Papadimitriou proved that any map graph G = (V, EG) has a witness with at most 3|V | − 6 points, we show that, given a map graph G and an integer k, deciding if G admits a witness with at most k points is NP-complete. As a by-product, we obtain NP-completeness of edge clique partition on planar graphs; until this present paper, the complexity status of edge clique partition for planar graphs was previously unknown. We also consider half-squares of tree-convex bipartite graphs and prove the following complexity 2 dichotomy: Given a graph G = (V, EG) and an integer k, deciding if G = B [V ] for some tree-convex bipartite graph B = (V, W, EB ) with |W | ≤ k points is NP-complete if G is non-chordal dually chordal and solvable in linear time otherwise.
    [Show full text]
  • Graph Theory
    1 Graph Theory “Begin at the beginning,” the King said, gravely, “and go on till you come to the end; then stop.” — Lewis Carroll, Alice in Wonderland The Pregolya River passes through a city once known as K¨onigsberg. In the 1700s seven bridges were situated across this river in a manner similar to what you see in Figure 1.1. The city’s residents enjoyed strolling on these bridges, but, as hard as they tried, no residentof the city was ever able to walk a route that crossed each of these bridges exactly once. The Swiss mathematician Leonhard Euler learned of this frustrating phenomenon, and in 1736 he wrote an article [98] about it. His work on the “K¨onigsberg Bridge Problem” is considered by many to be the beginning of the field of graph theory. FIGURE 1.1. The bridges in K¨onigsberg. J.M. Harris et al., Combinatorics and Graph Theory , DOI: 10.1007/978-0-387-79711-3 1, °c Springer Science+Business Media, LLC 2008 2 1. Graph Theory At first, the usefulness of Euler’s ideas and of “graph theory” itself was found only in solving puzzles and in analyzing games and other recreations. In the mid 1800s, however, people began to realize that graphs could be used to model many things that were of interest in society. For instance, the “Four Color Map Conjec- ture,” introduced by DeMorgan in 1852, was a famous problem that was seem- ingly unrelated to graph theory. The conjecture stated that four is the maximum number of colors required to color any map where bordering regions are colored differently.
    [Show full text]
  • Archimedean Solids
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2008 Archimedean Solids Anna Anderson University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Anderson, Anna, "Archimedean Solids" (2008). MAT Exam Expository Papers. 4. https://digitalcommons.unl.edu/mathmidexppap/4 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Archimedean Solids Anna Anderson In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Jim Lewis, Advisor July 2008 2 Archimedean Solids A polygon is a simple, closed, planar figure with sides formed by joining line segments, where each line segment intersects exactly two others. If all of the sides have the same length and all of the angles are congruent, the polygon is called regular. The sum of the angles of a regular polygon with n sides, where n is 3 or more, is 180° x (n – 2) degrees. If a regular polygon were connected with other regular polygons in three dimensional space, a polyhedron could be created. In geometry, a polyhedron is a three- dimensional solid which consists of a collection of polygons joined at their edges. The word polyhedron is derived from the Greek word poly (many) and the Indo-European term hedron (seat).
    [Show full text]
  • Lecture 12 — October 10, 2017 1 Overview 2 Matchings in Bipartite Graphs
    CS 388R: Randomized Algorithms Fall 2017 Lecture 12 | October 10, 2017 Prof. Eric Price Scribe: Shuangquan Feng, Xinrui Hua 1 Overview In this lecture, we will explore 1. Problem of finding matchings in bipartite graphs. 2. Hall's Theorem: sufficient and necessary condition for the existence of perfect matchings in bipartite graphs. 3. An algorithm for finding perfect matching in d-regular bipartite graphs when d = 2k which is based on the idea of Euler tour and has a time complexity of O(nd). 4. A randomized algorithm for finding perfect matchings in all d regular bipartite graphs which has an expected time complexity of O(n log n). 5. Problem of online bipartite matching. 2 Matchings in Bipartite Graphs Definition 1 (Bipartite Graph). A graph G = (V; E) is said to be bipartite if the vertex set V can be partitioned into 2 disjoint sets L and R so that any edge has one vertex in L and the other in R. Definition 2 (Matching). Given an undirected graph G = (V; E), a matching is a subset of edges M ⊆ E that have no endpoints in common. Definition 3 (Maximum Matching). Given an undirected graph G = (V; E), a maximum matching M is a matching of maximum size. Thus for any other matching M 0, we have that jMj ≥ jM 0j. Definition 4 (Perfect Matching). Given an bipartite graph G = (V; E), with the bipartition V = L [ R where jLj = jRj = n, a perfect matching is a maximum matching of size n. There are several well known algorithms for the problem of finding maximum matchings in bipartite graphs.
    [Show full text]
  • Graph Mining: Social Network Analysis and Information Diffusion
    Graph Mining: Social network analysis and Information Diffusion Davide Mottin, Konstantina Lazaridou Hasso Plattner Institute Graph Mining course Winter Semester 2016 Lecture road Introduction to social networks Real word networks’ characteristics Information diffusion GRAPH MINING WS 2016 2 Paper presentations ▪ Link to form: https://goo.gl/ivRhKO ▪ Choose the date(s) you are available ▪ Choose three papers according to preference (there are three lists) ▪ Choose at least one paper for each course part ▪ Register to the mailing list: https://lists.hpi.uni-potsdam.de/listinfo/graphmining-ws1617 GRAPH MINING WS 2016 3 What is a social network? ▪Oxford dictionary A social network is a network of social interactions and personal relationships GRAPH MINING WS 2016 4 What is an online social network? ▪ Oxford dictionary An online social network (OSN) is a dedicated website or other application, which enables users to communicate with each other by posting information, comments, messages, images, etc. ▪ Computer science : A network that consists of a finite number of users (nodes) that interact with each other (edges) by sharing information (labels, signs, edge directions etc.) GRAPH MINING WS 2016 5 Definitions ▪Vertex/Node : a user of the social network (Twitter user, an author in a co-authorship network, an actor etc.) ▪Edge/Link/Tie : the connection between two vertices referring to their relationship or interaction (friend-of relationship, re-tweeting activity, etc.) Graph G=(V,E) symbols meaning V users E connections deg(u) node degree:
    [Show full text]
  • Lecture 9-10: Extremal Combinatorics 1 Bipartite Forbidden Subgraphs 2 Graphs Without Any 4-Cycle
    MAT 307: Combinatorics Lecture 9-10: Extremal combinatorics Instructor: Jacob Fox 1 Bipartite forbidden subgraphs We have seen the Erd}os-Stonetheorem which says that given a forbidden subgraph H, the extremal 1 2 number of edges is ex(n; H) = 2 (1¡1=(Â(H)¡1)+o(1))n . Here, o(1) means a term tending to zero as n ! 1. This basically resolves the question for forbidden subgraphs H of chromatic number at least 3, since then the answer is roughly cn2 for some constant c > 0. However, for bipartite forbidden subgraphs, Â(H) = 2, this answer is not satisfactory, because we get ex(n; H) = o(n2), which does not determine the order of ex(n; H). Hence, bipartite graphs form the most interesting class of forbidden subgraphs. 2 Graphs without any 4-cycle Let us start with the ¯rst non-trivial case where H is bipartite, H = C4. I.e., the question is how many edges G can have before a 4-cycle appears. The answer is roughly n3=2. Theorem 1. For any graph G on n vertices, not containing a 4-cycle, 1 p E(G) · (1 + 4n ¡ 3)n: 4 Proof. Let dv denote the degree of v 2 V . Let F denote the set of \labeled forks": F = f(u; v; w):(u; v) 2 E; (u; w) 2 E; v 6= wg: Note that we do not care whether (v; w) is an edge or not. We count the size of F in two possible ways: First, each vertex u contributes du(du ¡ 1) forks, since this is the number of choices for v and w among the neighbors of u.
    [Show full text]
  • Hypergraph Packing and Sparse Bipartite Ramsey Numbers
    Hypergraph packing and sparse bipartite Ramsey numbers David Conlon ∗ Abstract We prove that there exists a constant c such that, for any integer ∆, the Ramsey number of a bipartite graph on n vertices with maximum degree ∆ is less than 2c∆n. A probabilistic argument due to Graham, R¨odland Ruci´nskiimplies that this result is essentially sharp, up to the constant c in the exponent. Our proof hinges upon a quantitative form of a hypergraph packing result of R¨odl,Ruci´nskiand Taraz. 1 Introduction For a graph G, the Ramsey number r(G) is defined to be the smallest natural number n such that, in any two-colouring of the edges of Kn, there exists a monochromatic copy of G. That these numbers exist was proven by Ramsey [19] and rediscovered independently by Erd}osand Szekeres [10]. Whereas the original focus was on finding the Ramsey numbers of complete graphs, in which case it is known that t t p2 r(Kt) 4 ; ≤ ≤ the field has broadened considerably over the years. One of the most famous results in the area to date is the theorem, due to Chvat´al,R¨odl,Szemer´ediand Trotter [7], that if a graph G, on n vertices, has maximum degree ∆, then r(G) c(∆)n; ≤ where c(∆) is just some appropriate constant depending only on ∆. Their proof makes use of the regularity lemma and because of this the bound it gives on the constant c(∆) is (and is necessarily [11]) very bad. The situation was improved somewhat by Eaton [8], who proved, by using a variant of the regularity lemma, that the function c(∆) may be taken to be of the form 22c∆ .
    [Show full text]
  • THE CRITICAL GROUP of a LINE GRAPH: the BIPARTITE CASE Contents 1. Introduction 2 2. Preliminaries 2 2.1. the Graph Laplacian 2
    THE CRITICAL GROUP OF A LINE GRAPH: THE BIPARTITE CASE JOHN MACHACEK Abstract. The critical group K(G) of a graph G is a finite abelian group whose order is the number of spanning forests of the graph. Here we investigate the relationship between the critical group of a regular bipartite graph G and its line graph line G. The relationship between the two is known completely for regular nonbipartite graphs. We compute the critical group of a graph closely related to the complete bipartite graph and the critical group of its line graph. We also discuss general theory for the critical group of regular bipartite graphs. We close with various examples demonstrating what we have observed through experimentation. The problem of classifying the the relationship between K(G) and K(line G) for regular bipartite graphs remains open. Contents 1. Introduction 2 2. Preliminaries 2 2.1. The graph Laplacian 2 2.2. Theory of lattices 3 2.3. The line graph and edge subdivision graph 3 2.4. Circulant graphs 5 2.5. Smith normal form and matrices 6 3. Matrix reductions 6 4. Some specific regular bipartite graphs 9 4.1. The almost complete bipartite graph 9 4.2. Bipartite circulant graphs 11 5. A few general results 11 5.1. The quotient group 11 5.2. Perfect matchings 12 6. Looking forward 13 6.1. Odd primes 13 6.2. The prime 2 14 6.3. Example exact sequences 15 References 17 Date: December 14, 2011. A special thanks to Dr. Victor Reiner for his guidance and suggestions in completing this work.
    [Show full text]
  • CS675: Convex and Combinatorial Optimization Spring 2018 Introduction to Matroid Theory
    CS675: Convex and Combinatorial Optimization Spring 2018 Introduction to Matroid Theory Instructor: Shaddin Dughmi Set system: Pair (X ; I) where X is a finite ground set and I ⊆ 2X are the feasible sets Objective: often “linear”, referred to as modular Analogues of concave and convex: submodular and supermodular (in no particular order!) Today, we will look only at optimizing modular objectives over an extremely prolific family of set systems Related, directly or indirectly, to a large fraction of optimization problems in P Also pops up in submodular/supermodular optimization problems Optimization over Sets Most combinatorial optimization problems can be thought of as choosing the best set from a family of allowable sets Shortest paths Max-weight matching Independent set ... 1/30 Objective: often “linear”, referred to as modular Analogues of concave and convex: submodular and supermodular (in no particular order!) Today, we will look only at optimizing modular objectives over an extremely prolific family of set systems Related, directly or indirectly, to a large fraction of optimization problems in P Also pops up in submodular/supermodular optimization problems Optimization over Sets Most combinatorial optimization problems can be thought of as choosing the best set from a family of allowable sets Shortest paths Max-weight matching Independent set ... Set system: Pair (X ; I) where X is a finite ground set and I ⊆ 2X are the feasible sets 1/30 Analogues of concave and convex: submodular and supermodular (in no particular order!) Today, we will look only at optimizing modular objectives over an extremely prolific family of set systems Related, directly or indirectly, to a large fraction of optimization problems in P Also pops up in submodular/supermodular optimization problems Optimization over Sets Most combinatorial optimization problems can be thought of as choosing the best set from a family of allowable sets Shortest paths Max-weight matching Independent set ..
    [Show full text]